• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1267
  • 329
  • 124
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 1767
  • 851
  • 314
  • 301
  • 278
  • 271
  • 225
  • 222
  • 158
  • 123
  • 122
  • 105
  • 96
  • 87
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Évaluation du rôle neuroprotecteur de la petite GTPase Rin pour le traitement de la maladie de Parkinson

Castonguay, Anne-Marie 31 January 2021 (has links)
La maladie de Parkinson (MP) est caractérisée par l'accumulation d'alpha-synucléine (aSyn) mal repliée dans la substantia nigra pars compacta (SNpc), entraînant la mort des neurones dopaminergiques (DA). Les mécanismes qui sous-tendent la toxicité de l’aSyn sont encore peu connus, mais on suppose qu'ils impliquent des défauts dans l'autophagie (ALP). Les mutations dans LRRK2 sont fréquentes dans la MP familiale et sporadique. L'inhibition pharmacologique de l'activité de la kinase LRRK2 réduit les déficits dans l’ALP et les inclusions d’aSyn phosphorylée (paSyn), ce qui suggère que ces phénotypes dépendent de l'hyperactivation de LRRK2. Nous avons observé une diminution de l’expression du gène RIT2 dans des cellules mutantes LRRK2 (G2019S). RIT2 encode la petite GTPase Rin, qui est enrichie dans les neurones DA, et moins abondante dans la SNpc des cerveaux des patients atteints de la MP. Notre objectif est d'évaluer si Rin peut moduler l'activité de LRRK2 pour contrecarrer les altérations dans l'autophagie et promouvoir la clairance de l’aSyn. Nous avons utilisé des cellules de neuroblastome exprimant LRRK2-G2019S ou LRRK2-sauvage (WT) et évalué les déficits dans l’ALP et la toxicité de l’aSyn avec ou sans surexpression de Rin. Nous avons ensuite testé notre approche in vivo en utilisant des vecteurs viraux encodant aSyn et/ou Rin afin de surexprimer ces gènes chez la souris. Nous avons évalué la déficience locomotrice et fait une analyse histopathologique de coupes de cerveau. La surexpression de Rin dans les cellules LRRK2-G2019S a permis de renverser les altérations dans l'ALP et de diminuer les inclusions d'aSyn. Dans notre modèle de souris, la surexpression de Rin a empêché les déficits moteurs induits par l'injection d'AAV-aSyn. La surexpression de Rin a également protégé contre la perte d'axones dopaminergiques dans le striatum et la dégénérescence neuronale. Nos données indiquent que Rin inhibe LRRK2 pour compenser le déficit ALP et contrecarrer l'agrégation d'aSyn et les déficits connexes. Cela suggère que de cibler la signalisation par Rin pourrait représenter une nouvelle stratégie pour combattre la MP familiale et sporadique. / Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (aSyn) in the substantia nigra (SNc), leading to the death of dopaminergic (DA) neurons. The mechanisms underlying aSyn pathology are still unclear but hypothesized to involve autophagy and endosome-lysosome pathways (ALP). LRRK2 mutations are a major cause of familial and sporadic PD. Pharmacological inhibition of LRRK2 kinase activity ameliorates ALP deficits and reduces paSyn inclusions, indicating that these phenotypes depend on LRRK2 hyperactivation. We observed selective downregulation of the novel PD risk factor RIT2 in LRRK2 mutant cells (G2019S). RIT2 encodes the small GTPase Rin, which is enriched in DA neurons and reduced in SNpc of PD brains. We aim to evaluate if Rin can modulate LRRK2 activity to rescue alterations in autophagy and promote aSyn clearance. We used neuroblastoma cells expressing LRRK2-G2019S or LRRK2-WT and evaluated ALP deficits and aSyn pathology with or without Rin overexpression. We then tested our approach in vivo using viral vectors encoding aSyn and/or Rin in mice SNpc. We evaluated the locomotor impairment and performed histopathological analysis on brain sections. Rin overexpression in LRRK2-G2019S cells rescued the alterations in ALP and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rin prevented motor deficits induced by AAV-aSyn injection. Overexpression of Rin also protected against the loss of dopaminergic axons in the striatum and neural degeneration. Our data indicate that Rin inhibits overactive LRRK2 to remove ALP impairment and counteract aSyn aggregation and related deficits. This suggests that targeting Rin signaling could represent a novel strategy to combat neuropathology in familial and idiopathic PD.
142

Études spectroscopiques de la structure, de l'auto-association et de la topologie membranaire du peptide amyloïde a-synucléine 71-82

