• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] REGIDITY OF SURFACES WHOSE GEODESIC FLOWS PRESERVE FOLIATIONS OF CODIMENSION 1 / [pt] RIGIDEZ DE SUPERFÍCIES CUJOS FLUXOS GEODÉSICOS PRESERVAM FOLHEAÇÕES DE CO-DIMENSÃO 1

JOSE BARBOSA GOMES 10 March 2004 (has links)
[pt] Seja S uma superfície fechada orientável, de gênero > 2 e sem pontos conjugados. Seja F uma folheação no fibrado tangente unitário de S, de codimensão 1, invariante pelo fluxo geodésico e de classe C2. Então, a curvatura de S é constante < 0. A demonstração é conseqüência dos dois seguintes resultados, que têm interesse por si mesmos. O primeiro é que se T1S admite uma folheação contínua de codimensão 1 por folhas C1 invariantes pelo fluxo geodésico então a superfície não tem pontos conjugados e a folheação coincide com a folheação centro-estável ou com a centro-instável. O segundo resultado é o seguinte. Seja S uma superfície fechada orientável, de gênero > 2 e sem pontos conjugados. Então, a folheação centro-estável Fcs de T1S é conjugada à folheação centro-estável da métrica hiperbólica em S. Esta conjugação é da mesma classe de diferenciabilidade de Fcs . Portanto, se Fcs é de classe C2, uma extensão da teoria de Godbillon-Vey implica que a curvatura da superfície é constante negativa. / [en] Lets be a orientable closed surface with no conjugate points. Let F be a foliation in the unitary tangent fiber bundle of S, of codimension 1, invariant by the geodesic flow and of class C2. Then, the curvature of S is constant < 0 . The demonstration is a consequence of the two following results, which are of interest by themselves. The first one is that if T1S admits a continuous foliation of codimension 1 by leaves C1 invariants by the geodesic flow, then the surface is with no conjugate points, and the foliation coincides with either the center stable foliation or the center unstable foliation. The second result is the following. Let S be a orientable closed surface of genus > 2 and with no conjugate points. Then, the center unstable foliation Fcs of T1S is conjugate to the center stable foliation of the hyperbolic metric in S. This conjugation is of the same class of differentiability of Fcs. Therefore, if Fcs is of class C2, an extension of the Godbillon-Vey theory implies that the curvature of the surface is constant negative.
2

Géodésiques sur les surfaces hyperboliques et extérieurs des noeuds / Geodesics on hyperbolic surfaces and knot complements

Rodriguez Migueles, José Andrés 09 July 2018 (has links)
Grâce au théorème d'hyperbolisation, nous savons précisément quand une variété de dimension trois compacte admet une métrique hyperbolique. Par ailleurs, d'après le théorème de rigidité de Mostow, cette structure géométrique est unique. Cependant, trouver des liens pratiques entre la géométrie et la topologie est un problème difficile. La plupart des résultats décrits dans cette thèse visent à concrétiser ces liens. Toute géodésique fermée orientée dans une surface hyperbolique admet un relèvement canonique dans le fibré tangent unitaire de la surface, et on peut donc le voir comme un nœud dans une variété de dimension trois. Les extérieurs des nœuds ainsi construits admettent une structure hyperbolique. Cette thèse a pour objet d'estimer le volume des extérieurs des relèvements canoniques. Pour toute surface hyperbolique on construit une suite de géodésique sur la surface, tel que les extérieurs associées ne sont pas homéomorphes entre elles et dont la suite des volumes respectifs est bornée. Aussi on minore le volume de l'extérieur à l'aide d'un réel explicite qui décrit une relation entre la géodésique et une décomposition en pantalons de la surface. Ceci donne une méthode pour construire une suite de géodésiques dont les volumes des extérieurs associées sont minorées en termes de la longueur de la géodésique correspondant. Dans le cas particulier de la surface modulaire, on obtient des estimations du volume de l'extérieur en termes de la période de la fraction continue associée à la géodésique. / Due to the Hyperbolization Theorem, we know precisely when does a given compact three dimensional manifold admits a hyperbolic metric. Moreover, by the Mostow's Rigidity Theorem this geometric structure is unique. However, finding effective and computable connections between the geometry and topology is a challenging problem. Most of the results on this thesis fit into the theme of making the connections more concrete. To every oriented closed geodesic on a hyperbolic surface has a canonical lift on the unit tangent bundle of the surface, and we can see it as a knot in a three dimensional manifold. The knot complement given in this way has a hyperbolic structure. The objective of this thesis is to estimate the volume of the canonical lift complement. For every hyperbolic surface we give a sequence of geodesics on the surface, such that the knot complements associated are not homeomorphic with each other and the sequence of the corresponding volumes is bounded. We also give a lower bound of the volume of the canonical lift complement by an explicit real number which describes a relation between the geodesic and a pants decomposition of the surface. This give us a method to construct a sequence of geodesics where the volume of the associated knot complements is bounded from below in terms of the length of the corresponding geodesic. For the particular case of the modular surface, we obtain estimations for the volume of the canonical lift complement in terms of the period of the continuous fraction expansion of the corresponding geodesic.
3

