• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 41
  • 11
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 307
  • 115
  • 88
  • 42
  • 37
  • 30
  • 26
  • 24
  • 24
  • 20
  • 20
  • 19
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

TheImpact of Dams on Sediment Transport from the Parker River Watershed to the Plum Island Estuary:

Zeng, Xinyi January 2020 (has links)
Thesis advisor: Noah P. Snyder / Though previous studies have shown saltmarsh adaptability to some degree of sea-level rise (SLR), sediment supply is critical to sustaining saltmarshes as SLR accelerates. Land-use activities, such as dams, often influence watershed sediment transport and delivery to the coast. Previous studies have suggested that, even in small watersheds, dams can significantly impact coastal sediment budgets. The Parker River watershed (PRW) in northeastern Massachusetts hosts 20 dams and several natural lakes, and drains into the Plum Island Sound Estuary (PIE). This research aims to evaluate the impact of dams and sediment transport in the PRW. Three approaches were used: theoretical modeling of sediment transport patterns using digital elevation models; spatial analysis of suspended sediment concentration (SSC) and remote sensing data; and empirical calculations of reservoir trap efficiency. Geomorphic modeling indicates that bankfull discharge can transport 20 μm grains (silt) as wash load throughout the PRW. Sediment deposition might happen at Crane Pond and in reservoirs, but removing dams would not change this pattern. Both SSC data and observations of satellite images during high-flow events indicate low supply and transport of sediment throughout the PRW. The estimates of sediment yield (Y) are low for the PRW. An empirical calculation indicates little-to-no trap efficiencies for all dams. Therefore, fluvial contribution to the sediment budget of the PIS estuary is limited and dam removals in the PRW are unlikely to change the rate of sediment delivery to the PIE. The proposed method of this study provides an additional scope to assess the ecological benefits of removing a dam and could be easily replicated for other locations for similar assessment. Future studies should assess sediment dynamics and management practices from a more thorough perspective incorporating the riverine, estuarine and shelf system. / Thesis (MS) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
202

