Spelling suggestions: "subject:"bimechanical design"" "subject:"bimechanical 1design""
101 |
[pt] CARACTERIZAÇÃO DO COMPORTAMENTO MECÂNICO SOB FADIGA MULTIAXIAL DE BAIXO CICLO DAS LIGAS DE AÇO SAE 1020 E ALUMÍNIO 6351-T6 / [en] CHARACTERIZATION OF THE MECHANICAL BEHAVIOR UNDER MULTIAXIAL LOW CYCLE FATIGUE OF SAE 1020 STEEL AND 6351-T6 ALUMINUM ALLOYSTHIAGO ALMEIDA CUNHA 30 June 2020 (has links)
[pt] A falha mecânica conhecida como fadiga é caracterizada pela iniciação e/ou propagação de trincas, causada por forças variáveis. Suas metodologias tradicionais calculam uma tensão elástica uniaxial equivalente que atua no componente, a fim de compará-la com os dados experimentais de comportamento mecânico do material do componente sob cargas uniaxiais. Esta hipótese pode levar a resultados não conservativos, por considerar que o material é igualmente sensível a tensões normais e cisalhantes, o que é falso em várias aplicações práticas. Portanto, dados torcionais e multiaxiais são necessários para melhor prever a vida em fadiga dos componentes. Para executar estes experimentos, o presente trabalho propõe uma variedade de projetos de componentes e metodologias de montagem para que se possa usar em uma máquina de tração-torção Instron 8874 uma garra hidráulica originalmente projetada para uma máquina tração pura Instron 8501. É proposto um método simplificado para estimar, por controle de deslocamento, as propriedades de fadiga de baixo ciclo em cisalhamento (gama)N, evitando assim a necessidade de usar equipamentos caros e diferentes tipos de corpos de prova. Este método é usado para caracterização das ligas Aço SAE 1020 e Alumínio 6351-T6 e os dados levantados são comparados com as propriedades medidas de fadiga de baixo ciclo em tração (epsilon)N, identificando assim se o material é mais sensível a tensões normais ou cisalhantes. Um programa numérico é usado para ajustar as curvas (epsilon)N e (gama)N nos dados experimentais, e seus procedimentos de implementação são discutidos. Por fim, são propostos e calibrados modelos de fadiga multiaxial de plano crítico mais adequados para cada material testado, com base nos dados medidos. / [en] The mechanical failure known as fatigue is characterized by the formation and/or propagation of cracks caused by variable forces. Its traditional methodologies normally calculate an equivalent uniaxial tensile stress acting on the component, in order to compare it with the known experimental mechanical behavior data of the component s material measured under uniaxial loads. This assumption can lead to non-conservative results because it considers the material to be equally sensitive to shear and tensile stresses, which is not true in a wide range of practical applications. Therefore, torsional and multiaxial experimental data is necessary to better predict the fatigue life of components. To execute those experiments, the present work proposes a variety of component designs and assembly methodologies to use on an Instron 8874 axial-torsional testing machine a hydraulic grip originally designed for an Instron 8501 uniaxial testing machine. Furthermore, a simplified method to estimate shear (gamma)N low-cycle fatigue properties via displacement-controlled experiments is proposed to avoid the need of using expensive equipment and different specimen designs, and used for characterization of SAE 1020 Steel and 6351-T6 Aluminum alloys. This data is compared with the measured tensile (epsilon)N low-cycle fatigue properties to identify if these materials are tensile or shear sensitive under multiaxial loading conditions. A numerical computing code is used to fit (epsilon)N and (gamma)N curves to the experimental data, and its implementation procedures are discussed. Finally, the most suitable critical-plane multiaxial fatigue models are proposed and calibrated for each material tested, based on the measured data.