Autour de l'entropie des difféomorphismes de variétés non compactes / On the entropy of diffeomorphisms of non compact manifolds

Riquelme, Felipe 23 June 2016 (has links)
Dans ce mémoire, nous étudions l'entropie des systèmes dynamiques différentiables définis sur des variétés riemanniennes non compactes. Dans un premier temps, nous éclaircissons les liens entre différentes notions d'entropie dans ce cadre non compact. Ensuite, nous utilisons ces premiers résultats pour y étudier la validité de l'inégalité de Ruelle. Rappelons ici que cette inégalité, pour des difféomorphismes de variétés riemanniennes compactes, nous dit que l'entropie est majorée par la somme des exposants de Lyapounov positifs. Nous montrons que, lorsque nous enlevons l'hypothèse de compacité, l'inégalité de Ruelle n'est pas toujours satisfaite. Nous obtenons ce résultat en construisant une famille explicite de contre-exemples. En revanche, nous montrons, dans le cas d'un difféomorphisme de comportement asymptotique linéaire, ou du flot géodésique sur le fibré unitaire tangent d'une variété riemannienne à courbure négative, que l'inégalité de Ruelle est toujours satisfaite. Pour finir, nous nous intéressons au problème de la perte possible de masse d'une suite de mesures de probabilité d'une variété riemannienne non compacte. Dans le cas du flot géodésique, nous montrons que l'entropie permet de contrôler la masse d'une limite vague de mesures de probabilité invariantes par le flot pour une classe particulière de variétés géométriquement finies. Plus précisément, nous montrons qu'une suite de mesures d'entropie assez grande ne peut pas perdre la totalité de sa masse. De plus, le minorant optimal de l'entropie dans ce résultat est lié à la géométrie de la partie non compacte de la variété: c'est l'exposant critique maximal des sous-groupes paraboliques du groupe fondamental. / In this work, we study the entropy of smooth dynamical systems defined on non compact Riemannian manifolds. First, we clarify some relations between different notions of entropy in this setting. Second, we use these first results in order to study the validity of Ruelle's inequality. This inequality, for diffeomorphisms defined on compact Riemannian manifolds, says that the measure-theoretic entropy is bounded from above by the sum of the positive Lyapunov exponents. We show that without the compactness assumption, Ruelle's inequality is not always satisfied. We obtain this result by constructing an explicit family of counterexamples. On the other hand, we prove, in the case of diffeomorphisms with linear asymptotic behavior, or that one of the geodesic flow on the unit tangent bundle of a Riemannian manifold with negative curvature, that Ruelle's inequality is always satisfied. Finally, we are interested in the problem of the possible escape of mass of a sequence of probability measures on a non compact Riemannian manifold. In the case of the geodesic flow, we show that the entropy allows to control the mass of a weak$^\ast$-limit of a sequence of probability measures, on the unit tangent bundle of a particular class of geometrically finite manifolds, which are also invariant by the flow. More precisely, we show that a sequence of measures with large enough entropy cannot lose the whole mass. Moreover, the optimal lower bound of the entropy in this result is related to the geometry of the non compact part of the manifold: it is the maximal critical exponent of the parabolic subgroups of the fundamental group.
4

Propriétés génériques des mesures invariantes en courbure négative / Generic properties of invariant measures in negative curvature