Blue carbon storage in the Cowichan Estuary, British Columbia

Douglas, Tristan 10 May 2021 (has links)
The capacity of the world’s coastal ecosystems to sequester carbon dioxide (CO2), termed “Blue Carbon,” has been a major focus of research in recent decades due to its potential to mitigate climate change. Vegetated coastal ecosystems such as mangroves, seagrass beds, and salt marshes represent a global area that is one to two orders of magnitude smaller than that of terrestrial forests, yet their contribution to long-term carbon sequestration is much greater per unit-area, in part because of their high productivity and efficiency in trapping suspended matter and associated organic carbon. Despite the value that Blue Carbon (BC) systems offer in sequestering carbon, as well as providing numerous other goods and services, these habitats are being lost at critical rates and require urgent action in order to prevent further degradation and loss. Recognition of the carbon sequestration value of vegetated coastal ecosystems provides a strong argument for their protection and restoration, and global efforts are now underway to include BC ecosystems into global carbon offset budgets, focusing on their optimal management to optimize CO2 sequestration and minimize CO2 emissions. Here, BC was investigated in the Cowichan Estuary in relation to habitat type (salt marsh, eelgrass meadow, non-vegetated mudflats, and oyster shell beds), and habitat degradation. Stored organic carbon (OC) and inorganic carbon (IC) were quantified in the top 20 cm depth of sediment cores, as well as in eelgrass and salt marsh vegetation, and then extrapolated to the areal extent of each habitat type based on a high resolution 1:12,000 scale base map of the estuary. Rates of sedimentation and carbon sequestration were quantified in each habitat type using 210Pb radiometric dating, and organic matter (OM) sources and quality were assessed in each habitat type using δ13C, C/N ratios and photopigment content in the sediments. A particular focus on the lower intertidal zone allowed us to examine the potential impact of industrial activity (log transport and storage) on the estuary’s capacity for carbon storage, as a result of a reduction of suitable habitat for eelgrass and microphytobenthos (MPB). Additionally, IC was quantified in aboveground oyster shell beds and buried oyster shell to assess inorganic storage. Finally, potential valuation of Blue Carbon in the Cowichan Estuary was investigated by comparing carbon sequestration to provincial greenhouse gas (GHG) emission equivalents as well as carbon sequestration in B.C. forests. We found that the salt marsh was the most important carbon reservoir, with a mean per-hectare sediment organic carbon (SOC) stock of 49.1 ± 19.9 Mg C ha-1, total ecosystem carbon stock (TECS) of 5443.75 Mg C, and carbon accumulation rate of 74 ± 23 g C m-2 yr-1. In the other habitats, we found SOC stocks and TECS respectively 19.1 ± 3.78 Mg C ha-1 and 3651.6 ± 72.3 Mg C in the upper mudflats, 16.9 ± 4.36 Mg C ha-1 and 1058.85 Mg C in the lower mudflats, 17.9 ± 1.21 Mg C ha−1 and 324.57 Mg C in the eelgrass meadow, and 9.43 ± 1.50 Mg C ha-1 and 59.4 Mg C in the oyster beds. The eelgrass meadow had a carbon accumulation rate of 38 ± 26 g C m-2 yr-1, while the mudflats could not successfully be dated due to erosion and/or mixing. Furthermore, the salt marsh contained the highest proportion of recalcitrant, terrestrial-derived root material which was more protected from hydrodynamic forces compared to other habitats. No pattern differences were observed between the carbon reservoirs or bulk properties of the log boom area (lower mudflat) compared to the upper mudflat, and thus there was no evidence that the log booms significantly decrease carbon sequestration in the areas where they make frequent contact with the seafloor. However, decreased chlorophyll a (chl a) concentrations in the lower mudflat sediment suggests a possible detrimental impact on microphytobenthos in addition to preventing the recolonization of the seagrass Zostera marina (Z. marina). Carbon stocks in the eelgrass meadow were similar to those of the mudflats. These carbon stocks were lower than global averages but consistent with those recently reported in low Z. marina meadows in the Pacific Northwest. Evidence of significant eelgrass vegetation outwelling necessitates further investigation to elucidate the degree to which these primary products are being decomposed or buried elsewhere in the estuary or open ocean. Since approximately half of the historical salt marsh habitat is currently reclaimed for agricultural and industrial use, consideration should be given to the role of the marsh system as a carbon reservoir in future land-use policy in the Cowichan Estuary. / Graduate / 2022-04-30
203

Assessing Shoreline Exposure and Oyster Habitat Suitability Maximizes Potential Success for Sustainable Shoreline Protection Using Restored Oyster Reefs

La Peyre, Megan K., Serra, Kayla, Joyner, T. Andrew, Humphries, Austin 01 January 2015 (has links)
Oyster reefs provide valuable ecosystemservices that contribute to coastal resilience. Unfortunately, many reefs have been degraded or removed completely, and there are increased efforts to restore oysters in many coastal areas. In particular, much attention has recently been given to the restoration of shellfish reefs along eroding shorelines to reduce erosion. Such fringing reef approaches, however, often lack empirical data to identify locations where reefs are most effective in reducing marsh erosion, or fully take into account habitat suitability. Using monitoring data from 5 separate fringing reef projects across coastal Louisiana, we quantify shoreline exposure (fetch + wind direction + wind speed) and reef impacts on shoreline retreat. Our results indicate that fringing oyster reefs have a higher impact on shoreline retreat at higher exposure shorelines. At higher exposures, fringing reefs reduced marsh edge erosion an average of 1.0 m y-1. Using these data, we identify ranges of shoreline exposure values where oyster reefs are most effective at reducing marsh edge erosion and apply this knowledge to a case study within one Louisiana estuary. In Breton Sound estuary, we calculate shoreline exposure at 500 random points and then overlay a habitat suitability index for oysters. This method and the resulting visualization show areas most likely to support sustainable oyster populations as well as significantly reduce shoreline erosion. Our results demonstrate how site selection criteria, which include shoreline exposure and habitat suitability, are critical to ensuring greater positive impacts and longevity of oyster reef restoration projects.
204

