• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 91
  • 61
  • 42
  • 20
  • 8
  • 8
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 426
  • 107
  • 57
  • 49
  • 48
  • 48
  • 44
  • 43
  • 36
  • 36
  • 34
  • 34
  • 31
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

VERS UNE SIMULATION SANS MAILLAGE DES PHÉNOMÈNES ÉLECTROMAGNÉTIQUES

Hérault, Christophe 21 January 2000 (has links) (PDF)
Récemment de nouvelles méthodes de simulation numérique ont fait leur apparition. Ces méthodes basées sur un nuage de noeuds ne font pas intervenir de maillage comme pour la méthode des éléments finis. Malgré leur nombre, leur base théorique est semblable. De plus, de part leur caractère récent, leurs développements sont encore à ce jour qu 'aux prémices. Ce travail récapitule les grandes lignes des procédures indispensables pour une résolution à l'aide d'une méthode sans maillage appelée méthode HP-Clouds. Entre autre, les fondements mathématiques par la création de nouvelles fonctions de forme sans maillage, supportées par des boules, sont présentés dans un premier chapitre. Puis, une procédure de résolution des équations de Maxwell en électromagnétisme à l'aide de la méthode HP-Clouds est présentée en décrivant précisément la méthode de. Ritz-Galerkin dans un cas simple. Nous avons d'autre part mis l'accent sur la structure rie données basée sur les boules, supports des fonctions de forme, permettant, ainsi de faciliter l'insertion de la méthode HP-Clouds dans un logiciel de simulation numérique. Dans toutes ces étapes nous nous sommes astreint à ne pas utiliser de maillage même intermédiaire ou fictif. Enfin, nous avons validé nos résultats sur trois problèmes concrets qui laisse présager un avenir prometteur pour les méthodes sans maillage.
302

L'analyse isogéométrique dans la physique des plasmas et l'électromagnétisme

Ratnani, Ahmed 07 October 2011 (has links) (PDF)
Introduite récemment par Hughes et ses collaborateurs, l'Analyse Isogéométrique connaît un large succès pour des problèmes principalement industriels. L'idée est de faciliter la communication entre la C.A.O et la simulation numérique, sans avoir à repasser à chaque fois par des mailleurs. Ainsi, les fonctions définissants la géométrie sont utilisées pour approcher les solutions des équations à dérivées partielles. L' application aux problèmes issues de l'électromagnétisme ont été motivé par les travaux de Buffa et ses collaborateurs à Pavie. Dans cette thèse, nous avons appliqué cette méthode pour résoudre des problèmes issues de la physique des plasmas. S'il est vrai que la géométrie n'est pas définie, l'analyse isogéométrique dans sa version isoparamétrique, nous fournit un outil très puissant pour approcher les domaines de calculs. Dans un plasma, ce domaine est défini par la résolution d'un problème d'équilibre (MHD equilibrium). A partir de là, différents modèles sont utilisés pour décrire le plasma: cinétiques ( gyrocinétique) ou fluides. Nous avons passé en revue les méthodes les plus classiques et plus utilisées afin de révéler l'intérêt de la méthode. Se basant sur la structure de produit tensoriel, nous avons développé des solveurs rapides pour la résolution de certains problèmes. Nous avons aussi dérivé un solveur, se basant sur les complexes de Hilbert, pour les équations de Maxwell en "time domain".
303

Méthodes de type Galerkin discontinu d'ordre élevé pour la résolution numérique des équations de Maxwell instationnaires sur des maillages simplexes non-conformes