Martial, Benjamin 04 February 2021 (has links)
No description available.
143

Identification de CtBP1 et UNC5A comme nouveau partenaires biochimiques des protéines Fanconi

Huard, Caroline 11 April 2018 (has links)
L'anémie de Fanconi (FA) est une maladie multigénique récessive rare qui atteint les enfants en bas âge. Plusieurs protéines FA forment un complexe nucléaire essentiel à l'activité de la voie de l'anémie de Fanconi au cours des mécanismes de réparation de l'ADN et d'apoptose ainsi qu'au cours du cycle cellulaire et du développement. Les patients FA présentent tous une pancytopénie qui résulte du non renouvellement des cellules souches de la moelle osseuse et sont souvent atteints de malformations congénitales. Malgré les récentes avancées sur la compréhension de la dynamique et de la régulation de la voie Fanconi, la fonction de la plupart des protéines FA demeure toujours inconnue. L'objectif principal du projet de recherche était donc d'identifier d'éventuels partenaires biochimiques de la protéine FANCC par un criblage de banque d'ADNc afin de mieux comprendre la fonction des protéines FA dans les divers mécanismes cellulaires. Deux interacteurs potentiels retenus, soit CtBPl et UNC5A, ont été analysés pour leur capacité à interagir ou colocaliser avec d'autres protéines Fanconi par double hybride dans la levure, par coimmunoprécipitation et par immunofluorescence. Il a été montré que CtBPl interagit avec le complexe Fanconi et que UNC5A interagit avec la protéine FANCC. Aussi, l'activation de la voie Wnt induit une translocation nucléaire et une colocalisation des protéines F ANC A, FANCC et CtBPl. L'interaction directe entre le corépresseur CtBPl et le complexe FA suggère un rôle de la voie Fanconi dans les mécanismes de développement par le biais de la voie de développement Wnt. D'autres analyses sont nécessaires pour postuler sur l'implication de la protéine UNC5A dans l'anémie de Fanconi.
144

Étude du rôle physiologique et pathologique de la famille miR-132/212 dans le cerveau

