Spelling suggestions: "subject:"mathematics inn physics"" "subject:"mathematics iin physics""
111 |
Exploration numérique de comportements asymptotiques pour des équations de transport-diffusionLafitte-Godillon, Pauline 10 December 2010 (has links) (PDF)
Mon travail de recherche a couvert ces dernières années un spectre assez large de modélisation, analyse numérique et simulation pour des problèmes physiques et biologiques, de la mécanique à l'échelle moléculaire ou particulaire, niveau dit " microscopique ", à la diffusion non-linéaire, niveau " macroscopique ", en passant par des équations cinétiques décrivant la distribution en vitesse de particules, niveau " mésoscopique ". Le point commun de ces travaux est l'étude de comportements asymptotiques et la recherche d'explications de phénomènes observables macroscopiques par des descriptions micro ou mésoscopiques à l'aide d'outils numériques. Les applications auxquelles on s'intéresse ici sont, pour la partie physique, liées à la thermodynamique couplée ou non avec du transfert radiatif ou une dynamique particulaire raréfiée et, pour la partie biologie-chimie, à des problèmes de propagation d'information par des mécanismes de transport ou de diffusion, ainsi qu'à la recherche de formation de motifs et à l'étude d'extinction de populations. Les équations aux dérivées partielles étudiées proviennent de modèles déterministes ou probabilistes et se classent dans les catégories de transport et de diffusion évolutifs. L'apparition, lors de l'adimensionnement des problèmes, de petits paramètres qui augmentent l'influence de certains des phénomènes caractéristiques dans la solution peut entraîner des difficultés importantes lors du traitement numérique, ce qui impose le recours à des solutions nouvelles permettant de recouvrer au minimum le comportement macroscopique prédit par les observations et par l'analyse mathématique.
|
112 |
Modèles topologiques de type cohomologique en théorie quantique des champs.Thuillier, Frank 31 October 2012 (has links) (PDF)
Nous présentons dans ce travail deux exemples de modèles topologiques faisant appel à la cohomologie : - dans le premier exemple nous montrons comment obtenir des invariants topologiques, tels que ceux de Donaldson, de Mumford, de Mathaï-Quillen ou de gravité topologique, en utilisant la cohomologie équivariante. Nous présentons une méthode universelle permettant d'obtenir de tels invariants topologiques en se basant sur une approche de type BRST. Nous rappelons qu'il existe différents " schémas " caractérisant une théorie équivariante et nous montrons comment le schéma de Kalkman permet une construction optimisée des invariants. - dans le second exemple nous étudions les théories abéliennes de Chern-Simons. Nous montrons comment une approche basée sur la cohomologie de Deligne-Beilinson permet de traiter ces théories sur des variétés fermées de dimension trois. Nous montrons comment la structure de ces espaces de cohomologie induit canoniquement la quantification de la constante de couplage et des charges, tout en fournissant les informations nécessaires et suffisantes pour obtenir via l'intégration fonctionnelle les invariants de liens usuellement obtenus à partir de procédures de chirurgie sur la sphère. Cette méthode admet un prolongement naturel qui permet de traiter plus généralement les variétés de dimension 4n+3.
|
113 |
Some inverse scattering problems on star-shaped graphs: application to fault detection on electrical transmission line networksVisco Comandini, Filippo 05 December 2011 (has links) (PDF)
In this thesis, having in mind applications to the fault-detection/diagnosis of electrical networks, we consider some inverse scattering problems for the Zakharov-Shabat equations and time-independent Schrödinger operators over star-shaped graphs. The first chapter is devoted to describe reflectometry methods applied to electrical networks as an inverse scattering problems on the star-shaped network. Reflectometry methods are presented and modeled by the telegrapher's equations. Reflectometry experiments can be written as inverse scattering problems for Schrödinger operator in the lossless case and for Zakharov-Shabat system for the lossy transmission network. In chapter 2 we introduce some elements of the inverse scattering theory for 1 d Schrödinger equations and the Zakharov-Shabat system. We recall the basic results for these two systems and we present the state of art of scattering theory on network. The third chapter deals with some inverse scattering for the Schrödinger operators. We prove the identifiability of the geometry of the star-shaped graph: the number of the edges and their lengths. Next, we study the potential identification problem by inverse scattering. In the last chapter we focus on the inverse scattering problems for lossy transmission star-shaped network. We prove the identifiability of some geometric informations by inverse scattering and we present a result toward the identification of the heterogeneities, showing the identifiability of the loss line factor.
