• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • 1
  • Tagged with
  • 21
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

In Vitro Study of Recruitment Ability of Macrophages and Trophoblasts in Early Human Pregnancy

Wendel, Caroline January 2010 (has links)
The tolerance towards the semi-allogenic foetus is obtained through both systemic and local changes in the maternal immune response. Locally, in the decidua, the cell composition differs from that found in the blood; natural killer (NK) cells and macrophages being the major cell types. Decidual macrophages (dMØ), which are alternatively activated, and trophoblasts, placental cells of foetal origin, are believed to participate in the foetal tolerance at the foetal-maternal interface. To test the recruitment ability of macrophages and trophoblasts, and to test if these cells are responsible for the special cell composition in the decidua, a migration assay was established. In this migration assay peripheral blood mononuclear cells (PBMC) were allowed to migrate through Matrigel-coated transwell inserts into lower wells containing a recruiting stimulus. After testing several conditions, a protocol was established for further use. The results showed that in vitro alternatively activated macrophages, which display many of the surface markers as dMØ, hold a recruiting ability and recruit monocytes. Further there was an indication that trophoblasts also hold a recruiting ability. Neither cell types were shown to recruit NK cells. In conclusion, this study presents a suitable protocol for assessing chemotactic factors and different cell type’s ability to recruit cells from blood. Although the experiments need to be repeated and extended and the recruitment ability of dMØ needs to be evaluated in detail before a final conclusion can be drawn, the preliminary data indicated that macrophages and trophoblasts can recruit monocytes.
12

M-CSF and GM-CSF induce human monocytes to express either pro- or anti-angiogenic factors

Eubank, Tim January 2003 (has links)
No description available.
13

Matrigel alters the expression of genes related to adipogenesis and the production of extracellular matrix in 3T3-L1 cells

Josan, Chitmandeep January 2018 (has links)
Studying molecular mechanisms underlying adipocyte differentiation is imperative to understanding adipocyte function and its role in obesity. However, the majority of research exploring adipogenesis is conducted with cell lines cultured directly on tissue culture plastic. Culturing cells on plastic may result in altered proliferation and differentiation, and subsequent change in pharmacological response. The extracellular matrix (ECM) plays a critical role in adipocyte development and survival. It is suggested that cells in vitro express high levels of ECM proteins to compensate for lack of an ECM. Differentiating preadipocytes on a substrate representative of the mature adipocyte extracellular environment may provide a more physiological response to drugs and environmental chemicals. The purpose of this study was to investigate the impact of Matrigel on 3T3-L1 cell growth, differentiation, lipid accumulation and responsiveness to Rosiglitazone. Matrigel decreased 3T3-L1 cell proliferation, enhanced lipid accumulation, and increased expression of adipogenic and lipogenic markers, including PPARγ, C/EBPα, SREBP1c, FAS, LPL, FABP4 and PLIN1. This was accompanied by a decrease in gene expression of ECM proteins, including fibronectin, collagen 1, collagen 3, collagen 4, laminin and collagen 6 in 3T3-L1 cells on Matrigel. Finally, Matrigel enhanced the response of 3T3-L1 cells to Rosiglitazone, which is a known PPARγ agonist and significantly increases lipid accumulation in 3T3-L1 cells. Our results suggest that enhanced lipid accumulation in 3T3-L1 cells on Matrigel is associated with decreased expression of ECM genes. Future studies require investigation of the cell-to-ECM interaction to confirm these findings. This study proposes that the nature of the ECM for cultured adipocytes alters temporal lipid accumulation patterns and response to various drugs as compared to 3T3-L1 cells grown on tissue culture plastic. / Thesis / Master of Science (MSc)
14

Influence de l’interleukine-4 sur le recrutement des neutrophiles équins dans un modèle inflammatoire sous-cutané