Effect of Whole Brain Teaching on Student Self-Concept

Clark, Heather Winona Schulte 01 January 2016 (has links)
Sufficient research exists indicating that the brain mechanisms involved with use of whole brain teaching (WBT) techniques will likely lead to improved academic achievement and that academic self-concept (ASC) is both a cause and consequence of academic achievement. However, it is not known if there is a relationship between WBT and ASC. Given the benefits derived from positive ASC, it becomes important to assess WBT as a predictor variable of positive ASC. The purpose of this quantitative study was to examine the relationship between different levels of exposure to WBT techniques and the mean difference in ASC, as measured by the general-school, mathematics, and reading subscores on the Self Description Questionnaire I, between treatment conditions. Self-concept theory as posited by Shavelson et al. and the Marsh/Shavelson revision, the skill development approach to self-concept enhancement, and the reciprocal effect model provide the theoretical foundations of this dissertation. A one-way multivariate analysis of variance (MANOVA) was used to determine if the mean ASC scores differed among 191 second and third grade students exposed to three levels of the WBT factor. Results of the three-group MANOVA failed to support use of WBT techniques to improve ASC. Reconfiguration of the quasi-independent variable into two groups revealed that general-school ASC scores were significantly lower in the group exposed to limited to no WBT techniques. Assessing students at risk for educational problems may reveal more convincing evidence for WBT as an effective ASC intervention. The implications for social change include encouraging WBT practitioners to make more empirically sound claims and decisions regarding their practice, thereby allowing students an educational experience grounded in scientific findings, rather than subjective assumptions.
205

A Comparison of Consumer's Surplus and Monopoly Revenue Estimates of Recreational Value for Two Utah Waterfowl Marshes

Brink, C. Holden 01 May 1973 (has links)
Demand curves were estimated for waterfowl hunting and nonconsumptive recreational use from use rate and variable expenditure data collected at the Bear River Migratory Bird Refuge and the Farmington Bay Waterfowl Management Area during fiscal 1969. Consumer's surplus and monopoly revenue estimates were then derived from the demand functions. Adjusted estimates of consumer's surplus for waterfowl hunting amounted to $7,260 per year at Bear River and $11,400 per year at Farmington Bay. For nonconsumptive recreation annual consumer's surplus was estimated to be $18,700 at Bear River and $3,760 at Farmington Bay. Monopoly revenue estimates were between one-half and one-fourth the corresponding consumer's surplus estimates. The capitalized value (at 8 percent interest) of predicted annual consumer's surplus for all recreation was $865,800 for Bear River and $299,000 for Farmington Boy. Capitalization of the corresponding monopoly revenue estimates gave $276,900 for Bear River and $92,100 for Farmington Bay. At 3 percent interest, the capitalized consumer's surplus values increase to $4,242,000 for Bear River and $1,184,000 for Farmington Buy, while those for monopoly revenue increase to $1,330,000 for Bear River and $350,000 for Farmington Bay. The author believes that consumer's surplus estimates are more valuable than monopoly revenue estimates for comparison with other values included in the benefit/cost analysis of water development projects because the needed values include more than a non-discriminating monopolist can extract. It will never be possible to make additive estimates of all of the relevant values of natural areas used for outdoor recreation. Allocation decisions must draw on several disciplines in addition to economics to determine where the balance will swing for the greatest net benefit to society, nevertheless, the author believes that exceptions exist where the native flora and fauna can be managed to attract visitors such than an area can remain in natural production in perpetuity and be competitive with potentially conflicting interests in terms of measurable economic values. It is believed that future research should concentrate on high-value sites and be directed toward sensitivity analysis, the simultaneous evaluation of alternative uses, the influence of the travel-time variable, marginal resource values, and off-site benefits.
206

Resource Partitioning in Breeding Populations of Marsh Hawks and Short-Eared Owls