Fahs, Hassan 19 December 2008 (has links) (PDF)
Ce travail porte sur le développement d'une méthode Galerkin discontinue (GDDT) d'ordre élevé pour la résolution numérique des équations de Maxwell instationnaires sur des maillages simplexes non-conformes. On présente tout d'abord une méthode GDDT reposant sur des fonctions de base nodales pour approcher le champ électromagnétique dans un simplexe, un schéma centré pour évaluer les flux numériques aux interfaces entre cellules voisines et un schéma saute-mouton du second ordre pour l'intégration temporelle. De plus, cette méthode autorise l'utilisation de maillages non-conformes présentant un nombre arbitraire de noeuds flottants. La méthode résultante est non-dissipative, stable sous une condition de type CFL, conserve un équivalent discret de l'énergie électromagnétique, et très peu dispersive. Afin de diminuer le coût de calcul de cette méthode, on propose une méthode GDDT de type /hp/, qui combine /h-/raffinement et /p/-enrichissement locaux tout en préservant la stabilité. On réalise ensuite une étude numérique détaillée des méthodes GDDT sur la base d'une série de problèmes de propagation d'ondes en milieux homogène et hétérogène. En particulier, on effectue une comparaison des méthodes Galerkin discontinues conformes et non-conformes en termes de précision, convergence et coûts de calcul.<br />Afin d'améliorer la précision et la vitesse de convergence des méthodes GDDT précédentes, on étudie une famille de schémas saute-mouton d'ordre<br />arbitrairement élevé. Ces schémas temporels nous assurent sur tout maillage la conservation d'un équivalent discret de l'énergie électromagnétique ainsi que la stabilité des méthodes GDDT résultantes sous une condition de type CFL. On réalise aussi une étude de convergence /hp a priori/ ainsi qu'une étude de convergence de l'erreur sur la divergence. Des expériences numériques montrent que pour un maillage donné, le schéma saute-mouton du quatrième ordre est moins coûteux en temps de calcul et plus précis que le schéma saute-mouton du second ordre, en dépit d'une complexité arithmétique accrue.<br />De plus, on obtient une convergence exponentielle avec le schéma saute-mouton du quatrième ordre.
304

Dynamics, information and computation / Dynamique, information et calcul

Delvenne, Jean-Charles 16 December 2005 (has links)
"Dynamics" is very roughly the study of how objects change in time; for instance whether an electrical circuit goes to equilibrium, due to thermal dissipation. By "information", we mean how helpful it is to observe an object in order to know it better, for instance how many binary digits we can acquire on the value of a voltage by an appropriate measure. A "computation" is a physical process, e.g. the flow of current into a complex set of transistors, that after some time eventually gives us the solution of a mathematical problem (such as "Is 13 prime?"). We are interested to various relations between these concepts. In a first chapter, we unify some arguments in the literature to show that a whole class of quantities of dynamical systems are uncomputable. For instance the topological entropy of tilings and Turing machines. Then we propose a precise meaning to the statement "This dynamical system is a computer", at least for symbolic systems, such as cellular automata. We also show, for instance, that a "computer" must be dynamically unstable, and can even be chaotic. In a third chapter, we compare how complicated it is to control a system according whether we can acquire information on it ("feedback") or not ("open loop"). We are specifically interested in finite-state systems. In last chapter we show how to control a scalar linear system when only a finite amount of information can be acquired at every step of time.
305

Multi-Component and Multi-Dimensional Mathematical Modeling of Solid Oxide Fuel Cells