|
114 |
DIAMAGNETISME DES GAZ QUANTIQUES QUASI-PARFAITSSavoie, Baptiste 24 October 2010 (has links) (PDF)
La majeure partie de cette thèse concerne l'étude de la susceptibilité diamagnétique en champ magnétique nul d'un gaz d'électrons de Bloch à température et densité fixées dans la limite des faibles températures. Pour les électrons libres (i.e. en l'absence de potentiel périodique), la susceptibilité diamagnétique a été calculée par L. Landau en 1930; le résultat est connu sous le nom de formule de Landau. Quant au cas des électrons de Bloch, E.R. Peierls montra en 1933 que dans l'approximation des électrons fortement liés, la formule pour la susceptibilité diamagnétique reste la même en remplaçant la masse de l'électron par sa ''masse effective''; ce résultat est connu sous le nom de formule de Landau-Peierls. Depuis, de nombreuses tentatives pour clarifier les hypothèses de validité de la formule de Landau-Peierls ont vu le jour. Le résultat principal de cette thèse établit rigoureusement qu'à température nulle, lorsque la densité d'électrons tend vers zéro, la contribution dominante à la susceptibilité diamagnétique est donnée par la formule de Landau-Peierls avec la masse effective de la plus petite bande d'énergie de Bloch.
|
115 |
Simulation moléculaire : Problèmes dynamiques et hors d'équilibreStoltz, Gabriel 18 June 2012 (has links) (PDF)
L'objectif de la simulation moléculaire est de comprendre et prédire les propriétés macroscopiques des matériaux à partir de leur description à l'échelle microscopique. Ce mémoire présente quelques contributions à ce sujet, pour des modèles de la physique statistique et de la physique quantique. Mes travaux en physique statistique numérique peuvent être classés en deux catégories : le calcul de propriétés d'équilibre, l'accent étant porté sur le calcul de différences d'énergie libre (chapitre 2), et l'étude de dynamiques hors d'équilibre en régime permanent pour le calcul de propriétés de transport (chapitre 3). Dans les deux cas, les méthodes numériques reposent sur des dynamiques hors d'équilibre ou nonlinéaires, la distinction entre ces classes de méthodes provenant du fait que l'état invariant du système est soit un état d'équilibre (éventuellement, à une correction près) ou un état hors d'équilibre. Le chapitre 4 présente quelques résultats pour des dynamiques quantiques : fictives, comme pour la transition adiabatique d'états dégénérés ; ou authentiques, comme pour l'évolution en temps des défauts locaux dans les cristaux.
