• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 212
  • 46
  • 22
  • 17
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 642
  • 642
  • 322
  • 153
  • 123
  • 89
  • 88
  • 88
  • 83
  • 80
  • 61
  • 59
  • 51
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Approximate solutions to the wave equation for a medium with one discontinuity

Weiss, Winfried R. E. January 1983 (has links)
This thesis deals with a particle limit for the n dimensional wave equation and shows that there are asymptotic solutions for certain pulses in the high-frequency limit. These pulses are shown to propagate along rays predicted by geometrical optics. The solutions are computed up to an error which approaches zero as the pulse approaches the particle limit. The method gives a closed solution to the question of where the energy propagates. We assume that the n dimensional space is divided into two halfspaces with two different wave speeds and that these two halfspaces have an interface where the wave speed is not continuous. / M.S.
162

On some semi-linear equations related to phase transitions: Rigidity of global solutions and regularity of free boundaries

Zhang, Chilin January 2024 (has links)
In this thesis, we study minimizers of the energy functional 𝐽 (𝑢,Ω) = ∫_Ω |∇𝑢|²/2 + 𝑊(𝑢) 𝑑𝑥 for two different potentials 𝑊(𝑢). In the first part we consider the Allen-Cahn energy, where 𝑊(𝑢) = (1 − 𝑢²)² is a doublewell potential which is relevant in the theory of phase transitions and minimal interfaces. We investigate the rigidity properties of global minimizers in low dimensions. In particular we extend a result of Savin on the De Giorgi’s conjecture to include minimizers that are not necessarily bounded, and that can have subquadratic growth at infinity. In the second part we consider potentials of the type 𝑊(𝑢) = 𝑢⁺ which appear in obstacletype free boundary problems. We establish higher order estimates and the analyticity of the regular part of the free boundary. Our method relies on developing higher order boundary Harnack estimates iteratively and deducing them from Schauder estimates for certain elliptic equations with degenerate weights. Finally we consider similar regularity questions of the free boundary in the Signorini problem which also known as the thin obstacle problem. We develop 𝐶²^𝛼 estimates of the free boundary under sharp assumptions on the coefficients and the data.
163

Soliton Solutions to Sine-Gordon Using the Ruijsenaars-Schneider Model

Rudengren, Fabian, Otterling, Jacob January 2024 (has links)
This thesis discusses the Ruijsenaars-Schneider model and its connection to Calogero-Moser systems and the sine-Gordon equation. The derivations and mathematical framework presented aims at making the model comprehensible to non-experts in the field. Two different methods, the Bäcklund transformation and Ruijsenaars-Schneider model, are used to find soliton solutions to the sine-Gordon equation.
164

Sur la concentration, le bruit et l'estimation de l'entropie dans le systèmes dynamiques

Maldonado, Cesar 21 September 2012 (has links) (PDF)
Cette thèse est divisée en trois parties. Dans la prèmiere partie nous décrivons les systèmes dynamiques que l'on considère tout au long de la thèse. Nous donnons aussi des résultats connus sur les fluctuations d'observables dans les systèmes dynamiques tels comme la théorème central limite, les grands déviations et les inégalités de concentration. La deuxième partie de cette thèse est consacrée aux systèmes dynamiques perturbés par un bruit observationnel. Nous démontrons que si un système dynamique satisfait une inégalité de concentration alors le système perturbé satisfait lui aussi une inégalité de concentration adéquate. Ensuite nous appliquons ces inégalités pour obtenir des bornes sur la taille des fluctuations d'observables bruitées. Nous considérons comme observables la fonction d'auto-corrélation, la mesure empirique, l'estimateur à noyau de la densité de la mesure invariante et la dimension de corrélation. Nous étudions ensuite les travaux de S. Lalley sur le problème de débruitage d'une série temporelle. Etant donné une série temporelle générée par un système dynamique chaotique bruité, il est effectivement possible d'éliminer le bruit en moyenne en utilissant l'algorithme de Lalley. Un chapitre de cette thèse est consacré à la preuve de ce théorème. Nous finissons la deuxième partie avec une quête numérique pour les meilleurs paramètres de l'algorithme de Lalley. Dans la troisième partie, nous étudions le problème de l'estimation de l'entropie pour des mesures de Gibbs unidimensionnelles. Nous étudions les propriétés de deux estimateurs de l'entropie. Le premier est basé sur les fréquences des blocs typiques observés. Le second est basé sur les temps d'apparition de blocs typiques. Nous appliquons des inégalités de concentrations pour obtenir un contrôle sur les fluctuations de ces estimateurs.
165

Modèles topologiques de type cohomologique en théorie quantique des champs.