Hussain, Mohammed Mujtaba January 2008 (has links)
Solid oxide fuel cells (SOFCs) are solid-state ceramic cells, typically operating between 1073 K and 1273 K. Because of high operating temperature, SOFCs are mostly applicable in stationary power generation. Among various configurations in which SOFCs exist, the planar configuration of solid oxide fuel cell (SOFC) has the potential to offer high power density due to shorter current path. Moreover, the planar configuration of SOFC is simple to stack and closely resemble the stacking arrangement of polymer electrolyte membrane (PEM) fuel cells. However, due to high operating temperature, there are problems associated with the development and commercialization of planar SOFCs, such as requirement of high temperature gas seals, internal stresses in cell components, and high material and manufacturing costs. Mathematical modeling is an essential tool for the advancement of SOFC technology. Mathematical models can help in gaining insights on the processes occurring inside the fuel cell, and can also aid in the design and optimization of fuel cells by examining the effect of various operating and design conditions on performance. A multi-component and multi-dimensional mathematical model of SOFCs has been developed in this thesis research. One of the novelties of the present model is its treatment of electrodes. An electrode in the present model is treated as two distinct layers referred to as the backing layer and the reaction zone layer. Reaction zone layers are thin layers in the vicinity of the electrolyte layer where electrochemical reactions occur to produce oxide ions, electrons and water vapor. The other important feature of the present model is its flexibility in fuel choice, which implies not only pure hydrogen but also any reformate composition can be used as a fuel. The modified Stefan-Maxwell equations incorporating Knudsen diffusion are used to model multi-component diffusion in the porous backing and reaction zone layers. The coupled governing equations of species, charge and energy along with the constitutive equations in different layers of the cell are solved for numerical solution using the finite volume method and developed code written in the computer language of C++. In addition, the developed numerical model is validated with various experimental data sets published in the open literature. Moreover, it is verified that the electrode in an SOFC can be treated as two distinct layers referred to as the backing layer and the reaction zone layer. The numerical model not only predicts SOFC performance at different operating and design conditions but also provides insight on the phenomena occurring within the fuel cell. In an anode-supported SOFC, the ohmic overpotential is the single largest contributor to the cell potential loss. Also, the cathode and electrolyte overpotentials are not negligible even though their thicknesses are negligible relative to the anode thickness. Moreover, methane reforming and water-gas shift reactions aid in significantly reducing the anode concentration overpotential in the thick anode of an anode-supported SOFC. A worthwhile comparison of performance between anode-supported and self-supported SOFCs reveals that anode-supported design of SOFCs is the potential design for operating at reduced temperatures. A parametric study has also been carried out to investigate the effect of various key operating and design parameters on the performance of an anode-supported SOFC. Reducing the operating temperature below 1073 K results in a significant drop in the performance of an anode-supported SOFC; hence ionic conductivity of the ion-conducting particles in the reaction zone layers and electrolyte needs to be enhanced to operate anode-supported SOFCs below 1073 K. Further, increasing the anode reaction zone layer beyond certain thickness has no significant effect on the performance of an anode-supported SOFC. Moreover, there is a spatial limitation to the transport of oxide ions in the reaction zone layer, thereby reflecting the influence of reaction zone thickness on cell performance.
306

Multi-Component and Multi-Dimensional Mathematical Modeling of Solid Oxide Fuel Cells

Hussain, Mohammed Mujtaba January 2008 (has links)
Solid oxide fuel cells (SOFCs) are solid-state ceramic cells, typically operating between 1073 K and 1273 K. Because of high operating temperature, SOFCs are mostly applicable in stationary power generation. Among various configurations in which SOFCs exist, the planar configuration of solid oxide fuel cell (SOFC) has the potential to offer high power density due to shorter current path. Moreover, the planar configuration of SOFC is simple to stack and closely resemble the stacking arrangement of polymer electrolyte membrane (PEM) fuel cells. However, due to high operating temperature, there are problems associated with the development and commercialization of planar SOFCs, such as requirement of high temperature gas seals, internal stresses in cell components, and high material and manufacturing costs. Mathematical modeling is an essential tool for the advancement of SOFC technology. Mathematical models can help in gaining insights on the processes occurring inside the fuel cell, and can also aid in the design and optimization of fuel cells by examining the effect of various operating and design conditions on performance. A multi-component and multi-dimensional mathematical model of SOFCs has been developed in this thesis research. One of the novelties of the present model is its treatment of electrodes. An electrode in the present model is treated as two distinct layers referred to as the backing layer and the reaction zone layer. Reaction zone layers are thin layers in the vicinity of the electrolyte layer where electrochemical reactions occur to produce oxide ions, electrons and water vapor. The other important feature of the present model is its flexibility in fuel choice, which implies not only pure hydrogen but also any reformate composition can be used as a fuel. The modified Stefan-Maxwell equations incorporating Knudsen diffusion are used to model multi-component diffusion in the porous backing and reaction zone layers. The coupled governing equations of species, charge and energy along with the constitutive equations in different layers of the cell are solved for numerical solution using the finite volume method and developed code written in the computer language of C++. In addition, the developed numerical model is validated with various experimental data sets published in the open literature. Moreover, it is verified that the electrode in an SOFC can be treated as two distinct layers referred to as the backing layer and the reaction zone layer. The numerical model not only predicts SOFC performance at different operating and design conditions but also provides insight on the phenomena occurring within the fuel cell. In an anode-supported SOFC, the ohmic overpotential is the single largest contributor to the cell potential loss. Also, the cathode and electrolyte overpotentials are not negligible even though their thicknesses are negligible relative to the anode thickness. Moreover, methane reforming and water-gas shift reactions aid in significantly reducing the anode concentration overpotential in the thick anode of an anode-supported SOFC. A worthwhile comparison of performance between anode-supported and self-supported SOFCs reveals that anode-supported design of SOFCs is the potential design for operating at reduced temperatures. A parametric study has also been carried out to investigate the effect of various key operating and design parameters on the performance of an anode-supported SOFC. Reducing the operating temperature below 1073 K results in a significant drop in the performance of an anode-supported SOFC; hence ionic conductivity of the ion-conducting particles in the reaction zone layers and electrolyte needs to be enhanced to operate anode-supported SOFCs below 1073 K. Further, increasing the anode reaction zone layer beyond certain thickness has no significant effect on the performance of an anode-supported SOFC. Moreover, there is a spatial limitation to the transport of oxide ions in the reaction zone layer, thereby reflecting the influence of reaction zone thickness on cell performance.
307

