Spelling suggestions: "subject:"margulis"" "subject:"margulies""
1 |
Flots géodésiques expansifs sur les variétés compactes sans points conjugués / Expansive geodesic flows on compact manifolds without conjugate points.Bosché, Aurélien 10 November 2015 (has links)
Cette thèse est composée de deux parties indépendantes.Dans la première partie nous étudions les propriétés dynamiques des flots géodésiques expansifs sur des variétés compactes sans points conjugués à l'aide du travail de R.O.~Ruggiero. Plus précisément nous montrons qu'un tel flot admet une unique mesure d'entropie maximale et nous construisons cette mesure. Cela généralise des résultats connus dans le cas des variétés compactes à courbure négative et de rang un. Nous montrons ensuite à l'aide de cette mesure que l'équivalent de Margulis (connu pour les variétés compactes à courbure strictement négative) concernant le nombre de lacets géodésiques est toujours valable dans ce cas.Dans la seconde partie nous étudions les isométries des cônes symétriques de dimension finie pour la métrique de Thompson et pour la métrique de Hilbert. Plus précisément nous montrons que le groupe d'isométries induit par les automorphismes linéaires de ce cône est un sous-groupe d'indice fini du groupe d'isométries pour chacune de ces deux métriques et donnons des représentant naturels pour le quotient de ces deux groupes. Cela généralise des résultats deL.~Molnár (qui a étudié ces isométries dans le cas des opérateurs symétriques positifs définis sur un espace de Hilbert complexe). / This thesis is divided in two independants parts.In the first part we investigate dynamical properties of expansive geodesic flows on compact manifolds without conjugate points using the work of R.O.~Ruggiero. More precisely we show that such a flow admits a unique measure of maximal entropy and constructthis measure. This extends results known in non-positively curved manifolds of rank one (and our construction is analogous). Wethen show, using this measure of maximal entropy, that the asymptotics of Margulis (known for compact negatively curvedmanifolds) on the number of geodesic loops still hold in this framework.In the second part we study isometries of finite dimensionalsymmetric cones for both the Thompson and the Hilbert metric. More precisely we show that the isometry group induced by the linear automorphisms preserving such a cone is a subgroup of finite indexin the full group of isometries for those two metrics and give a natural set of representatives of the quotient. This extends resultsof L.~Molnar (who studied such isometies for the symmetric irreducible cone of symmetric positive definite operators on acomplex Hilbert space).
|
2 |
Two generator discrete groups of isometries and their representation : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Mathematics at Massey University, Albany, New ZealandCooper, Haydn January 2008 (has links)
Let M Φ and Mψ be elements of PSL(2,C) representing orientation preserving isometries on the upper half-space model of hyperbolic 3-space Φ and ψ respectively. The parameters β = tr2(M Φ) - 4, β1 = tr2(Mψ) - 4, γ = tr[M Φ,Mψ] - 2, determine the discrete group (Φ ,ψ) uniquely up to conjugacy whenever γ ≠ 0. This thesis is concerned with explicitly lifting this parameterisation of (Φ , ψ) to PSO(1, 3) realised as a discrete 2 generator subgroup of orientation preserving isometries on the hyperboloid model of hyperbolic 3-space. We particularly focus on the case where both Φ and ψ are elliptic.
|
3 |
Thermodynamics of Margulis Space Time / Thermodynamiques des espaces-temps de MargulisGhosh, Sourav 10 July 2015 (has links)
Dans ma thèse, je décris les feuilles stables et instables pour le flot géodésique sur l’espace des géodésiques non-errant de type espace d’un espace-temps de Margulis et je démontre des propriétés de contraction des feuilles sous le flot. Je montre aussi que la monodromie d’un espace-temps de Margulis est une représentation Anosov dans un groupe de Lie non semisimple. En outre, je montre que les applications limites et reparamétrisation varient analytiquement. Enfin, à l’aide de la propriété métrique Anosov, nous définissons la métrique de pression sur l’espace modulaire des espaces-temps de Margulis sans pointes et je démontre qu’elle est définie positive sur les sections d’entropie constante. / In my thesis I describe the stable and unstable leaves for the geodesic flow on the space of non-wandering spacelike geodesics of a Margulis Space Time and prove contraction properties of the leaves under the flow. I also show that monodromy of Margulis Space Times are “Anosov representations in non semi-simple Lie groups”. Moreover, I show that the limit maps and reparametrizations vary analytically. Finally using the metric Ansosov property we define the Pressure metric on the Moduli Space of Margulis Space Times without “cusps” and show that it is positive definite on the constant entropy sections.