Rainone, Sara 20 November 2018 (has links)
La maladie d'Alzheimer (MA) est la forme de démence la plus fréquente dans le monde. Au niveau microscopique, le cerveau des patients atteints par la MA présente deux principales caractéristiques pathologiques : les plaques amyloïdes, constituées d'agrégats du peptide Aβ (Amyloïde Bêta), et les dégénérescences neurofibrillaires, formées par des agrégats de la protéine Tau anormalement hyperphosphorylée. Parmi les facteurs endogènes qui pourraient participer à la progression de la MA, il y a les microARNs (miRs). Les miRs sont des petits ARNs non codants qui régulent l’expression de gènes cibles au niveau post-transcriptionnel. En particulier, la famille miR-132/212 est fortement régulée à la baisse dans le cerveau des patients atteints de la MA. Des études précédentes ont démontré que, chez la souris 3xTg-AD, un modèle de la MA, la délétion génétique de la famille miR-132/212 conduit à une augmentation de la phosphorylation et de l’agrégation de la protéine Tau, les deux mécanismes présumés à la base de la formation des dégénérescences neurofibrillaires. En dehors de son rôle dans la MA, la famille miR-132/212 est également impliquée dans plusieurs troubles neurologiques. Notamment, son niveau d’expression est dérégulé dans d’autres pathologies neurodégénératives, telles que la démence fronto-temporale et la maladie de Parkinson. Il est donc possible que la famille miR-132/212 contribue au processus neurodégénératif de ces pathologies. Dans ce contexte, les travaux présentés visent à étudier le rôle de la famille miR132/212 dans la MA et, plus généralement, dans le cerveau. Tout d’abord, puisque la famille miR-132/212 a déjà un rôle connu dans la formation des dégénérescences neurofibrillaires, nous avons évalué son implication dans la formation des plaques amyloïdes, deuxième caractéristique pathologique de la MA. Nous avons ainsi démontré que la délétion génétique de la famille miR-132/212 favorise la production du peptide Aβ et la formation de plaques amyloïdes chez le modèle murin 3xTg-AD. En utilisant une approche d’ARN-Seq et de bio-informatique, nous avons identifié des gènes faisant partie du réseau de la famille miR-132/212 qui ont des rôles dans la régulation du métabolisme de l'Aβ, y compris Tau, Mapk et Sirt1. En accord avec ces résultats, nous avons montré que la modulation du miR-132, ou de sa cible Sirt1, peut réguler directement la production d’Aβ dans les cellules. Finalement, nous avons démontré que les niveaux de la famille miR-132/212 corrèlent avec la quantité des plaques amyloïdes chez l'Homme. Ensuite, afin d’élucider le rôle de la famille miR-132/212 dans le cerveau, nous nous sommes concentrés sur l’identification de cibles régulées par cette dernière. Dans un premier temps, cette analyse a été conduite dans plusieurs modèles cellulaires in vitro, dans lesquels le rôle du miR-132, un des deux composants de la famille, a été spécifiquement étudié. Dans ce contexte, nous avons démontré que les cibles régulées par le miR-132 sont peu nombreuses et spécifiques au type cellulaire considéré. Dans un deuxième temps, l’analyse d’identification des cibles a été conduite dans un modèle de souris de délétion conditionnelle pour la famille miR-132/212 que nous avons spécifiquement généré. Nous avons ainsi caractérisé des cibles et des réseaux moléculaires modulés par la famille miR-132/212 dans ce modèle. Pris ensemble, ces résultats suggèrent que i) Le réseau de la famille miR-132/212, dont Sirt1 et probablement d'autres gènes cibles, participe à la production du peptide Aβ et la formation de plaques amyloïdes dans la MA ; ii) Même si le miR-132 peut potentiellement cibler un grand nombre de gènes simultanément, son ciblage est sélectif et spécifique au contexte cellulaire étudié. Enfin, les résultats obtenus mettent en évidence un ensemble de nouvelles cibles et de voies de signalisation régulées par la famille miR-132/212. En conclusion, ces travaux contribuent à l'avancement des connaissances du rôle physiologique et pathologique de la famille miR-132/212 dans le cerveau. / Alzheimer's disease (AD) is the most common form of dementia in the world. At the microscopic level, two main pathological features characterize the brain of AD patients: amyloid plaques, consisting of aggregates of the Aβ (Amyloid Beta) peptide, and neurofibrillary tangles, formed by aggregates of abnormally hyperphosphorylated Tau protein. Endogenous factors that may be involved in the progression of AD include microRNAs (miRs). MiRs are small non-coding RNAs that regulate the expression of target genes at the post-transcriptional level. In particular, the miR-132/212 family is strongly downregulated in the brain of AD patients. Previous studies have shown that in the 3xTg-AD mouse model of AD, the genetic deletion of the miR-132/212 family leads to an increase in phosphorylation and aggregation of Tau protein, two mechanisms leading to the formation of neurofibrillary tangles. Apart from its role in AD, the miR-132/212 family is also involved in several neurological disorders. In particular, its level of expression is deregulated in other neurodegenerative pathologies, such as frontotemporal dementia and Parkinson's disease. It is therefore possible that the miR-132/212 family contributes to the neurodegenerative process of these pathologies. In this context, the work presented aims to study the role of the miR-132/212 family in AD and, more generally, in the brain. First of all, since the miR-132/212 family already has a known role in the formation of neurofibrillary tangles, we wanted to evaluate its involvement in the formation of the other major pathological feature of AD: the amyloid plaques. We have demonstrated that the genetic deletion of the miR-132/212 family promotes Aβ production and amyloid plaque formation in the 3xTg-AD mice. Using RNA-Seq and bioinformatics, we identified genes of the miR-132/212 network with documented roles in the regulation of Aβ metabolism, including Tau, mapk, and sirt1. Consistent with these findings, we show that the modulation of miR-132, or its target sirt1, can directly regulate Aβ production in cells. Finally, we have shown that miR-132/212 levels correlate with the amount of amyloid plaques in humans. Then, in order to elucidate the role of the miR-132/212 family in the brain, we focused on identifying targets regulated by the miR-132/212 family. In a first step, this analysis was conducted in several in vitro cell models, in which the role of miR-132, one of two components of the family, was specifically studied. In this context, we have demonstrated that the targets regulated by miR-132 are few and specific to the cell type considered. In a second step, the target identification analysis was conducted in a conditional knockout mouse model for the miR-132/212 family that we specifically generated. We have therefore characterized the molecular targets and networks modulated by the miR-132/212 family in this model. Taken together, these results suggest that i) miR-132/212 network, including Sirt1 and likely other target genes, contributes to abnormal Aβ metabolism and senile plaque deposition in AD; ii) Although miR-132 can potentially target a large number of genes simultaneously, its targeting is selective and specific to the cellular context studied. Finally, the results obtained highlight a set of new targets and signalling pathways regulated by the miR-132/212 family. In conclusion, this work contributes to the advancement of the knowledge of the physiological and pathological role of the miR-132/212 family in the brain.
145