|
116 |
Une méthode d'éléments finis pour résoudre l'équation de Bloch-Torrey appliquée à l'imagerie par résonance magnétique de diffusion dans des tissus biologiquesNguyen, Dang Van 07 March 2014 (has links) (PDF)
L'imagerie de résonance magnétique de diffusion (IRMD) est une technique d'imagerie non-invasive qui donne l'accès aux caractéristiques de diffusion de l'eau dans des tissus biologiques, notamment, dans le cerveau. Les restrictions que la structure cellulaire microscopique impose à la diffusion des molécules d'eau, sont agrégées statistiquement dans un mesurable signal d'IRMD macroscopique. L'inférence de la structure microscopique du tissu à partir du signal d'IRMD permet de détecter des régions pathologiques et d'observer les propriétés fonctionnelles du cerveau. A cet effet, il est important de mieux comprendre la relation entre la microstructure du tissu et le signal d'IRMD ce qui nécessite des nouvelles outils numériques capable de faire les calculs dans des géométries complexes modèles des tissus. Nous proposons une telle méthode numérique basée sur les éléments finis linéaires ce qui permet de décrire précisément des géométries complexes. La discrétisation par des éléments finis est couplée à la méthode adaptative des pas de temps de Runge-Kutta Chebyshev. Cette méthode qui assure la convergence du second ordre à la fois en temps et en espace, est implémentée sous la plateforme FeniCS C++. Nous utilisons aussi le générateur de maillage Salome pour travailler de manière efficace avec des géométries périodiques à plusieurs compartiments. Nous considérons quatre applications de la méthode pour étudier la diffusion dans des modèles à plusieurs compartiments. Dans la première application, nous étudions le comportement au temps long et démontrons la convergence d'un coefficient de diffusion apparent vers un tenseur de diffusion effectif obtenu par l'homogénéisation. La deuxième application vise à vérifier numériquement qu'un modèle à deux compartiments permet d'approximer le modèle à trois compartiments dans lequel le compartiment cellulaire et le compartiment extra-cellulaire sont complétés par un compartiment membranaire. La troisième application consiste à valider le modèle de Karger du signal d'IMRD macroscopique qui prend en compte l'échange entre compartiments. La dernière application se focalise sur le signal d'IMRD issu des neurones isoles. Nous proposons un modèle efficace unidimensionnel pour calculer le signal d'IRMD de manière précise dans un réseau des neurites de rayons variés. Nous testons la validité d'une expression semi-analytique du signal d'IRMD issu des réseaux de neurites.
|
117 |
Aspects géométriques et intégrables des modèles de matrices aléatoiresOlivier, Marchal 21 December 2010 (has links) (PDF)
Cette thèse traite des aspects géométriques et d'intégrabilité associés aux modèles de matrices aléatoires. Son but est de présenter diverses applications des modèles de matrices aléatoires allant de la géométrie algébrique aux équations aux dérivées partielles des systèmes intégrables. Ces différentes applications permettent en particulier de montrer en quoi les modèles de matrices possèdent une grande richesse d'un point de vue mathématique. Ainsi, cette thèse abordera d'abord l'étude de la jonction de deux intervalles du support de la densité des valeurs propres au voisinage d'un point singulier. On montrera plus précisément en quoi ce régime limite particulier aboutit aux équations universelles de la hiérarchie de Painlevé II des systèmes intégrables. Ensuite, l'approche des polynômes (bi)-orthogonaux, introduite par Mehta pour le calcul des fonctions de partition, permettra d'énoncer des problèmes de Riemann-Hilbert et d'isomonodromies associés aux modèles de matrices, faisant ainsi le lien avec la théorie de Jimbo-Miwa-Ueno. On montrera en particulier que le cas des modèles à deux matrices hermitiens se transpose à un cas dégénéré de la théorie isomonodromique de Jimbo-Miwa-Ueno qui sera alors généralisé. La méthode des équations de boucles avec ses notions centrales de courbe spectrale et de développement topologique permettra quant à elle de faire le lien avec les invariants symplectiques de géométrie algébrique introduits récemment par Eynard et Orantin. Ce dernier point fera également l'objet d'une généralisation aux modèles de matrices non-hermitien ($\beta$ quelconque) ouvrant ainsi la voie à la ''géométrie algébrique quantique'' et à la généralisation de ces invariants symplectiques pour des courbes ''quantiques''. Enfin, une dernière partie sera consacrée aux liens étroits entre les modèles de matrices et les problèmes de combinatoire. En particulier, l'accent sera mis sur les aspects géométriques de la théorie des cordes topologiques avec la construction explicite d'un modèle de matrices aléatoires donnant le dénombrement des invariants de Gromov-Witten pour les variétés de Calabi-Yau toriques de dimension complexe trois utilisées en théorie des cordes topologiques.