Linner, Susan C. 01 May 1980 (has links)
During the 1979 breeding season four pairs of northern harriers, or marsh hawks (Circus cyaneus) and four pairs of short-eared owls (Asio flammeus) were studied in Cache Valley, Utah. The study was concerned solely with diurnal resource utilization, and did not examine the owls' nocturnal activities. The home range of each harrier pair overlapped substantially with that of an owl pair. Percent habitat overlap for hawk-owl pairs varied from 39 percent to 72 percent. Observations were made to determine if differences existed in their utilization of habitat and food resources, or in their daily and seasonal activity patterns. Both species utilized mainly wet old field and pasture habitat types for their hunting efforts. In general wet old fields were utilized more than expected based on their availability, while pasture, bare ground, and harvested field habitats were used less than expected. Pairs of hawks and owls sharing common habitats generally showed differences in preferred hunting habitats. An analysis of variance showed that hawks and owls were making strikes in different habitat types and to some extent in different parts of the habitat. Harriers and owls nested in different habitat types. Breeding seasons of the two species overlapped almost totally, but interspecific differences were detected in time-activity budgets. Overall, the owls were more sedentary than the hawks. Both species spent approximately 10 percent of the day in hunting-related activites, but timing of hunting varied from pair to pair. Overlapping pairs generally differed in their daily distribution of hunting time. The analysis of variance showed that there was a significant difference in the timing of strikes made by harriers and owls. Both species were feeding primarily on small mammals in the study area, and food resources were probably not a limiting factor for either population. Though northern harriers and short-eared owls appear to have a high degree of niche overlap, this study showed that where eight individual pairs of the two species came into contact they differed in time-activity budgets and habitat utilization. Coexistence between these two species may be enhanced by the fact that they both feed on an abundant prey resource. By subtle habitat and time budget preferences, reinforced through interspecific aggression, they can avoid competition.
207

Spatial Segregation of the Sexes in a Salt Marsh Grass Distichlis spicata (Poaceae)