Développement d'un essai in vivo pour mesurer l'activité de BACE et son implication dans la maladie d'Alzheimer

Brault, Marie Ève 13 April 2018 (has links)
La protéine BACE (?-site APP Cleaving Enzyme) joue un rôle clé dans la production du peptide amyloïde ? (A?) à l'origine de l'établissement de la maladie d'Alzheimer. À cause de son rôle central dans la maladie, BACE représente une cible potentielle dans le développement de thérapies. Récemment, un premier rôle physiologique pour BACE a été identifié, remettant en doute les approches thérapeutiques visant son inhibition. Des stratégies alternatives ciblant des modulateurs de l'activité de BACE pourraient représenter une approche plus sécuritaire pour traiter la maladie. Dans cette étude, nous avons tenté de développer un essai pour cribler des modulateurs de l'activité de BACE en utilisant deux systèmes différents : le système raporteur luciférase et un système basé sur le Bioluminescence Resonance Energy Transfert 2 (BRET2). Malgré les nombreuses optimisations réalisées, nous n'avons pas réussi à mettre au point un essai efficace permettant de cribler des modulateurs de l'activité de BACE.
146

Ultrastructural characterization of the dark microglia across contexts of health, disease, and stages of lifespan

Bisht, Kanchan 03 January 2022 (has links)
Les microglies sont les principales cellules neuro-immunitaires du cerveau, jouant un rôle important à la fois dans l'homéostasie cérébrale et les états pathologiques. Outre la sécrétion de molécules pro-inflammatoires et anti-inflammatoires, elles participent également au remodelage des circuits neuronaux par des mécanismes qui incluent l'élagage (« pruning ») synaptique, l'effeuillage (« stripping ») synaptique et la maturation synaptique. Ainsi, la microglie est connue pour ses divers rôles dans différentes conditions physiologiques et pathologiques, selon le microenvironnement dans lequel elle se trouve et du contexte qui module ses activités. La grande diversité des fonctions microgliales résulterait de la nature hétérogène de la population microgliale, ce qui signifie que toutes les cellules microgliales ne sont pas identiques et peuvent présenter des différences dans leurs modes d'action. Cette hétérogénéité microgliale a fait l'objet de quelques études dans différentes conditions physiologiques et pathologiques. En 2016, j'ai observé et publié des travaux décrivant la présence d'un nouveau phénotype microglial dans le cerveau, les microglies « sombres », lors de l'étude des interactions entre les microglies et les synapses en contextes de stress chronique, vieillissement et maladie. En microscopie électronique à transmission, nous avons décrit la présence de cellules semblables aux microglies, mais possédant un cytoplasme et un nucléoplasme denses, une perte du motif d'hétérochromatine nucléaire, ainsi que des marqueurs de stress oxydatif. Nous avons décrit la prévalence accrue de ce type de cellules dans des modèles murins de stress chronique, de la pathologie de la maladie d'Alzheimer, de vieillissement et d'altération de la communication neurone-microglie. En utilisant la microscopie électronique avec immunomarquage pour étudier la colocalisation de la microglie sombre avec différents marqueurs cellulaires, nous avons également démontré l'origine microgliale de la microglie sombre et identifié grâce aux données d'ultrastructure un rôle potentiel dans le remodelage synaptique. Nous avons également caractérisé la présence des microglies sombres pendant les stades postnatal du neurodéveloppement normal et proposé un rôle potentiel dans le remodelage synaptique au cours de mécanismes développementaux, en particulier l'affinement et la maturation des circuits neuronaux. Ma thèse décrit donc la microglie sombre comme un nouveau phénotype de la microglie présentement observé en utilisant des outils de microscopie électronique. Selon les évidences ultrastructurelles que nous avons obtenues, les microglies sombres pourraient être un sous type de microglies principalement impliqué dans le remodelage synaptique, en vue d'adapter le cerveau en condition pathologique ou en réponse à des changements de l'environnement externe. Elles pourraient également être un type cellulaire important, impliqué avec les microglies normales dans la sculpture et l'affinement des circuits neuronaux au cours du développement cérébral postnatal, par l'élimination des contacts synaptiques superflus. Nous soulignons donc l'importance d'étudier la microglie sombre la nécessité d'identifier des marqueurs spécifiques à la microglie sombre pour faciliter l'isolement et la caractérisation moléculaire de ces cellules afin de concevoir éventuellement des traitements utilisant l'activité de ces cellules pour traiter divers troubles neurologiques. / Microglia are the principle neuroimmune cells of the brain, having important roles both in brain homeostasis as well as pathological states. Apart from the secretion of pro-inflammatory or anti-inflammatory molecules, they also participate directly at the synaptic level in the remodeling of neuronal circuitries by remodeling mechanisms that include synaptic pruning, synaptic stripping, and synaptic maturation. Thus microglia are known to display diverse roles in different physiological and pathological conditions, largely depending upon the microenvironment they are present in and the context that triggers their activities. One reason for microglia displaying such diverse roles was hypothesized to be the heterogeneous nature of the microglial population, meaning that all microglial cells are not alike and may display differences in their modes of action. For a long time researchers have thus focused on studying this microglial heterogeneity in a number of physiological and pathological states. In 2016, I reported the presence of a novel microglial phenotype in the brain, named the "dark" microglia, while studying microglia-synapse interactions in the contexts of chronic stress, aging, and disease. Using transmission electron microscopy, we described the presence of a microglia-look alike cell, but with a dense cytoplasm and nucleoplasm, as well as loss of nuclear heterochromatin pattern and signs of oxidative stress. We described the increased prevalence of this cell type in mouse models of chronic stress, Alzheimer's disease pathology, aging, and neuron-microglia communication alteration. Using immunoelectron microscopy to study the colocalization of dark microglia with different cell type markers, we further demonstrated the microglial origin of the dark microglia, as well as proposed putative synaptic remodeling roles based on our observations of extensive dark microglia-synapse interactions captured at the ultrastructural level. We have also characterized the presence of dark microglia in postnatal stages of early brain development. Our findings suggested synaptic remodeling roles during normal development, especially in the refinement and maturation of the neuronal circuitry, as well as phagocytosis of apoptotic cells. My thesis thus describes dark microglia as a new microglial phenotype currently seen using electron microscopy (EM) tools. Based on the ultrastructural evidence we have, the dark microglia could represent an important microglial subtype that is primarily involved in synaptic remodeling in an attempt to bring about adaptation of the brain in response to disease or changes in external environment. They could also be an important cell type along with typical microglia that mediates the sculpting and refinement of the neuronal circuitry during early postnatal brain development, when there is an excess of synaptic contacts being formed that need to be pruned out. We therefore highlight the importance of studying the dark microglia, and the need of identifying dark microglia-specific markers to aid with the isolation and further molecular characterization of these cells, to eventually develop therapeutics that utilize the activity of these cells to treat various neurological disorders.
147