Godbout, Mireille 09 1900 (has links)
Plusieurs conditions allergiques, dont certains phénotypes d’asthme et le souffle équin, sont caractérisées par une infiltration neutrophilique. L’interleukine-4 (IL-4), une cytokine clé de la réponse allergique, pourrait contribuer au recrutement de ces cellules inflammatoires lors de ces pathologies. L’objectif de cette étude était d’évaluer si l’administration sous-cutanée d’IL-4 chez des chevaux sains favorise une réponse neutrophilique locale. Trois études ont été réalisées pour 1) évaluer l’effet de concentrations cytokiniques différentes (10 ng, 250 ng et 500 ng) et 2) évaluer l’effet de la durée d'incubation (3 h, 6 h, 12 h, 48 h et 7 jours) sur le recrutement des neutrophiles chez 18 chevaux sains. Le matrigel, une matrice protéique solubilisée, a servi de véhicule pour l’administration des cytokines. Un grade histologique semi-quantitatif a été élaboré pour évaluer la neutrophilie tissulaire pour toutes les études, mais nous avons, en outre, ajouté une analyse par cytométrie de flux dans la troisième étude pour valider les grades histologiques. Nos résultats démontrent que 1) l'IL-4 ne parvient pas à induire une migration neutrophilique significative dans les tissus sous-cutanés de chevaux sains ; 2) la cytométrie de flux s’est révélée être une méthode plus fiable pour estimer la migration des neutrophiles en comparaison avec l'analyse moins sensible des scores histologiques. Nous avons de plus observé que 3) le matrigel entraîne une réaction inflammatoire potentiellement de nature immunogène chez les chevaux. Cette étude est la première incorporant le matrigel et IL-4 dans un protocole in vivo impliquant des chevaux. Ces données suggèrent que l’IL-4 seule ne permet pas le recrutement sous-cutané de neutrophiles chez des chevaux sains. / Many allergic conditions, including asthma and equine heaves, are characterized by a neutrophilic inflammation. Interleukin-4 (IL-4) is a cytokine that plays a key role in allergic responses that may contribute to the recruitment of inflammatory cells in these diseases. The objective of this study was to assess the neutrophilic response following a subcutaneous administration of IL-4 in healthy horses. Three studies were conducted to evaluate the effects 1) of different cytokine concentrations (10 ng, 250 ng and 500 ng) and 2) incubation times (3 h, 6 h, 12 h, 48 h and 7 days) on neutrophil recruitment in 18 healthy horses. A semi-quantitative histological score was developed to assess tissue neutrophilia for all three studies. Flow cytometry analysis was also performed in study 3 in order to validate the histological scoring method. Our results demonstrate that 1) IL-4 fails to induce significant neutrophilic migration and 2) flow cytometry has proved to be a more reliable method in estimating neutrophil migration when compared to histological scoring, which lacked sensitivity. We also observed that 3) matrigel causes an inflammatory reaction in horses, possibly of immunogenic nature. These are the first studies incorporating matrigel and IL-4 in an in vivo protocol involving horses. Our data suggests that IL-4 alone does not induce neutrophil recruitment in the skin of healthy horses.
15

Investigating the Role of Deoxyhypusine Synthase in the Invasiveness of PC3 Cells Using siRNA

Adam, Eva January 2008 (has links)
Deoxyhypusine synthase (DHS) catalyzes the first step in the hypusination of eukaryotic translation initiation factor 5A (eIF5A). In human cells, two eIF5A isoforms are present, eIF5A-1 and eIF5A-2, and DHS catalyzes the hypusination of both. Since both eIF5As are substrates for DHS, the biological functions of DHS are likely to be exerted through the various post-translational forms of these two eIF5As. The lysine form of eIF5A-1 has been associated with apoptosis, while the hypusinated form of eIF5A-1 has been associated with cell viability and proliferation. eIF5A-2 has been found to be over-expressed in certain cancers and has been proposed to function as an oncogene. Dhs is also over-expressed in certain human cancers and is a metastatic signature gene. The purpose of the present study was to investigate the role of DHS in cancer cell invasiveness, cell proliferation, and apoptosis using RNA interference. The main finding of the study is that DHS siRNA treatment decreases invasiveness of PC3 cells in vitro. Both DHS 0 siRNA treatment and DHS 1/b siRNA treatment significantly reduced cell invasiveness of PC3 cells as measured by the Matrigel invasion assay. Potential confounding variables, such as differences in cell proliferation or differences in apoptosis in response to DHS siRNA treatment, were assessed using the XTT cell proliferation assay and the Annexin V/Pi apoptosis assay, and they were found not to have an effect. In the absence of serum, DHS siRNA treatment did not result in significant decrease in cell proliferation compared to the control siRNA treatment. Furthermore, DHS siRNA treatment did not induce apoptosis in PC3 cells under the present experimental conditions. In conclusion, depletion of DHS with RNAi reduces invasiveness, but does not induce apoptosis in PC3 cells. The significance of the research is that the anti-invasiveness effect of DHS depletion in metastatic cancer cells is shown for the first time in the present study. Thus, DHS depletion may be useful to combat cancer in conjunction with L-eIF5A-1 over-expression.
16