Belarif, Kamel 29 August 2017 (has links)
Dans ce mémoire, nous étudions les propriétés génériques satisfaites par des mesures invariantes par l’action du flot géodésique {∅t}t∈R sur des variétés M non compactes de courbure sectionnelle négative pincée. Nous nous intéressons dans un premier temps au cas des variétés hyperboliques. L’existence d’une représentation symbolique du flot géodésique pour les variétés hyperboliques convexes cocompactes ainsi que la propriété de mélange topologique du flot géodésique nous permet de démontrer que l’ensemble des mesures de probabilité ∅t−invariantes, faiblement mélangeantes est résiduel dans l’ensemble M1 des mesures de probabilité invariantes par l’action du flot géodésique. Si nous supposons que la courbure de M est variable, nous ignorons si le flot géodésique est topologiquement mélangeant. Ainsi les méthodes utilisées précédemment ne peuvent plus s’adapter à notre situation. Afin de généraliser le résultat précédent, nous faisons appel à des outils issus du formalisme thermodynamique développés récemment par F.Paulin, M.Pollicott et B.Schapira. Plus précisément, la démonstration de notre résultat repose sur la possibilité de construire, pour toute orbite périodique Op une suite de mesures de Gibbs mélangeantes, finies, convergeant faiblement vers la mesure de Dirac supportée sur Op. Nous montrons que ce fait est possible lorsque M est géométriquement finie. Dans le cas contraire, il n’existe pas d’exemple de variétés géométriquement infinies possédant une mesure de Gibbs finie. Cependant, nous conjecturons que ce fait est possible pour toute variété M. Afin de supporter cette affirmation, nous démontrons dans la dernière partie de ce manuscrit un critère de finitude pour les mesures de Gibbs. / In this work, we study the properties satisfied by the probability measures invariant by the geodesic flow {∅t}t∈R on non compact manifolds M with pinched negative sectional curvature. First, we restrict our study to hyperbolic manifolds. In this case, ∅t is topologically mixing in restriction to its non-wandering set. Moreover, if M is convex cocompact, there exists a symbolic representation of the geodesic flow which allows us to prove that the set of ∅t-invariant, weakly-mixing probability measures is a dense Gδ−set in the set M1 of probability measures invariant by the geodesic flow. The question of the topological mixing of the geodesic flow is still open when the curvature of M is non constant. So the methods used on hyperbolic manifolds do not apply on manifolds with variable curvature. To generalize the previous result, we use thermodynamics tools developed recently by F.Paulin, M.Pollicott et B.Schapira. More precisely, the proof of our result relies on our capacity of constructing, for all periodic orbits Op a sequence of mixing and finite Gibbs measures converging to the Dirac measure supported on Op. We will show that such a construction is possible when M is geometrically finite. If it is not, there are no examples of geometrically infinite manifolds with a finite Gibbs measure. We conjecture that it is always possible to construct a finite Gibbs measure on a pinched negatively curved manifold. To support this conjecture, we prove a finiteness criterion for Gibbs measures.
5

HAUSDORFF DIMENSION OF DIVERGENT GEODESICS ON PRODUCT OF HYPERBOLIC SPACES

Yang, Lei 14 November 2014 (has links)
No description available.
6

Dynamical and Spectral applications of Gromov-Hausdorff Theory / Applications dynamiques et spectrales de la théorie de Gromov-Hausdorff