Potentiel neuroprotecteur de la cystamine chez un modèle de souris parkinsonienne

Tremblay, Marie-Ève 12 April 2018 (has links)
La maladie de Parkinson est caractérisée par une dégénérescence des cellules dopaminergiques, laquelle est soupçonnée d'être, en partie, l'aboutissement de phénomènes d'oxydation. Des traitements véhiculés par des anti-oxydants pourraient donc avoir des effets neuroprotecteurs sur cette population neuronale. Nous avons exploré cette hypothèse par l'intermédiaire de la cystamine - un anti-oxydant aux propriétés neuroprotectrices chez un modèle animal de la maladie de Huntington - chez des souris parkinsoniennes générées par la toxine l-méthyl-4-phényl-l,2,3,6-tétrahydropyridine (MPTP), une molécule qui reproduit la plupart des symptômes parkinsonniens. Nous avons ici soumis des souris âgées de 16 mois à un traitement de 10 ou 50 mg/kg/jour de cystamine commençant 2 jours avant (pré-traitement) ou pendant (traitement) les injections de MPTP et se poursuivant durant 14 jours. Les résultats obtenus ont démontré que le pré-traitement d'une faible dose de cystamine (10 mg/kg) permet de protéger, de façon significative, le système dopaminergique. Ces travaux suggèrent que la cystamine possède des propriétés neuroprotectrices chez un modèle animal de la maladie de Parkinson.
148