|
4 |
Dynamical and Spectral applications of Gromov-Hausdorff Theory / Applications dynamiques et spectrales de la théorie de Gromov-HausdorffCerocchi, Filippo 08 July 2013 (has links)
Cette thèse est divisée en deux parties. La première est consacrée à la méthode du barycentre, introduite en 1995 par G. Besson, G. Courtois et S. Gallot pour résoudre la conjecture de l'Entropie Minimale. Dans le Chapitre 1 nous décrivons ses développements les plus récents, notamment l'extension de cette méthode au cadre des variétés dont la courbure sectionnelle est de signe quelconque (voir les énoncés 1.2.1 et 1.4.1). Dans le Chapitre 2 et 3 nous présentons des résultats dans lesquels la méthode du barycentre joue un rôle important. Le problème “deux variétés dont les flots géodésiques sont conjugués sont-elles isométriques ?” (problème de la rigidité par conjugaison des flots) est le thème du Chapitre 2. Après avoir montré que deux telles variétés ont la même géométrie à grande échelle, on montre comment on peut utiliser ce résultat et la méthode du barycentre pour donner une nouvelle preuve de la rigidité (par conjugaison des flots) des variétés plates. Dans le Chapitre 3 nous utilisons la méthode du barycentre (en courbure de signe quelconque) et des inégalités de Sobolev itérées pour démontrer un théorème de comparaison entre les spectres de deux variétés riemanniennes (Y , g) et (X , g') de volumes proches, sachant qu'il existe une approximation de Gromov-Hausdorff de degré non nul entre ces deux variétés. Il s'agit d'un résultat d'approximation avec majoration de l'erreur d'approximation (et pas seulement d'un résultat de convergence). Remarquons qu'il n'est fait aucune autre hypothèse géométrique (et en particulier aucune hypothèse de courbure) sur la variété (Y , g), ce qui autorise un grand nombre de contre-exemples prouvant que le résultat est optimal. Dans la deuxième partie de la thèse (chapitre 4), on démontre un Lemme de Margulis sans hypothèse sur la courbure, qui s'applique aux variétés dont les groupes fondamentaux sont des produits libres (et qui ne possèdent pas d'élément de torsion d'ordre 2). Nous donnons également une borne inférieure de la systole des variétés dont le diamètre et l'entropie volumique sont majorés et dont le groupe fondamental est isomorphe à un produit libre sans torsion. Comme conséquences de ce dernier résultat nous obtenons des résultats de précompacité et de finitude topologique ou différentiable pour les variétés riemanniennes et une minoration de leur volume, tout ceci sans faire d'hypothèse de courbure. / This Ph.D. Thesis is divided into two parts. In the first part we present the barycenter method, a technique which has been introduced by G. Besson, G. Courtois and S. Gallot in 1995, in order to solve the Minimal Entropy conjecture. In Chapter 1 we are interested in the more recent developments of this method, more precisely in the recent extension of the method to the case of manifolds having sectional curvature of variable sign. In Chapters 2 and 3 we shall present some new results whose proofs make use of the barycenter method. The Conjugacy Rigidity problem is the theme of Chapter 2. First we show a general result which provide a comparison between the large scale geometry of the Riemannian universal coverings of two compact manifolds whose geodesic flows are conjugates. Then we shall show how we can apply the latter result and the barycenter method in curvature of variable sign in order to give a new proof of the conjugacy rigidity of flat manifolds. In Chapter 3 we shall give a proof of a spectra comparison theorem for a compact Riemannian manifold which admits a Gromov-Hausdorff-approximation of non zero absolute degree on a fixed compact manifold (X,g') and which has volume almost smaller than the one of the reference manifold. The proof relies on the barycenter method in curvature of variable sign and on iterated Sobolev inequalities. We underline that it is an approximation result (and not just a convergence result) and that no curvature assumptions are made or inferred on (Y,g). The second part of the Thesis consists of a single chapter. In this chapter we prove a Margulis Lemma without curvature assumptions for Riemannian manifolds having decomposable 2-torsionless fundamental group. We shall give also a proof of a universal lower bound for the homotopy systole of compact Riemannian manifolds having bounded volume entropy and diameter, and decomposable torsionless fundamental group. As a consequence of the latter result we shall deduce a Precompactness and Finiteness theorem and a Volume estimate without curvature assumptions.