Mercer, Charlene Ashley 01 January 2010 (has links)
Understanding the maintenance of sexual systems is of great interest to evolutionary and ecological biologists because plant systems are extremely varied. Plant sexual systems have evolved to include not only complete plants with both male and female reproduction occurring on one plant (i.e., monoecious and hermaphroditic) but also plants with male and female function on separate plants (dioecious). The dioecious reproductive system can be used to test theories on niche differentiation given that having separate plants potentially allows for the exploitation of a broader niche. This increase in the realized niche is due to the ability for separate sexes to occupy different niches, which may occur in different physical habitats. Some dioecious plants have been shown to occur in areas biased to nearly 100% male or nearly 100% female, called spatial segregation of the sexes (SSS). Occupying a broader niche could increase fitness in some species when the separation is used for one sex to gain access to resources that increase reproductive success and/or if the separation inhibits deleterious competition. These two mechanisms have been previously proposed for the evolution of SSS in dioecious plants. The first mechanism suggests that males and females have evolved to occupy different niches due to differences in reproduction (sexual specialization). The hypothesis for the sexual specialization mechanism is that females should have higher fitness in female-majority sites and males should have higher fitness in male-majority sites. The second mechanism states that males and females occupy different niches due to competition between the sexes (niche partitioning). The hypothesis for niche partitioning states that inter-sexual competition should decrease fitness more than intra-sexual competition. These mechanisms are not mutually exclusive. In our research we use the salt-marsh grass Distichlis spicata as our study species because this plant is dioecious and because molecular markers have been developed to determine the sex of juvenile plants. These molecular markers are important for testing the niche partitioning hypothesis for SSS in juveniles. Furthermore, previous work in California has shown that plants occur in areas nearly 100% female and nearly 100% male called spatial segregation of the sexes (SSS). The previous research also showed that female-majority sites were higher in soil phosphorus than male-majority sites. We conduct all research, presented in the proceeding chapters, on Distichlis spicata in the Sand Lake estuary near Pacific City, Oregon and in the laboratory at Portland State University. In Chapter 1 we used field data to answer two questions: (1) Does Distichlis spicata exhibit SSS in Oregon, and (2) If SSS is occurring, do differences occur in plant form and function (sexual specialization) in reproductive female and male plants in female-majority and male-majority sites? We used a sex ratio survey and collected field data on reproductive males and females. Our results show that there are female-majority and male-majority areas and SSS is occurring in the Sand Lake Estuary. Results from our native plant data suggest that reproductive females perform better in female-majority sites compared to male-majority sites which could suggest that sexual specialization is occurring in females. We currently have a long term field reciprocal transplant experiment in place to further address this hypothesis. In Chapter 2 we use field dada to address the following questions: (1) Does site-specific soil nutrient content occur in August, when females have set seed? (2) Does sex-specific mycorrhizal colonization occur in reproductively mature plants? (3) Does sex-specific mycorrhizal colonization vary seasonally in natural populations? Inside the roots of D. spicata a symbiotic relationship is formed between plant and arbuscular mycorrhizal fungus (AM). The AM- plant relationship has been shown to thrive in phosphorus limited areas because the mycorrhizal fungus increases nutrient access to the plant. We analyzed the results of the field soil nutrient content and mycorrhizal colonization in roots of native Distichlis spicata from male-majority and female-majority sites. The root colonization included staining roots with trypan blue and viewing sections of the roots under the microscope. Our results show that female- majority sites are higher in phosphorus and are found to have higher AM colonization than male- majority sites in the field. In Chapter 3 we then reciprocally transplanted D. spicata plants in the field to address the following questions: (1) Does niche partitioning occur in D. spicata, and (2) If niche partitioning is occurring, which plants are competing more? Our reciprocal transplant experiment included seeds grown in intra-sexual, inter-sexual and no competition in cones, planted directly into the field, and allowed to grow for 15 months. After the 15 months was over we measured survival, dry weight and root/shoot ratio. The design of the experiment was to determine the effects of competition (intra-sexual and inter-sexual) and no competition on (single male and female) on survival, biomass and root/shoot ratios. Our results show that niche partitioning is occurring and plants in inter-sexual competition have significantly less biomass then intra-sexual competitors. In, Chapter 4, we conduct a laboratory experiment to address the following questions: (1) Do plants show plasticity in their response to root exudates of the competing plant in regards to the sexual phenotype of the competitor? (2) Do plants show plasticity in their response to root exudates of the competing plant with respect to the relatedness of the competitor? We use sterile seeds grown in 24-well plates containing liquid media. For each competing plant, we picked plants up out of the wells and into the competing plants wells so that plants only experienced media that the competing plant had grown. At no time do roots ever come into contact with one another. We measured primary root length, number of lateral roots, the number of root hairs, root/shoot ratio and total dry weight. We analyzed the study two different ways, one for sexual type competition (inter-sexual, intra-sexual, none) and for plant relationship (KIN, STRANGER and OWN). The results for the sexual type competition found that inter-sexual competition was greater for root/shoot ratio and dry weight. The results for plant relationship competition found that kin plants had a significantly greater number of lateral roots and a significantly longer primary root. The last chapter, Chapter 5, includes a summary of our conclusions. Our study found SSS occurring in the Sand Lake Estuary in Oregon with female-majority sites higher in phosphorus and root colonization higher in percent colonization of arbuscular mycorrhizal fungi compared to male-majority sites. Based on the sexual specialization hypothesis as a mechanism for SSS, we found that females had greater fitness in female-majority sites compared to male-majority sites, suggesting that sexual specialization is occurring in reproductive females. We then tested the niche partitioning hypothesis for SSS, and we found consistent lab and field results suggesting that niche partitioning due to inter-sexual competition is an explanation for why females and males D. spicata plants spatially segregate themselves at the juvenile life history stage. Furthermore, we found that plants that have the same mother had a significantly greater number of lateral roots and a significantly longer primary root. These results suggest that KIN plants respond differently to one another compared to plants paired with a plant not from the same mother (STRANGER) or when the plant is alone (OWN).
208

The flow of water in salt marsh peat

Nuttle, William Kensett January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 95-96. / by William Kensett Nuttle. / M.S.
209

Area-sensitivity, landscape habitat associattions and distribution of breeding marsh birds within the glaciated region of Ohio, USA.

Kahler, Benjamin M. 27 August 2013 (has links)
No description available.
210

Thomas B. Marsh: Physician to the Church

Lichfield, Walter C. 01 January 1956 (has links) (PDF)
Thomas B. Marsh was president of the first quorum of Twelve Apostles of this last dispensation of the Gospel.He came into the Church after having been lead west from Massachusetts, to the Prophet at Palmyra by the Spirit, having previously separated himself from all the then existing creeds as had many other early stalwarts.

Page generated in 0.0242 seconds