|
118 |
Étude de la localisation pour des systèmes désordonnés sur un graphe quantiqueSabri, Mostafa 07 May 2014 (has links) (PDF)
Ce travail est consacré à l'étude de certaines propriétés spectrales des opérateurs de Schrödinger aléatoires. Il est divisé en deux parties : 1. Une étude de la localisation d'Anderson pour des systèmes multi-particules sur un graphe quantique. 2. Une formulation abstraite de quelques estimées de Wegner, suivie par une liste d'applications pour des modèles concrets. Au Chapitre 1 on essaie d'introduire les problèmes et les résultats de la thèse de façon élémentaire. La première partie occupe les chapitres 2 et 3. Le Chapitre 2 consiste essentiellement en notre article "Anderson Localization for a multi-particle quantum graph" [97] sur le sujet. Au Chapitre 3 on discute quelques propriétés supplémentaires du modèle, et on donne surtout des démonstrations alternatives de certains résultats du Chapitre 2. La deuxième partie occupe les chapitres 4 et 5. Le Chapitre 4 reproduit essentiellement notre article "Some abstract Wegner estimates with applications" [98]. Au Chapitre 5 on poursuit l'étude des estimées de Wegner, en donnant notamment quelques théorèmes abstraits supplémentaires dans la Section 5.2 et encore d'autres applications dans la Section 5.3. On conclut avec deux annexes A et B. Dans la première on expose de manière très détaillée les développements en fonctions propres généralisées. Dans l'Annexe B, on démontre quelques résultats classiques utilisés dans le texte.
|
119 |
The mathematical structure of non-locality and contextualityMansfield, Shane January 2013 (has links)
Non-locality and contextuality are key features of quantum mechanics that distinguish it from classical physics. We aim to develop a deeper, more structural understanding of these phenomena, underpinned by robust and elegant mathematical theory with a view to providing clarity and new perspectives on conceptual and foundational issues. A general framework for logical non-locality is introduced and used to prove that 'Hardy's paradox' is complete for logical non-locality in all (2,2,l) and (2,k,2) Bell scenarios, a consequence of which is that Bell states are the only entangled two-qubit states that are not logically non-local, and that Hardy non-locality can be witnessed with certainty in a tripartite quantum system. A number of developments of the unified sheaf-theoretic approach to non-locality and contextuality are considered, including the first application of cohomology as a tool for studying the phenomena: we find cohomological witnesses corresponding to many of the classic no-go results, and completely characterise contextuality for large families of Kochen-Specker-like models. A connection with the problem of the existence of perfect matchings in k-uniform hypergraphs is explored, leading to new results on the complexity of deciding contextuality. A refinement of the sheaf-theoretic approach is found that captures partial approximations to locality/non-contextuality and can allow Bell models to be constructed from models of more general kinds which are equivalent in terms of non-locality/contextuality. Progress is made on bringing recent results on the nature of the wavefunction within the scope of the logical and sheaf-theoretic methods. Computational tools are developed for quantifying contextuality and finding generalised Bell inequalities for any measurement scenario which complement the research programme. This also leads to a proof that local ontological models with `negative probabilities' generate the no-signalling polytopes for all Bell scenarios.
|
120 |
Random walks and first-passage properties: Trajectory analysis and search optimizationTejedor, Vincent 03 July 2012 (has links) (PDF)
Les propriétés de premier passage en général, et parmi elles le temps moyen de premier passage (MFPT), sont fréquemment utilisées dans les processus limités par la diffusion. Les processus réels de diffusion ne sont pas toujours Browniens : durant les dernières années, les comportements non-Browniens ont été observés dans un nombre toujours croissant de systèmes. Les milieux biologiques sont un exemple frappant où ce genre ce comportement a été observé de façon répétée. Nous présentons dans ce manuscrit une méthode basée sur les propriétés de premier passage permettant d'obtenir des informations sur le processus réel de diffusion, ainsi que sur l'environnement où évolue le marcheur aléatoire. Cette méthode permet de distinguer trois causes possibles de sous-diffusion : les marches aléatoires en temps continu, la diffusion en milieu fractal et le mouvement brownien fractionnaire. Nous étudions également l'efficacité des processus de recherche sur des réseaux discrets. Nous montrons comment obtenir les propriétés de premier passage sur réseau afin d'optimiser ensuite le processus de recherche, et obtenons un encadrement général du temps moyen de premier passage global (GMFPT). Grâce à ces résultats, nous estimons l'impact sur l'efficacité de recherche de plusieurs paramtres, notamment la connectivité de la cible, la mobilité de la cible ou la topologie du réseau.
|
Page generated in 0.171 seconds