Thuillier, Frank 31 October 2012 (has links) (PDF)
Nous présentons dans ce travail deux exemples de modèles topologiques faisant appel à la cohomologie : - dans le premier exemple nous montrons comment obtenir des invariants topologiques, tels que ceux de Donaldson, de Mumford, de Mathaï-Quillen ou de gravité topologique, en utilisant la cohomologie équivariante. Nous présentons une méthode universelle permettant d'obtenir de tels invariants topologiques en se basant sur une approche de type BRST. Nous rappelons qu'il existe différents " schémas " caractérisant une théorie équivariante et nous montrons comment le schéma de Kalkman permet une construction optimisée des invariants. - dans le second exemple nous étudions les théories abéliennes de Chern-Simons. Nous montrons comment une approche basée sur la cohomologie de Deligne-Beilinson permet de traiter ces théories sur des variétés fermées de dimension trois. Nous montrons comment la structure de ces espaces de cohomologie induit canoniquement la quantification de la constante de couplage et des charges, tout en fournissant les informations nécessaires et suffisantes pour obtenir via l'intégration fonctionnelle les invariants de liens usuellement obtenus à partir de procédures de chirurgie sur la sphère. Cette méthode admet un prolongement naturel qui permet de traiter plus généralement les variétés de dimension 4n+3.
166

DIAMAGNETISME DES GAZ QUANTIQUES QUASI-PARFAITS

Savoie, Baptiste 24 October 2010 (has links) (PDF)
La majeure partie de cette thèse concerne l'étude de la susceptibilité diamagnétique en champ magnétique nul d'un gaz d'électrons de Bloch à température et densité fixées dans la limite des faibles températures. Pour les électrons libres (i.e. en l'absence de potentiel périodique), la susceptibilité diamagnétique a été calculée par L. Landau en 1930; le résultat est connu sous le nom de formule de Landau. Quant au cas des électrons de Bloch, E.R. Peierls montra en 1933 que dans l'approximation des électrons fortement liés, la formule pour la susceptibilité diamagnétique reste la même en remplaçant la masse de l'électron par sa ''masse effective''; ce résultat est connu sous le nom de formule de Landau-Peierls. Depuis, de nombreuses tentatives pour clarifier les hypothèses de validité de la formule de Landau-Peierls ont vu le jour. Le résultat principal de cette thèse établit rigoureusement qu'à température nulle, lorsque la densité d'électrons tend vers zéro, la contribution dominante à la susceptibilité diamagnétique est donnée par la formule de Landau-Peierls avec la masse effective de la plus petite bande d'énergie de Bloch.
167

Utility Of Phase Space Behaviour In Solving Two Point Boundary Value Problems

Sai V, V V Sesha 08 1900 (has links) (PDF)
No description available.
168

Random walks and first-passage properties: Trajectory analysis and search optimization