|
102 |
Design of a test rig for in situ hydrogen charging of rolling element bearings under load / Design av en testrigg för in situ väteladdning av lager under lastMoström, Oskar January 2023 (has links)
This Master's thesis is part of the Hydrogen Embrittlement in Rolling element bearings project (HERo) initiated at Luleå University of Technology (LTU), with the primary objective of determining critical hydrogen concentrations in bearing steel for rolling element bearings. The specific aim of this Master's thesis is to design a test rig that enables the investigation of the effects of hydrogen embrittlement on rolling element bearings under load. The design process focused on ease of manufacture and assembly. The developed test rig includes an electric motor, a pneumatic load application mechanism, and an electrochemical cell. Using the leverage principle, a thrust roller bearing is loaded vertically, while it is driven by an electric motor that is connected to the bearing with a tyre coupling. The electrochemical cell, which consists of a reference electrode, counter electrode, and the test bearing as the working electrode, is used to charge the test bearing with hydrogen. The cell was designed to be easily accessible between tests to facilitate the change of thrust roller bearings. The test bench enables the analysis of rolling element bearings that are exposed to simultaneous hydrogen embrittlement and realistic operating conditions. / Detta examensarbete är en del av Hydrogen Embrittlement in Rolling element bearings-projektet (HERo) som pågår vid Luleå tekniska universitet (LTU), med huvudmålet att bestämma de kritiska vätekoncentrationerna i lagerstål för rullningslager. Det specifika målet med detta examensarbete är att konstruera en testrigg för att direkt undersöka effekten av väteförsprödning av lager i en simulerad verklig tillämpning. Designprocessen fokuserade på enkel tillverkning och montering. Den utvecklade testriggen inkluderar en elmotor, en pneumatisk lastpåläggnings-mekanism och en elektrokemisk cell. Med hjälp av hävstångsprincipen belastas ett axiellt rullager vertikalt, medan det drivs av en elmotor via en däckkoppling. Den elektrokemiska cellen, som består av en referenselektrod, motelektrod och testlagret som arbetselektrod, används för att införa väte i lagret. Cellen har konstruerats på ett sätt som underlättar byte av testlager mellan testerna. Testriggen skapar därmed möjligheten att analysera rullningslager som utsätts för väteförsprödning under realistiska driftförhållanden. / Diese Masterarbeit ist Teil des Hydrogen Embrittlement in Rolling element bearings-Projekts (HERo), das an der Technischen Universität Luleå (LTU) initiiert wurde, mit dem primären Ziel, kritische Wasserstoffkonzentrationen für Lageranwendungen zu bestimmen. Das spezifische Ziel dieser Masterarbeit ist es, einen Prüfstand zu konstruieren, um die Auswirkungen von Wasserstoffversprödung auf Rollenlager im Belastungszustand zu untersuchen. Der Schwerpunkt des Designprozesses lag darauf, eine einfache Fertigung und Montage des Prüfstandes zu gewährleisten. Der entwickelte Prüfstand umfasst einen Motor, einen Mechanismus zur Lastaufbringung und eine elektrochemische Zelle. Mithilfe des Hebelgesetzes wird das Testlager vertikal belastet, während es mithilfe eines Elektromotors und einer Reifenkupplung angetrieben wird. Die elektrochemische Zelle, bestehend aus Referenzelektrode, Gegenelektrode, und dem Testlager als Arbeitselektrode, dient dazu, Wasserstoff in das Testlager einzubringen. In ihrem Design wurde darauf geachtet, dass sie zwischen den Tests leicht zugänglich ist, um den Austausch der Testproben zu erleichtern. Der Prüfstand ermöglicht somit die Analyse von Rollenlagern, die sowohl Wasserstoffversprödung als auch realistischen Betriebsbedingungen ausgesetzt sind.
|
103 |
Characterisation of an Additively Manufactured Self-Sensing Material Using Carbon Fibre SensorsWilliamson, Alain January 2023 (has links)
Increasing demand for structural health monitoring in space highlights the need to make the creation of these systems more accessible. This study investigates the potential of additive manufacturing to achieve this goal by characterizing a self-sensing material made of a commercially available 3D-printed continuous carbon fibre filament. The results demonstrate the feasibility of converting the filament into a strain sensor with improved sensitivity compared to conventional foil strain gauges. Mechanical and electromechanical properties of the self-sensing material were characterized, including an ultimate tensile strength of 45.09 ± 3.45 MPa, a failure strain of 38.93 ± 3.41%, and a base resistance of 759.11Ω. The tensile gauge factor was calculated to be 467.06 ± 375.90 within the strain range of 0% to 3.8% with a linearity (R2) of 0.93. For the first time, a systematic literature review compares mechanical and electromechanical properties to enable material selection for mechanical design incorporating self-sensing material. The study highlights that the spread of material properties in a group of materials indicates how well-developed a material is for self-sensing purposes. This study advances our understanding of the feasibility of using additive manufacturing to create self-sensing materials for structural health monitoring systems and opens up new avenues for further research.
|
Page generated in 0.0641 seconds