|
5 |
HAUSDORFF DIMENSION OF DIVERGENT GEODESICS ON PRODUCT OF HYPERBOLIC SPACESYang, Lei 14 November 2014 (has links)
No description available.
|
6 |
Pavages de l'espace affine / Tilings of the affine spaceSmilga, Ilia 12 November 2014 (has links)
Pour tout entier naturel impair d, on construit un domaine fondamental pour l'action sur l'espace affine de dimension 2d+1 de certains groupes de transformations affines libres non abéliens, discrets, agissant proprement et de partie linéaire Zariski-dense dans SO(d+1, d). Pour tout groupe de Lie semisimple réel non compact G, on construit ensuite un groupe de transformations affines de son algèbre de Lie g qui est libre non abélien, discret, agit proprement sur g et a sa partie linéaire Zariski-dense dans Ad G. Enfin, on donne quelques résultats sur le comportement local des fonctions harmoniques sur le triangle de Sierpinski, plus précisément de leur restriction à un bord du triangle. / For every odd positive integer d, we construct a fundamental domain for the action on the 2d+1-dimensional space of certain groups of affine transformations which are free, nonabelian, act properly discontinuously and have linear part Zariski-dense in SO(d+1,d). Next for every semisimple noncompact real Lie group G, we construct a group of affine transformations of its Lie algebra g which is free, nonabelian, acts properly discontinuously and has linear part Zariski-dense in Ad G. Finally, we give some results about the local behavior of harmonic functions on the Sierpinski triangle restricted to a side of the triangle.
|
7 |
Invariants globaux des variétés hyperboliques quaterioniques / Global invariants of quaternionic hyperbolic spacesPhilippe, Zoe 15 December 2016 (has links)
Dans une première partie de cette thèse, nous donnons des minorations universelles ne dépendant que de la dimension – explicites, de trois invariants globaux des quotients des espaces hyperboliques quaternioniques : leur rayon maximal, leur volume, ainsi que leur caractéristique d’Euler. Nous donnons également une majoration de leur constante de Margulis, montrant que celle-ci décroit au moins comme une puissance négative de la dimension. Dans une seconde partie, nous étudions un réseau remarquable des isométries du plan hyperbolique quaternionique, le groupe modulaire d’Hurwitz. Nous montrons en particulier qu’il est engendré par quatres éléments, et construisons un domaine fondamental pour le sous-groupe des isométries de ce réseau qui stabilisent un point à l’infini. / In the first part of this thesis, we derive explicit universal – that is, depending only on the dimension – lower bounds on three global invariants of quaternionic hyperbolic sapces : their maximal radius, their volume, and their Euler caracteristic. We also exhibit an upper bound on their Margulis constant, showing that this last quantity decreases at least like a negative power of the dimension. In the second part, we study a specific lattice of isometries of the quaternionic hyperbolic plane : the Hurwitz modular group. In particular, we show that this group is generated by four elements, and we construct a fundamental domain for the subgroup of isometries of this lattice stabilising a point on the boundary of the quaternionic hyperbolic plane.