Investigating the Role of Deoxyhypusine Synthase in the Invasiveness of PC3 Cells Using siRNA

Adam, Eva January 2008 (has links)
Deoxyhypusine synthase (DHS) catalyzes the first step in the hypusination of eukaryotic translation initiation factor 5A (eIF5A). In human cells, two eIF5A isoforms are present, eIF5A-1 and eIF5A-2, and DHS catalyzes the hypusination of both. Since both eIF5As are substrates for DHS, the biological functions of DHS are likely to be exerted through the various post-translational forms of these two eIF5As. The lysine form of eIF5A-1 has been associated with apoptosis, while the hypusinated form of eIF5A-1 has been associated with cell viability and proliferation. eIF5A-2 has been found to be over-expressed in certain cancers and has been proposed to function as an oncogene. Dhs is also over-expressed in certain human cancers and is a metastatic signature gene. The purpose of the present study was to investigate the role of DHS in cancer cell invasiveness, cell proliferation, and apoptosis using RNA interference. The main finding of the study is that DHS siRNA treatment decreases invasiveness of PC3 cells in vitro. Both DHS 0 siRNA treatment and DHS 1/b siRNA treatment significantly reduced cell invasiveness of PC3 cells as measured by the Matrigel invasion assay. Potential confounding variables, such as differences in cell proliferation or differences in apoptosis in response to DHS siRNA treatment, were assessed using the XTT cell proliferation assay and the Annexin V/Pi apoptosis assay, and they were found not to have an effect. In the absence of serum, DHS siRNA treatment did not result in significant decrease in cell proliferation compared to the control siRNA treatment. Furthermore, DHS siRNA treatment did not induce apoptosis in PC3 cells under the present experimental conditions. In conclusion, depletion of DHS with RNAi reduces invasiveness, but does not induce apoptosis in PC3 cells. The significance of the research is that the anti-invasiveness effect of DHS depletion in metastatic cancer cells is shown for the first time in the present study. Thus, DHS depletion may be useful to combat cancer in conjunction with L-eIF5A-1 over-expression.
17

Análise de miRNAs envolvidos na regulação da MMP9 e consequências no processo de invasão celular do adenocarcinoma da próstata: estudo in vivo e in vitro / Analysis of miRNAs involved in the regulation of MMP9 and its consequences to cell invasion of prostate cancer: in vivo and in vitro study