Cross talk between fanconi anemia and unc5a signaling pathway

Huang, Feng Fei 23 April 2018 (has links)
L’anémie de Fanconi (AF) est une maladie infantile multigénique et complexe. Les enfants atteints d’AF souffrent d’une insuffisance médullaire progressive potentiellement mortelle. En plus du phénotype hématologique, les enfants souffrant d’AF présentent de nombreuses malformations congénitales incluant le système nerveux central et une prédisposition accrue aux cancers particulièrement de type leucémique. Plusieurs gènes associés à la maladie ont été identifiés mais leur fonction dans l’étiologie de la maladie demeure inconnue. La présence d’une mutation dans l’un des gènes Fanconi entraine une perte progressive des cellules souches hématopoïétiques (CSH) menant à un épuisement médullaire et favorisant l’apparition de leucémies. Les protéines Fanconi forment trois complexes protéiques distincts qui participent de manière séquentielle dans une voie de signalisation en réponse aux dommages à l’ADN. La protéine Fanconi Anemia de groupe C, ou FANCC, est une composante du complexe majeur de cette voie Fanconi. Outre son rôle dans la voie Fanconi et dans les mécanismes de signalisation en réponse aux dommages à l’ADN, FANCC est connue pour son implication dans la mort cellulaire programmée, la détoxification des radicaux oxygénés et la réponse aux cytokines. Afin d’identifier la fonction de la protéine FANCC dans les mécanismes de développement, nous avons procédé à un criblage d’une banque d’ADNc et identifié certains partenaires biochimiques de FANCC tel le récepteur de la Netrine-1, uncoordinated-5A (UNC5A). Puisque le récepteur UNC5A a une fonction de signal de survie cellulaire et est impliqué dans les mécanismes de croissance neuronale, nous avons étudié le rôle de l’interaction FANCC-UNC5A dans les mécanismes de différenciation neuronale. Nos résultats indiquent que FANCC régule la fonction pro-apoptotique de UNC5A. Lorsque FANCC est surexprimée, les cellules retardent leur entrée en apoptose tandis qu’en absence de FANCC, UNC5A favorise l’entrée en apoptose. De plus, nos résultats indiquent que FANCC conjointement à UNC5A promeut la neurogénèse; FANCC et UNC5A colocalisent dans les neurites cellulaires. Globalement, nos résultats suggèrent que FANCC par le biais de UNC5A joue un rôle important dans la mort cellulaire et la croissance axonale. Ainsi, une dérégulation de l’interaction FANCC-UNC5A chez les patients souffrent de FA pourrait expliquer certains aspects cliniques notamment les anomalies de développement. / Fanconi anemia (FA) is a recessive syndrome characterized by diverse clinical symptoms including progressive bone marrow failure, various congenital abnormalities, chromosomal instability and predisposition to malignancies. Studies of the canonical FA pathway have focused on the mechanism of repair of DNA cross-linking damage. However, some data suggest that FA proteins may have other functions besides DNA damage signaling events, and these functions may explain some of the disease phenotypes such as defects in hematopoiesis and congenital malformations. For instance, FANCC, which is predominantly located in the cytoplasm, has multifunctional roles and is an anti-apoptotic regulator. In addition to its function as a repulsive mediator in neural development, UNC5A, the receptor for the axon guidance molecule Netrin-1, has also been proposed to be a “dependence receptor” that triggers apoptosis in the absence of its ligand. Here, we identified a novel interaction of UNC5A with FANCC and showed that FANCC positively regulates UNC5A-mediated apoptosis. Under conditions of FANCC overexpression, apoptosis is decreased, whereas the absence of a functional FANCC protein increases UNC5A-mediated apoptosis. Furthermore, FANCC and UNC5A function as a complex in neurogenesis; they co-localize at synapses formed by neurites, and FANCC is required for the promotion of neuronal outgrowth by UNC5A. Based on these findings, we propose that FANCC plays a key role in tissue morphogenesis by either delaying UNC5A-mediated apoptosis or positively impacting the expression of UNC5A. Under FANCC-deficient conditions, dysregulation of the UNC5A signal pathway can lead to developmental defects such as those seen in FA patients.
149

Modulation of the innate immune system as a potential therapeutic strategy for Alzheimer's and Multiple Sclerosis Diseases

Fani Maleki, Adham 26 May 2021 (has links)
No description available.
150

Étude de l'interaction de l'insuline avec la barrière hémato-encéphalique dans la maladie d'Alzheimer