|
8 |
Quelques relations entre propriétés algébriques des groupes de transformation et géométrie des espacesZuddas, Fabio 20 October 2005 (has links) (PDF)
On s'intéresse ici aux actions (discrètes, par isométries) d'un groupe $\Gamma$ sur un espace métrique mesuré $X$ et à la manière dont ces actions écartent les points. Le lemme de Margulis classique conclut lorsque $X$ est une variété simplement connexe de courbure strictement négative et bornée. Une version récente (due à G. Besson, G. Courtois et S. Gallot) conclut lorsque $X$ est un espace métrique mesuré d'entropie bornée, mais est essentiellement limitée au cas où $\Gamma$ est un groupe fondamental d'une variété de courbure négative<br />majorée et de rayon d'injectivité minoré. Nous montrons que ce dernier résultat (et ses applications géométriques) se généralise à une classe ${\cal C}$ plus vaste de groupes (qui contient les groupes hyperboliques selon Gromov, les produits libres et les produits amalgamés ``malnormaux'') et aux quasi-actions par quasi-isométries (avec points fixes éventuels) de ces groupes sur un espace métrique mesuré d'entropie bornée. Nous montrons aussi que ${\cal C}$ est fermé pour une topologie naturelle. Nous appliquons ce résultat au cas où $X$ est le graphe de Cayley d'un groupe $G$ commensurable à un groupe $\Gamma \in {\cal C}$, obtenant des résultats<br />de finitude qui s'appliquent en particulier aux groupes hyperboliques selon Gromov et aux groupes fondamentaux de variétés de diamètre borné. Ces derniers résultats apportent un éclairage nouveau aux questions de l'existence d'un minorant universel de l'entropie pour l'ensemble des groupes $G$ de ce type et de l'existence, pour chacun de ces groupes, d'un système générateur d'entropie algébrique minimale.
|
9 |
Earth Matters: Religion, Nature, and Science in the Ecologies of Contemporary AmericaLevine, Daniel 16 September 2013 (has links)
Earth Matters examines the relationships between alternative religion in North America and the natural world through the twin lenses of the history of religions and cultural anthropology. Throughout, nature remains a contested ground, defined simultaneously the limits of cultural activity and by an increasing expansion of claims to knowledge by scientific discourses. Less a historical review than a series of fugues of thought, Earth Matters engages with figures like the French vitalist, Georges Canguilhem, the American environmentalist, John Muir; the founder of Deep Ecology, Arne Næss; the collaborators on Gaia Theory, James Lovelock and Lynn Margulis; the physicist and New Age scientist, Fritjof Capra; and the Wiccan writer and activist, Starhawk.
These subjects move in spirals throughout the thesis: Canguilhem opens the question of vitalism, the search for a source of being beyond the explanations of the emerging sciences. As rationalism expands its dominance across the scientific landscape, this animating force moves into the natural world, to that protean space between the city and the wild and in the environmental thinkers who initially moved along those boundaries. As the twentieth century moves towards a close, mechanistic thinking simultaneously reaches heights of success previously unimagined and collapses under the demand for complexity posed by quantum physics, by research in genetic interactions, by the continued elusive relationship of mind to health. This allows the wild to return inside through the internalization of consciousness sparked by the American New Age, but also provides a new model to understand the natural world as complex zone open to a wide variety of strategies, including the multiplicities of understanding offered through contemporary neopaganisms.
Earth Matters argues for the necessity of the notion of ecology, both as an environmental concern but also as an organizing principle for human thought and behavior. Ecologies are by their nature complex and multi-variegated things dependent upon the surprising and unpredictable interaction of radically different organisms, and it is through this model that we are best able to understand not only ourselves but also our communities and our efforts to make sense of the external world.
|
Page generated in 0.0431 seconds