Ivanovic, Renato Fidelis 05 October 2018 (has links)
INTRODUÇÃO: A propensão do CaP em gerar metástases decorre de mecanismos moleculares específicos em um processo composto por múltiplas etapas, sendo que o remodelamento do meio extracelular através de ações de enzimas proteolíticas denominadas metaloproteinases da matriz (MMP) é uma etapa fundamental. As MMP degradam vários componentes da matriz extracelular, sendo que seu controle pode ser exercido por outras proteínas denominadas TIMPs. Em nível gênico, outro controle pode ser exercido por moléculas chamadas microRNAs. OBJETIVO: O objetivo deste estudo é avaliar a regulação da MMP-9 por miRNAs. A partir de dados da literatura identificamos que a MMP-9 pode sofrer influência do miR-21 e 338-3p. MÉTODOS: Para os experimentos in vitro, linhagens celulares de CaP (DU145, PC3 e LNCaP) foram transfectadas com os miRNAs de interesse e a expressão de MMP-9 foi avaliada por reação em cadeia de polimerase quantitativa com transcriptase reversa (qRT-PCR). O sobrenadante da transfecção foi usado para ensaios de invasão com matrigel, e ELISA. Nos experimentos in vivo, células da linhagem PC-3-luc foram implantadas no subcutâneo de camundongos Balb-c nude e tratadas com injeções de anti-miR-21, miR-338-3p ou a combinação de ambos. RESULTADOS: O miR-21 aumentou expressão de MMP-9 em 72% na PC3. Houve maior invasão celular tanto na PC3 como DU145. In vivo, o bloqueio do miR-21 reduziu em 10% a expressão de MMP-9 nos tumores implantados (p=0,04). O miR-338-3p reduziu a expressão de MMP-9 em 53% na PC3 (p=0,001), 31% na LnCaP (p=0,23) e 24% na DU145 (p=0,16). No ensaio de invasão, menor número de células e colônias foram capazes de invadir a membrana de matrigel. In vivo, houve redução de 27% na expressão de MMP-9 nos camundongos tratados com o miR-338-3p (p=0,07). A combinação anti-miR-21+miR-338-3p reduz a expressão de MMP-9 em maior intensidade tanto in vitro como in vivo. CONCLUSÕES: A expressão de MMP-9 pode ser regulada pelo miR-21 e miR-338-3p. O primeiro se comporta como um oncomiR ao passo que o segundo como um supressor tumoral. A combinação de miRNAs é uma estratégia plausível para ampliar o efeito sobre expressão de genes de interesse / INTRODUCTION: The propensity of CaP to generate metastases results from specific molecular mechanisms in a multiphase process and the remodeling of the extracellular medium through the actions of proteolytic enzymes called matrix metalloproteinases (MMP) is a fundamental step. MMPs degrade several components of the extracellular matrix, and their control can be exerted by other proteins called TIMPs. At the gene level, another control can be exerted by molecules called microRNAs. OBJECTIVE: The objective of this study is to evaluate the regulation of MMP-9 by miRNAs. From literature data we have identified that MMP-9 may be influenced by miR-21 and 338-3p. METHODS: For in vitro experiments, CaP cell lines (DU145, PC3 and LNCaP) were transfected with the miRNAs of interest and the expression of MMP-9 was assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The transfection supernatant was used for matrigel and ELISA invasion assays. For the in vivo experiments, PC3-luc cells were implanted into the subcutaneous Balb-c nude mice and treated with anti-miR-21, miR-338-3p injections or the combination of both. RESULTS: The miR-21 increased MMP-9 expression by 72% in PC3. There was greater cell invasion in both PC3 and DU145. In vivo, miR-21 blockade reduced MMP-9 expression by 10% in implanted tumors (p = 0.04). MiR-338-3p reduced MMP-9 expression by 53% in PC3 (p = 0.001), 31% in LNCaP (p = 0.23), and 24% in DU145 (p = 0.16). In the invasion assay, fewer cells and colonies were able to invade the matrigel membrane. In vivo, there was a 27% reduction in MMP-9 expression in mice treated with miR-338-3p (p = 0.07). The combination of anti-miR-21 + miR-338-3p reduces MMP-9 expression in greater intensity both in vitro and in vivo. CONCLUSIONS: MMP-9 expression can be regulated by miR-21 and miR-338-3p. The former behaves as an oncomyR while the second as a tumor suppressor. The combination of miRNAs is a plausible strategy to extend the effect on gene expression of interest
18

Continuous Endothelial Cell Activation Increases Angiogenesis: Evidence for the Direct Role of Endothelium Linking Angiogenesis and Inflammation