Caractérisation de structures rayonnantes par une méthode de type Galerkin Discontinu associée à une technique de domaines fictifs

Bouquet, Antoine 03 December 2007 (has links) (PDF)
Ce travail porte sur l'étude d'une méthode d'éléments finis discontinus (ou méthode de type Galerkin Discontinu, DGTD) basée sur l'utilisation d'un maillage héxaédrique régulier, proposée pour la résolution des équations de Maxwell dans le domaine temporel, afin de l'adapter à la caractérisation de structures rayonnantes et de l'associer à des techniques de domaines fictifs.<br />On présente tout d'abord une méthode Galerkin Discontinu s'appuyant sur une formulation centrée pour approcher les flux numériques aux interfaces du maillage et sur un schéma en temps explicite de type saute-mouton. Ainsi, le schéma obtenu est non-diffusif, stable, peu dispersif, parfaitement adapté à l'utilisation de maillages localement raffinés de manière non-conforme. La méthode a été dotée de parois absorbantes performantes (modèle Unsplit-PML), permettant de prendre en compte facilement des objets à cheval entre le domaine de calcul et la couche absorbante. Nous avons ensuite utilisé la méthode pour effectuer des calculs d'impédances, de paramètres S et de T.O.S. sur des structures rayonnantes planaires. La comparaison entre la simulation et la mesure de ces structures montre le bon fonctionnement de la méthode.<br />Nous avons alors couplé une méthode de domaines fictifs avec la méthode DGTD afin de prendre en compte la présence d'objets métalliques à géométries complexes. La méthode des domaines fictifs utilise deux maillages de manière indépendante: un maillage cartésien, pour faire évoluer le champ électromagnétique dans l'espace libre, et un maillage surfacique qui permet de prendre en compte l'objet métallique. La convergence de la méthode (pour la méthode FDTD) est liée à une relation de compatibilité entre le maillage volumique et le maillage surfacique: le plus petit élément du maillage surfacique impose la taille des éléments du maillage volumique. Ainsi, pour des objets présentant de tout petits détails, cette condition n'est assurée que si le maillage volumique est de l'ordre du plus petit élément du maillage surfacique, ce qui peut devenir extrêmement contraignant sans le recours à des techniques de raffinement local, telle que celle rendue possible par la méthode Galerkin Discontinu et utilisée ici.
308

Méthodes d'éléments finis d'ordre élevé pour la simulation numérique de la propagation d'ondes