Tejedor, Vincent 03 July 2012 (has links) (PDF)
Les propriétés de premier passage en général, et parmi elles le temps moyen de premier passage (MFPT), sont fréquemment utilisées dans les processus limités par la diffusion. Les processus réels de diffusion ne sont pas toujours Browniens : durant les dernières années, les comportements non-Browniens ont été observés dans un nombre toujours croissant de systèmes. Les milieux biologiques sont un exemple frappant où ce genre ce comportement a été observé de façon répétée. Nous présentons dans ce manuscrit une méthode basée sur les propriétés de premier passage permettant d'obtenir des informations sur le processus réel de diffusion, ainsi que sur l'environnement où évolue le marcheur aléatoire. Cette méthode permet de distinguer trois causes possibles de sous-diffusion : les marches aléatoires en temps continu, la diffusion en milieu fractal et le mouvement brownien fractionnaire. Nous étudions également l'efficacité des processus de recherche sur des réseaux discrets. Nous montrons comment obtenir les propriétés de premier passage sur réseau afin d'optimiser ensuite le processus de recherche, et obtenons un encadrement général du temps moyen de premier passage global (GMFPT). Grâce à ces résultats, nous estimons l'impact sur l'efficacité de recherche de plusieurs paramtres, notamment la connectivité de la cible, la mobilité de la cible ou la topologie du réseau.
169

Propagation et distribution sur le ciel des rayons cosmiques d'ultra-haute<br />énergie dans le cadre de l'Observatoire Pierre Auger

Armengaud, Éric 09 May 2006 (has links) (PDF)
L'origine des rayons cosmiques d'ultra haute énergie reste une énigme de<br />la physique contemporaine, que l'Observatoire Pierre Auger, détecteur<br />hybride d'une taille inégalée, va tenter de résoudre. L'observation<br />directe des sources de ces particules, ou de structures à grande échelle<br />sur le ciel associées à ces sources, est un des premiers objectifs de<br />cet observatoire. De telles observations permettront aussi de contraindre la<br />propagation des rayons cosmiques, qui, entre leurs sources et la Terre,<br />subissent d'une part des interactions sur des fonds de photons de basse<br />énergie, et d'autre part des déflections dans des champs magnétiques<br />astrophysiques.<br />Cette thèse comprend deux volets, afin d'observer les sources des rayons<br />cosmiques avec l'Observatoire Auger et de les modéliser.<br /><br />Nous commençons par décrire en détail l'Observatoire Pierre Auger,<br />et nous intéressons ensuite à l'acceptance de son détecteur de surface<br />afin de pouvoir construire des cartes de couverture précise du ciel, outil<br />indispensable à l'étude des anisotropies. Nous présentons ensuite des<br />méthodes de recherche d'anisotropies sur le ciel, et analysons les deux<br />premières années de prise de données de l'Observatoire.<br /><br />Après une description des phénomènes susceptibles d'influencer la<br />propagation et l'observation de sources de rayons cosmiques d'ultra-haute<br />énergie, nous présentons des simulations numériques destinées à<br />prédire des observables telles que le spectre, les anisotropies et la<br />composition mesurables par Auger, en fonction de différents modèles<br />astrophysiques. Nous montrons que les champs magnétiques extragalactiques<br />peuvent jouer un rôle crucial, surtout si les rayons cosmiques sont en<br />partie des noyaux lourds. Enfin, nous montrons que la propagation de ces<br />particules depuis une source proche génère des flux secondaires de<br />rayons gamma qui pourront être détectés par des télescopes gamma au<br />TeV.
170

Divergence des mousses de spins : comptage de puissance et resommation dans le modèle plat

Smerlak, Matteo 07 December 2011 (has links) (PDF)
L'objet de cette thèse est l'étude du modèle plat, l'ingrédient principal du programme de quantification de la gravité par les mousses de spins, avec un accent particulier sur ses divergences. Outre une introduction personnelle au problème de la gravité quantique, le manuscrit se compose de deux parties. Dans la première, nous obtenons une formule exacte pour le comptage de puissances des divergences de bulles dans le modèle plat, notamment grâce à des outils de théorie de jauge discrète et de cohomologie tordue. Dans la seconde partie, nous considérons le problème de la limite continue des mousses de spins, tant du point de vue des théorie de jauge sur réseau que du point de vue de la "group field theory". Nous avançons en particulier une nouvelle preuve de la sommabilité de Borel du modèle de Boulatov-Freidel-Louapre, permettant un contrôle accru du comportement d'échelle dans la limite de grands spins. Nous concluons par une discussion prospective du programme de renormalisation pour les mousses de spins.

Page generated in 0.0919 seconds