Rajashekhar, Gangaraju, Willuweit, Antje, Patterson, Carolyn E., Sun, Peichuan, Hilbig, Andreas, Breier, Georg, Helisch, Armin, Clauss, Matthias 27 February 2014 (has links) (PDF)
There is increasing evidence that chronic inflammation is tightly linked to diseases associated with endothelial dysfunction, including the induction of aberrant angiogenesis. While leukocytes have been described as mediators of inflammation-associated angiogenesis, the effects of direct chronic endothelial activation have not been addressed in this context. Using an uncleavable mutant of the transmembrane form of tumor necrosis factor-α (TNF-α), we have established models of stable TNF-α expression in endothelial cells in vitro and in transgenic mice in vivo. In the in vitro model, continuous endothelial activation leads to increased leukocyte cellular adhesion molecule expression and intracellular reactive oxygen species, hallmarks of a proinflammatory and dysfunctional endothelium. In addition, stable expression of TNF-α in endothelial cells increased angiogenic sprout formation in the presence but also in the absence of angiogenic growth factors. The partial neutralization of this effect by TNF-α antibodies and the inability of conditioned media from stable TNF-α-expressing endothelial cells to induce angiogenic activities in control endothelial cells suggest that this effect does not require expression of additional autocrine factors, but is an autonomous effect of the transmembrane TNF on the endothelial cells. Furthermore, using the Matrigel plug assay in vivo, increased angiogenesis was observed in endothelial TNF-α-expressing transgenic versus control mice. In conclusion, chronic inflammatory changes mediated by TNF-α can induce angiogenesis in vitro and in vivo, suggesting endothelial cell activation as a direct link between inflammation and angiogenesis. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
19

Continuous Endothelial Cell Activation Increases Angiogenesis: Evidence for the Direct Role of Endothelium Linking Angiogenesis and Inflammation

Rajashekhar, Gangaraju, Willuweit, Antje, Patterson, Carolyn E., Sun, Peichuan, Hilbig, Andreas, Breier, Georg, Helisch, Armin, Clauss, Matthias January 2006 (has links)
There is increasing evidence that chronic inflammation is tightly linked to diseases associated with endothelial dysfunction, including the induction of aberrant angiogenesis. While leukocytes have been described as mediators of inflammation-associated angiogenesis, the effects of direct chronic endothelial activation have not been addressed in this context. Using an uncleavable mutant of the transmembrane form of tumor necrosis factor-α (TNF-α), we have established models of stable TNF-α expression in endothelial cells in vitro and in transgenic mice in vivo. In the in vitro model, continuous endothelial activation leads to increased leukocyte cellular adhesion molecule expression and intracellular reactive oxygen species, hallmarks of a proinflammatory and dysfunctional endothelium. In addition, stable expression of TNF-α in endothelial cells increased angiogenic sprout formation in the presence but also in the absence of angiogenic growth factors. The partial neutralization of this effect by TNF-α antibodies and the inability of conditioned media from stable TNF-α-expressing endothelial cells to induce angiogenic activities in control endothelial cells suggest that this effect does not require expression of additional autocrine factors, but is an autonomous effect of the transmembrane TNF on the endothelial cells. Furthermore, using the Matrigel plug assay in vivo, increased angiogenesis was observed in endothelial TNF-α-expressing transgenic versus control mice. In conclusion, chronic inflammatory changes mediated by TNF-α can induce angiogenesis in vitro and in vivo, suggesting endothelial cell activation as a direct link between inflammation and angiogenesis. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
20

Cell type-dependent differential activation of ERK by oncogenic KRAS or BRAF in the mouse intestinal epithelium