Jund, Sébastien 28 November 2007 (has links) (PDF)
Le but de cette thèse est la construction de schémas numériques pour la simulation de phénomènes de propagation d'ondes acoustiques et électromagnétiques basés sur des discrétisations en espace par éléments finis conformes, ces schémas ayant pour vocation à être d'ordre arbitrairement élevé et aussi efficaces que possible. Dans le cadre de l'équation des ondes scalaire nous reprenons le problème de la condensation de la matrice de masse issue des éléments finis de Lagrange (cf. Cohen-Joly-Tordjmann) pour en décrire un algorithme de construction général. Cet algorithme nous a permis de déterminer un nouvel élément fini avec condensation de masse de type $P_6$. Nous présentons aussi une nouvelle approche permettant une condensation partielle de la matrice de masse. Dans le cadre de la propagation d'ondes électromagnétiques modélisée par les équations de Maxwell, nous présentons une méthode de couplage conforme d'éléments finis d'arête rectangulaires (avec condensation de la matrice de masse) et triangulaires, permettant d'optimiser le profil de la matrice de masse (et donc d'en optimiser l'inversion) pour les simulations dans des domaines à géométrie complexe. Nous présentons aussi une discrétisation en temps d'ordre arbitrairement élevé, basée sur une procédure de type Cauchy-Kowalewski, que l'on a stabilisée. Toutes les discrétisations présentées ont été implémentées, testées de manière exhaustive et leur efficacité a été comparée, dans une série de tests numériques, à celle des discrétisations couramment utilisées pour ce type d'applications telles que les discrétisations en espace par éléments finis de Lagrange standards, et les discrétisations symplectiques ou de Runge-Kutta en temps
309

Tack de matériaux modèles

Teisseire, Jérémie 11 December 2006 (has links) (PDF)
Nous étudions, dans une approche expérimentale et théorique, les mécanismes de séparation et de rupture lors de la traction d'un matériau confiné entre deux plaques parallèles (test de probe-tack). Cette étude est menée sur deux matériaux choisis pour leur comportement rhéologique de liquides viscoélastiques : une huile de silicones de grande masse, d'une part, et les mélanges d'une huile de silicones de faible masse avec des nanoparticules (à base de silice) en proportions variées, d'autre part. <br /> L'étude réalisée sur le premier matériau a permis de mettre en évidence qu'outre la digitation et la cavitation, mécanismes de rupture observés sur des liquides newtoniens, un mécanisme de fracture peut également apparaître, la fracture étant localisée à l'interface entre la plaque solide et le matériau viscoélastique. Un modèle théorique, faisant notamment intervenir la cinétique de cavitation, a été élaboré pour interpréter la succession de ces mécanismes et décrire les courbes de traction. Le bon accord entre les prédictions et les résultats expérimentaux valide l'importance du rôle de la cinétique et nous permet d'expliquer l'apparition de fractures malgré la croissance préalable de cavités.<br /> Le second système étudié provient de la déformulation d'adhésifs industriels. Nous avons tout d'abord étudié l'influence de la proportion en particules sur la rhéologie des mélanges. Nous avons observé une évolution des paramètres rhéologiques, que nous avons comparée à l'évolution de l'adhésion des mélanges. Nous avons ainsi pu corréler la présence d'un second plateau de force, observé fréquemment pour de véritables adhésifs, au taux de particules dans le matériau. Enfin, cette étude nous a permis de proposer la voie de rupture optimale pour un matériau adhésif.
310

Astronomical submillimetre Fourier transform spectroscopy from the Herschel Space Observatory and the JCMT

Jones, Scott Curtis, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
Fourier transform spectroscopy (FTS) is one of the premier ways to collect source information through emitted radiation. It is so named because the principal measurement technique involves the analysis of spectra determined from the Fourier transform of a time-domain interference pattern. Given options in the field, many space- and ground-based instruments have selected Fourier transform spectrometers for their measurements. The Herschel Space Observatory, launched on May 14, 2009, has three on-board instruments. One, SPIRE, comprises a FTS paired with bolometer detector arrays. SCUBA-2 (Submillimetre Common User Bolometer Array) and FTS-2 have recently been commissioned and will be mounted within the collecting dish of the James Clerk Maxwell Telescope by Fall, 2010. The use of FTS in these two observatories will be examined. While work towards each project is independently useful, the thesis is bound by the commonality between the two, as each seeks similar answers from vastly different viewpoints. / xvii, 123 leaves : ill. (some col.) ; 29 cm

Page generated in 0.0374 seconds