Cerocchi, Filippo 08 July 2013 (has links)
Cette thèse est divisée en deux parties. La première est consacrée à la méthode du barycentre, introduite en 1995 par G. Besson, G. Courtois et S. Gallot pour résoudre la conjecture de l'Entropie Minimale. Dans le Chapitre 1 nous décrivons ses développements les plus récents, notamment l'extension de cette méthode au cadre des variétés dont la courbure sectionnelle est de signe quelconque (voir les énoncés 1.2.1 et 1.4.1). Dans le Chapitre 2 et 3 nous présentons des résultats dans lesquels la méthode du barycentre joue un rôle important. Le problème “deux variétés dont les flots géodésiques sont conjugués sont-elles isométriques ?” (problème de la rigidité par conjugaison des flots) est le thème du Chapitre 2. Après avoir montré que deux telles variétés ont la même géométrie à grande échelle, on montre comment on peut utiliser ce résultat et la méthode du barycentre pour donner une nouvelle preuve de la rigidité (par conjugaison des flots) des variétés plates. Dans le Chapitre 3 nous utilisons la méthode du barycentre (en courbure de signe quelconque) et des inégalités de Sobolev itérées pour démontrer un théorème de comparaison entre les spectres de deux variétés riemanniennes (Y , g) et (X , g') de volumes proches, sachant qu'il existe une approximation de Gromov-Hausdorff de degré non nul entre ces deux variétés. Il s'agit d'un résultat d'approximation avec majoration de l'erreur d'approximation (et pas seulement d'un résultat de convergence). Remarquons qu'il n'est fait aucune autre hypothèse géométrique (et en particulier aucune hypothèse de courbure) sur la variété (Y , g), ce qui autorise un grand nombre de contre-exemples prouvant que le résultat est optimal. Dans la deuxième partie de la thèse (chapitre 4), on démontre un Lemme de Margulis sans hypothèse sur la courbure, qui s'applique aux variétés dont les groupes fondamentaux sont des produits libres (et qui ne possèdent pas d'élément de torsion d'ordre 2). Nous donnons également une borne inférieure de la systole des variétés dont le diamètre et l'entropie volumique sont majorés et dont le groupe fondamental est isomorphe à un produit libre sans torsion. Comme conséquences de ce dernier résultat nous obtenons des résultats de précompacité et de finitude topologique ou différentiable pour les variétés riemanniennes et une minoration de leur volume, tout ceci sans faire d'hypothèse de courbure. / This Ph.D. Thesis is divided into two parts. In the first part we present the barycenter method, a technique which has been introduced by G. Besson, G. Courtois and S. Gallot in 1995, in order to solve the Minimal Entropy conjecture. In Chapter 1 we are interested in the more recent developments of this method, more precisely in the recent extension of the method to the case of manifolds having sectional curvature of variable sign. In Chapters 2 and 3 we shall present some new results whose proofs make use of the barycenter method. The Conjugacy Rigidity problem is the theme of Chapter 2. First we show a general result which provide a comparison between the large scale geometry of the Riemannian universal coverings of two compact manifolds whose geodesic flows are conjugates. Then we shall show how we can apply the latter result and the barycenter method in curvature of variable sign in order to give a new proof of the conjugacy rigidity of flat manifolds. In Chapter 3 we shall give a proof of a spectra comparison theorem for a compact Riemannian manifold which admits a Gromov-Hausdorff-approximation of non zero absolute degree on a fixed compact manifold (X,g') and which has volume almost smaller than the one of the reference manifold. The proof relies on the barycenter method in curvature of variable sign and on iterated Sobolev inequalities. We underline that it is an approximation result (and not just a convergence result) and that no curvature assumptions are made or inferred on (Y,g). The second part of the Thesis consists of a single chapter. In this chapter we prove a Margulis Lemma without curvature assumptions for Riemannian manifolds having decomposable 2-torsionless fundamental group. We shall give also a proof of a universal lower bound for the homotopy systole of compact Riemannian manifolds having bounded volume entropy and diameter, and decomposable torsionless fundamental group. As a consequence of the latter result we shall deduce a Precompactness and Finiteness theorem and a Volume estimate without curvature assumptions.
7

Uniformisation des variétés pseudo-riemanniennes localement homogènes / Uniformization of pseudo-riemannian locally homogeneous manifolds