Leclerc, Manon 04 October 2023 (has links)
Thèse ou mémoire avec insertion d'articles / Les maladies neurodégénératives se caractérisent par des accumulations anormales de protéines spécifiques dans le cerveau qui sont associées à la perte de fonctions cognitives comme la mémoire. Au cours des dernières décennies, des chercheurs ont remarqué des anomalies vasculaires et métaboliques chez une forte proportion de patients atteints de démence. L'une des caractéristiques de la maladie d'Alzheimer (MA) en lien avec le déficit cognitif est que les patients présentent une diminution de la captation cérébrale du glucose, source d'énergie essentielle pour le cerveau. De plus, des études récentes suggèrent que le cerveau Alzheimer répond moins bien à l'insuline, une hormone essentielle à la vie impliquée non seulement dans le métabolisme mais aussi dans les processus d'apprentissage et de mémoire. Ainsi, cette forme de résistance cérébrale à l'insuline (RCI) observée dans la MA a motivé l'élaboration d'essais cliniques portant sur l'effet de l'insuline sur la MA. Néanmoins, nous ignorons toujours quels types de cellules et quels mécanismes sont impliqués dans l'action - et la perte d'action - de l'insuline au niveau du système nerveux central (SNC). La grande majorité de l'insuline est produite par le pancréas et sécrétée dans la circulation sanguine. Par conséquent, pour affecter le cerveau, l'insuline circulante doit d'abord interagir avec la barrière hémato-encéphalique (BHE) et ses cellules endothéliales, au niveau des capillaires cérébraux (CECCs), qui la captent grâce aux récepteurs de l'insuline (INSR), des protéines spécifiques à la surface de ces cellules. L'objectif général de cette thèse était de révéler comment la BHE s'intègre dans des processus pathologiques menant au développement des déficits métaboliques centraux observés dans la MA. Plus spécifiquement, il s'agissait de déterminer quelles dysfonctions au niveau cérébrovasculaire pouvaient mener au développement d'une insulinorésistance cérébrale et à un déficit énergétique au cerveau. Nous avons ainsi étudié les interactions avec leurs récepteurs respectifs de l'insuline, du glucose, et d'autres composés importants pour l'énergie et le métabolisme cérébrale comme les corps cétoniques et de l'hormone FGF21 afin de découvrir le rôle de chacun dans la MA ainsi que leur potentiel thérapeutique. Malgré l'absence de preuves in vivo, l'effet de l'insuline sur le cerveau est souvent attribué à une action directe sur les neurones. Cependant, nos travaux montrent dans un premier temps que l'insuline circulante interagit avec l'INSR situé préférentiellement sur les microvaisseaux cérébraux. Nous avons utilisé des protocoles complémentaires: la mesure postmortem des récepteurs cérébraux chez l'humain à partir d'échantillons de cerveaux provenant d'une étude longitudinale bien caractérisée, la Religious Order Study (ROS), ainsi que des expériences chez la souris, comme la perfusion cérébrale in situ (PCIS) dans un modèle de la neuropathologie Alzheimer, la 3xTg-AD. Une hypothèse traditionnellement répandue était que l'INSR médie le passage de l'insuline du sang à travers la BHE jusqu'au cerveau, mais nos travaux montrent que ce transport est non seulement très faible mais aussi indépendant de l'INSR. Nous démontrons également que la réponse de l'INSR à l'insuline se situe sur la BHE, et non dans le parenchyme, et que cette réponse est altérée dans la MA. La BHE est donc le site clé impliqué dans la RCI dans la MA. Nous avons également identifié l'INSRα-B comme l'isoforme principalement impliquée dans cette dysfonction. Enfin, nous proposons un mécanisme moléculaire impliquant la β-sécrétase (BACE1) dans le clivage anormal de l'INSR. Dans un second temps, nous avons étudié chez l'humain les niveaux cérébrovasculaires des protéines impliquées dans le transport vers le cerveau du glucose et des corps cétoniques, à savoir le transporteur du glucose 1 (GLUT1) le transporteur de monocarboxylates 1 (MCT1), respectivement. Nos données confirment tout d'abord que ces deux transporteurs sont enrichis dans les microvaisseaux de la BHE comparativement aux cellules du parenchyme cérébral. De plus, les niveaux vasculaires de GLUT1 sont réduits chez les individus atteints de la MA et sont fortement liés au déclin cognitif et au score cognitif global. Au contraire, les niveaux cérébrovasculaires de MCT1 ne sont pas modifiés chez les sujets atteints de la MA et ne sont pas liés à la performance cognitive, faisant des corps cétoniques une alternative énergétique attrayante pour le cerveau des personnes âgées. En troisième temps, nous avons caractérisé le transport du FGF21 impliqué dans la régulation du métabolisme énergétique au niveau du SNC dans plusieurs modèles de souris non-transgéniques. Nos résultats montrent que cette hormone hépatique est capable d'atteindre les CECCs, d'interagir avec elles et d'être transportée au niveau de la BHE grâce à un mécanisme saturable et indépendant de la phosphorylation de son récepteur FGFR1. Des mécanismes d'efflux régissent également le transport du FGF21 du cerveau vers le sang. Le transport cérébral du FGF21 demeure constant, que ce soit chez la souris 