Brandt, Raphael 10 March 2023 (has links)
Kolorektale Karzinome (CRC) zeigen eine heterogene Ätiologie. Die Progression prämaligner Vorläufer zu CRC unterscheidet (U) sich in Morphologie, molekularen Veränderungen und Interaktion mit der Tumorumgebung. CRC weisen oft onkogene Mutationen in KRAS und BRAF auf. Diese steigern die MAPK Signalwegaktivität (Mpa). Obwohl sie im selben Signalweg wirken, sind KRAS und BRAF auf die CRC-Entitäten U verteilt. Dabei ist KRAS häufiger im sogenannten konventionellen und BRAF im serratierten Weg zu CRC mutiert. In dieser Studie nutzte ich murine intestinale Organoide (iO), die induzierbare (Ind) KRAS oder BRAF Onkogene exprimieren. Große U zwischen KRAS und BRAF zeigten sich sowohl in Signaltransduktion (ST) als auch im Phänotyp. Phosphoprotein-, ERK-Reporter-, scRNA-Seq und EM-Analysen ergaben eine starke Mpa durch BRAF, die zu hoher Expression von MAPK-Zielgenen und Verlust der epithelialen Integrität führte. iO nach KRAS-Ind blieben intakt, korrelierend mit moderater, zelltypspezifischer (ZS) Mpa in sekretorischen und undifferenzierten Zellen. Die meisten Enterozyten waren Mpa-negativ. ERK-Reporter zeigten: Das ZS Muster der Mpa ist nicht nur gegenüber KRAS, sondern auch dem Entzug von Wachstumsfaktoren stabil. Dies spricht für eine intrinsische, robuste Regulierung der Mpa. BRAF-Ind Mpa setzte die ZS Regulierung der MAPK außer Kraft und schädigte das Gewebe, im Einklang mit einer oberen Grenze tolerabler Mpa. Die ZS Mpa wurde in CRC-Zelllinien bestätigt, deren Mpa durch KRAS aber nicht BRAF U ausfiel. Ferner, nutzte ich iO mit bCatenin+KRAS-Ind, um den konventionellen Weg zu CRC zu modellieren. Die Kombination führte zu synergistischen Effekten, die sich in EGFR-unabhängigem Wachstum und der Aufhebung der ZS Mpa-Blockade äußerten, die durch eine Verschiebung der Differenzierung zu mehr Progenitorzellen bewirkt wurde. Zusammenfassend konnte ich U in der Mpa durch KRAS oder BRAF im Darmepithel feststellen, was dazu beiträgt, deren Rollen in der CRC-Genese zu bestimmen. / Colorectal cancer (CRC) is a disease with heterogeneous etiology. Premalignant lesions follow distinct routes of progression to carcinoma reflected by differences in morphology, molecular alterations and the tumor environment. Mutant KRAS and BRAF are frequent, leading to MAPK pathway activation (Mpa), which is relevant for CRC therapy. Despite acting in the same pathway, mutant KRAS and BRAF segregate to different entities, as KRAS is more frequent in the conventional- and BRAF being specific for the serrated route to CRC. I used murine intestinal organoids (iO) expressing inducible oncogenic KRAS or BRAF to study the impact of oncogenes in primary cells. I found marked differences in signal transduction and phenotype. Phospho-protein, ERK-reporter, scRNA-seq and EM data showed strong Mpa upon BRAF induction followed by ERK-target gene expression leading to tissue disruption. In contrast, KRAS left the tissue intact resulting in less and cell type-dependent Mpa limited to secretory cells, a subset of late-stage enterocytes and undifferentiated crypt cells. Most enterocytes were irresponsive to KRAS. The pattern of Mpa was robust towards KRAS or growth factor depletion arguing in favor of intrinsic, resilient MAPK regulation. In iO, BRAF-induced Mpa could break this cell type-specific regulation, indicating an upper limit of tolerable Mpa. I validated these findings in CRC cell lines that differed in Mpa in response to oncogenic KRAS but not BRAF. Finally, I used iO expressing an inducible form of stabilized bCatenin in combination with KRAS to mimic events frequently found in the conventional pathway to CRC. Expression of KRAS and bCatenin synergized in driving EGFR independent growth and breaking the villus-specific block of Mpa by altering differentiation towards progenitor cell types. In summary, this study emphasizes differences between Mpa induced by oncogenic KRAS or BRAF which helps clarifying their nature in different etiological routes to CRC genesis.

Page generated in 0.0309 seconds