Tholozan, Nicolas 04 November 2014 (has links)
Ce travail étudie les variétés pseudo-riemanniennes compactes localement homogènes à travers le prisme des (G,X)-structures, introduites par Thurston dans son programme de géométrisation. Nous commençons par présenter la problématique générale et discutons notamment du rapport entre la complétude géodésique de ces variétés et une autre notion de complétude propre aux (G,X)-structures. Nous donnons également dans le chapitre 1 une nouvelle preuve d’un théorème de Bromberg et Medina qui classifie les métriques lorentziennes invariantes à gauche sur SL(2,R) dont le flot géodésique est complet. Conjecturalement, toute (G,X)-structure pseudo-riemannienne sur une variété compacte est complète. Nous prouvons ici que cela est vrai pour certaines géométries, sous l’hypothèse que la (G,X)-structure est a priori kleinienne. On en déduit que, pour ces géométries, la complétude est une condition fermée. Lorsque X est un groupe de Lie de rang 1 muni de sa métrique de Killing, ce résultat complète un théorème de Guéritaud–Guichard–Kassel–Wienhard selon lequel la complétude est une condition ouverte. Nous nous tournons ensuite vers l’étude des représentations d’un groupe de surface à valeurs dans les isométries d’une variété riemannienne M complète simplement connexe de courbure sectionnelle inférieure à -1. Étant donnée une telle représentation ρ, nous montrons que l’ensemble des représentations fuchsiennes j telles qu’il existe une application (j,ρ)-équivariante et contractante de H2 dans M est un ouvert non vide et contractile de l’espace de Teichmüller (sauf lorsque ρ est elle-même fuchsienne). Ce résultat nous permet de décrire l’espace des métriques lorentziennes de courbure constante -1 sur un fibré en cercle au-dessus d’une surface compacte. Nous montrons que cet espace possède un nombre fini de composantes connexes classifiées par un invariant que nous appelons longueur de la fibre. Nous prouvons également que le volume total de ces métriques ne dépend que de la topologie du fibré et de la longueur de la fibre. / In this work, we study closed locally homogeneous pseudo-Riemannian manifolds through the notion of (G,X)-structure, introduced by Thurston in his geometrization program. We start by presenting the general problem. In particular, we discuss the link between geodesical completeness of those manifolds and another notion of completeness specific to (G,X)-structures. In chapter 1, we also give a new proof of a theorem by Bromberg and Medina which classifies left invariant Lorentz metrics on SL(2,R) that are geodesically complete. Conjecturally, every pseudo-riemannian (G,X)-structure on a closed manifold is complete. Here we prove that it holds for certain geometries, provided that the (G,X )-structure is a priori Kleinian . This implies that, for such geometries, completeness is a closed condition. When X is a Lie group of rank 1 handled with its Killing metric, this result complements a theorem of Guéritaud–Guichard–Kassel–Wienhard, acording to which completeness is an open condition. We then turn to the study of representations of surface groups into the isometry group of a complete simply connected Riemannian manifold M of curvature less than or equal to -1. Given such a representation ρ, we prove that the set of Fuchsian representations j for which there exists a (j,ρ)-equivariant contracting map from H2 to M is a non-empty open contractible subset of the Teichmüller space (unless ρ itself is Fuchsian). This result allows us to describe the space of Lorentz metrics of constant curvature -1 on a circle bundle over a closed surface. We show that this space has finitely many connected components, classified by an invariant that we call the length of the fiber. We also prove that the total volume of those metrics only depends on the topology of the bundle and on the length of the fiber.
8

Codage du flot géodésique sur les surfaces hyperboliques de volume fini

Pit, Vincent 03 December 2010 (has links)
Cette thèse traite de l’étude des objets reliés au codage de Bowen-Series du flot géodésiquepour des surfaces hyperboliques de volume fini. On démontre d’abord que le billard géodésiqueassocié à domaine fondamental even corners d’un groupe fuchsien cofini est conjuguéà une bijection du tore, appelée codage étendu, dont l’un des facteurs est la transformationde Bowen-Series. L’intérêt principal de cette conjugaison est qu’elle ne fait toujours intervenirqu’un nombre fini d’objets. On retrouve ensuite des résultats classiques sur le codage deBowen-Series : il est orbite-équivalent au groupe, ses points périodiques sont denses, et ses orbitespériodiques sont en bijection avec les classes d’équivalence d’hyperboliques primitifs dugroupe ; ce qui permet finalement de relier sa fonction zeta de Ruelle à la fonction zeta de Selberg.Les preuves de ces résultats s’appuient sur un lemme combinatoire qui abstrait la propriétéd’orbite-équivalence à des familles de relations qui peuvent être définies sur tout ensemble surlequel agit le groupe. Il est aussi possible de conjuguer le codage étendu à un sous-shift detype fini, sauf pour un ensemble dénombrable de points. Enfin, on prouve que les distributionspropres pour la valeur propre 1 de l’opérateur de transfert sont les distributions de Helgason defonctions propres du laplacien sur la surface, puis que l’on peut associer à toute telle distributionpropre une fonction propre non triviale de l’opérateur de transfert et que ce procédé admet uninverse dans certains cas. / This thesis focuses on the study of the objects linked to the Bowen-Series coding of the geodesicflow for hyperbolic surfaces of finite volume. It is first proved that the geodesic billiardassociated with an even corners fundamental domain for a cofinite fuchsian group is conjugatedwith a bijection of the torus, called extended coding, one factor of which is the Bowen-Seriestransform. The sharpest property of that conjugacy is that it always only involves a finite numberof objects. Some classical results about the Bowen-Series coding are then rediscovered : itis orbit-equivalent with the group, its periodic points are dense, and its periodic orbits are inbijection with conjugacy classes of primitive hyperbolic isometries ; which eventually links itsRuelle zeta function to the Selberg zeta function. The proofs of those results use a combinatoriallemma that abstracts the orbit-equivalence property to families of relations that can be definedon every set on which the group acts. The extended coding is also proved to be conjugated witha subshift of finite type, except for a countable set of points. Finally, it is shown that eigendistributionsof the transfer operator for the eigenvalue 1 are the Helgason boundary values ofeigenfunction of laplacian on the surface, plus that one can associate to each such eigendistributiona non-trivial eigenfunction of the transfer operator and that this process has a reciprocalin some cases.
9