3xTg-AD âgée reproduisant les pathologies amyloïde et tau, ou à la suite d'une consommation de diète enrichie en gras pour induire des déficits métaboliques. En somme, ces résultats montrent que la BHE est impliquée dans plusieurs processus physiologiques de transport et de métabolisme cérébral, mais peut également participer à des processus pathologiques comme la RCI. Nos résultats supportent le ciblage de la BHE dans la recherche et le développement de thérapeutiques visant à maintenir un apport énergétique suffisant pour maintenir les fonctions cognitives dans la MA. / Neurodegenerative diseases are characterized by abnormal accumulations of specific proteins in the brain that are associated with the loss of cognitive functions such as memory. In recent decades, researchers have noted vascular and metabolic abnormalities in a high proportion of patients with dementia. One of the hallmarks of Alzheimer's disease (AD) in relation to cognitive impairment is that patients have decreased brain uptake of glucose, an essential energy source for the brain. In addition, recent studies suggest that the Alzheimer brain responds less well to insulin, an essential life-sustaining hormone involved not only in metabolism but also in learning and memory processes. Thus, brain insulin resistance (BIR) observed in AD has motivated the development of clinical trials investigating the effect of insulin on AD. However, we still do not know what cell types and mechanisms are involved in the action - and loss of action - of insulin in the central nervous system (CNS). The vast majority of insulin is produced by the pancreas and secreted into the bloodstream. Therefore, to affect the brain, circulating insulin must first interact with the blood-brain barrier (BBB) and its endothelial cells, in the brain capillaries (BCECs), which capture it through insulin receptors (INSR), specific proteins on the surface of these cells. The overall objective of this thesis was to reveal how the BBB is integrated into pathological processes leading to the development of central metabolic deficits observed in AD. More specifically, we wanted to determine which dysfunctions at the cerebrovascular level could lead to the development of the central resistance and energy deficit in the brain. We studied the interactions with their respective receptors for insulin, glucose, ketone bodies and the hormone FGF21 to discover the role of each in AD and their therapeutic potential. Despite the lack of in vivo evidence, the effect of insulin on the brain is often attributed to a direct action on neurons. However, our work shows that circulating insulin interacts with INSR located preferentially on cerebral microvessels. We used complementary protocols: postmortem measurement of brain receptors in humans from brain samples from a well-characterized longitudinal study, the Religious Order Study (ROS), as well as experiments in mice, such as in situ brain perfusion in a model of Alzheimer's neuropathology, the 3xTg-AD. A traditional assumption was that INSR mediates the passage of insulin from the blood across the BBB to the brain, but our work shows that this insulin transport is not only very weak but also independent of INSR. We also show that the INSR response to insulin is located at the BBB, not in the parenchyma, and that this response is impaired in AD. The BBB is therefore the key site involved in BIR in AD. We also identified INSRα-B as the isoform primarily involved in this dysfunction. Finally, we propose a molecular mechanism involving the β-secretase BACE1 in the abnormal cleavage of INSR. In a second step, we studied in humans the cerebrovascular levels of proteins involved in the transport to the brain of glucose and ketone bodies, namely GLUT1 and MCT1, respectively. Our data first confirm that these two transporters are enriched in BBB microvessels compared with brain parenchyma cells. Furthermore, vascular levels of GLUT1 are reduced in individuals with AD and are strongly related to cognitive decline and global cognitive score. In contrast, cerebrovascular levels of MCT1 are not altered in AD subjects and are not related to cognitive performance, making ketone bodies an attractive energy alternative for the elderly brain. Thirdly, we characterized in mice the transport of FGF21 involved in the regulation of energy metabolism in the CNS. Our results show that this hepatic hormone can reach the BCECs, interact with them and be transported to the BBB through a saturable mechanism independent of the phosphorylation of its receptor FGFR1. Efflux mechanisms also govern the transport of FGF21 from the brain to the blood. Brain FGF21 transport remains constant, both in aged 3xTg-AD mice mimicking amyloid and tau pathologies, and following consumption of a fat-enriched diet. In sum, these results show that the BBB is involved in several physiological processes of brain transport and metabolism but may also participate in pathological processes such as BIR. Our results support the targeting of the BBB in the research and development of therapeutics aimed at maintaining sufficient energy intake to sustain cognitive function in AD.

Page generated in 0.0481 seconds