[en] ABOUT THE MEASURE OF MAXIMAL ENTROPY AND HOROSPHERICAL FOLIATIONS OF GEODESIC FLOWS OF COMPACT MANIFOLDS WITHOUT CONJUGATE POINTS / [pt] SOBRE A MEDIDA DE MÁXIMA ENTROPIA E FOLIAÇÕES HORÓSFERICAS DE FLUXOS GEODÉSICOS EM VARIEDADES SEM PONTOS CONJUGADOS

EDHIN FRANKLIN MAMANI CASTILLO 04 November 2022 (has links)
[pt] Nesta tese, estudamos algumas propriedades dinâmicas e geométricas do fluxo geodésico de certas variedades compactas sem pontos conjugados. A tese tem duas partes principais. Primeiro estendemos o trabalho de Gelfert-Ruggiero sobre a existência de um fator expansivo para o fluxo geodésico ao caso de superfícies compactas sem pontos conjugados e gênero maior que um. A idéia principal é definir uma relação de equivalência que colapsa as órbitas bi-asintóticas do fluxo geodésico. Isto induz um fator que preserva o tempo e é semi-conjugado ao fluxo geodésico sob o mapa do quociente. Além disso, o fator é expansivo, topologicamente misto e tem uma estrutura de produto local. Estas propriedades implicam que o fator tem uma única medida de máxima entropia. Levantamos esta medida para o fibrado tangente unitário e nos certificamos de que é a única medida de máxima entropia para o fluxo geodésico. Isto fornece uma prova alternativa do teorema de Climenhaga-Knieper-War para o resultado de unicidade. Na última parte da tese, estendemos alguns resultados de Gelfert e Ruggiero de superfícies compactas do gênero superior e sem pontos conjugados para n-variedades compactas sem pontos conjugados e recobrimento universal Gromov hiperbólico. Assumindo que os fibrados de Green são contínuos e a existência de uma geodésica fechada hiperbólica, mostramos que os fibrados de Green são tangentes às foliações horósfericas. Além disso, as foliações horósfericas são as únicas foliações contínuas do fibrado tangente unitário, invariantes pelo fluxo geodésico e que satisfazem uma condição de transversalidade local. Este fato só foi conhecido para superfícies compactas sem pontos conjugados pelo trabalho de Barbosa-Ruggiero, e em dimensões mais elevadas assumindo a condição mais forte de assíntota limitada pelo trabalho de Eschenburg. / [en] In this thesis, we study some dynamical and geometrical properties of the geodesic flow of certain compact manifolds without conjugate points. The thesis has two main parts. We first extend Gelfert-Ruggiero s work about the existence of an expansive factor for the geodesic flow to the case of compact surfaces without conjugate points and genus greater than one. The main idea is to define an equivalence relation that collapses biasymptotic orbits of the geodesic flow. This induces a factor time-preserving semi-conjugate to the geodesic flow under the quotient map. Moreover, the factor is expansive, topologically mixing and has a local product structure. These properties imply that the factor has a unique measure of maximal entropy. We lift this measure to the unit tangent bundle and make sure that it is the unique measure of maximal entropy for the geodesic flow. This provides an alternative proof of Climenhaga-Knieper-War’s theorem for the uniqueness result. In the last part of the thesis, we extend some results of Gelfert and Ruggiero from compact higher genus surfaces without conjugate points to compact n-manifolds without conjugate points and Gromov hyperbolic universal covering. Assuming that Green bundles are continuous and the existence of a hyperbolic closed geodesic, we show that Green bundles are tangent to the horospherical foliations. Moreover, the horospherical foliations are the only continuous foliations of the unit tangent bundle, invariant by the geodesic flow and satisfying a condition of local transversality. This fact was only known for compact surfaces without conjugate points by Barbosa-Ruggiero s work, and in higher dimensions assuming the stronger condition of bounded asymptote by Eschenburg s work.
10

Géométrie et dynamique des espaces de configuration / Geometry and dynamics of configuration spaces

Kourganoff, Mickaël 04 December 2015 (has links)
Cette thèse est divisée en trois parties. Dans la première, on étudie des systèmes articulés (mécanismes formés de tiges rigides) dont l'espace ambiant n'est pas le plan, mais diverses variétés riemanniennes. On étudie la question de l'universalité des mécanismes : cette notion correspond à l'idée que toute courbe serait tracée par un sommet d'un mécanisme, et que toute variété différentiable serait l'espace de configuration d'un mécanisme. On étend les théorèmes d'universalité au plan de Minkowski, au plan hyperbolique et enfin à la sphère.Toute surface dans R^3 peut être aplatie selon l'axe des z, et la surface aplatie s'approche d'une table de billard dans R^2. Dans la seconde partie, on montre que, sous certaines hypothèses, le flot géodésique de la surface converge localement uniformément vers le flot de billard. De plus, si le billard est dispersif, les propriétés chaotiques du billard remontent au flot géodésique : on montre qu'il est alors Anosov. En appliquant ce résultat à la théorie des systèmes articulés, on obtient un nouvel exemple de systèmes articulé Anosov, comportant cinq tiges.Dans la troisième partie, on s'intéresse aux variétés munies de connexions localement métriques, c'est-à-dire de connexions qui sont localement des connexions de Levi-Civita de métriques riemanniennes ; on donne dans ce cadre un analogue du théorème de décomposition de De Rham, qui s'applique habituellement aux variétés riemanniennes. Dans le cas où une telle connexion préserve une structure conforme, on montre que cette décomposition comporte au plus deux facteurs ; de plus, lorsqu'il y a exactement deux facteurs, l'un des deux est l'espace euclidien R^q. La démonstration des résultats de cette partie passe par l'étude des feuilletages munis d'une structure de similitude transverse. Sur ces feuilletages, on montre un résultat de rigidité qui peut être vu indépendamment des autres: ils sont soit transversalement plats, soit transversalement riemanniens. / This thesis is divided into three parts. In the first part, we study linkages (mechanisms made of rigid rods) whose ambiant space is no longer the plane, but various Riemannian manifolds. We study the question of the universality of linkages: this notion corresponds to the idea that every curve would be traced out by a vertex of some linkage, and that any differentiable manifold would be the configuration space of some linkage. We extend universality theorems to the Minkowski plane, the hyperbolic plane, and finally the sphere.Any surface in R^3 can be flattened with respect to the z-axis, and the flattened surface gets close to a billiard table in R^2. In the second part, we show that, under some hypotheses, the geodesic flow of the surface converges locally uniformly to the billiard flow. Moreover, if the billiard is dispersing, the chaotic properties of the billiard also apply to the geodesic flow: we show that it is Anosov in this case. By applying this result to the theory of linkages, we obtain a new example of Anosov linkage, made of five rods.In the third part, we first consider manifolds with locally metric connections, that is, connections which are locally Levi-Civita connections of Riemannian metrics; we give in this framework an analog of De Rham's decomposition theorem, which usually applies to Riemannian manifolds. In the case such a connection also preserves a conformal structure, we show that this decomposition has at most two factors; moreover, when there are exactly two factors, one of them is the Euclidean space R^q. The proofs of the results of this part use foliations with transverse similarity structures. On these foliations, we give a rigidity theorem of independant interest: they are either transversally flat, or transversally Riemannian.

Page generated in 0.0654 seconds