• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 9
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The functional expression of N-methyl-D-aspartate glutamate-type receptors by megakaryocytes and platelets

Hobbs, Catherine M. January 2010 (has links)
This study investigated the role of NMDARs in the differentiation of MEG-01 cells and in the activation of human platelets. This investigation demonstrated that the NR1, NR2D and NR3 subunit proteins are expressed in human platelets, with the NR1 subunit also expressed in MEG-01 cells. The NR2A subunit protein was not detectable in either MEG-01 cells or human platelets. PMA-induced differentiation of MEG-01 cells did not appear to stimulate changes in expression of any of the subunit proteins tested. Using assays to measure the changes in [Ca2+]i and ATP secretion, it was determined that donors could be separated into those who responded to the agonists applied and those who did not; responses also decreased over time in both assays. Human platelets from responding donors demonstrate an increase in [Ca2+]i in response to extracellular glutamate, and that increases in ATP secretion are detected at a 10-fold lower concentration. The same is also true with extracellular glycine. Increases in [Ca2+]i were elicited on the addition of extracellular NMDA; extracellular D-serine had no effect. NMDAR inhibitors, MK-801 and D-AP5, inhibited ATP secretion evoked by either glutamate alone or in combination with glycine. D-serine inhibited responses elicited by extracellular glycine. NMDARs play a role in MK differentiation, with the adhesion of MEG-01 cells cultured on a fibrinogen-surface and differentiated with PMA reduced by both inhibitors. PMA-treated MEG-01 cells increased both in size and irregularity, with the addition of NMDAR-specific inhibitors having no effect. S-nitrosylation also inhibits activation of NMDAR, and a new molecule has been developed which can detect S-nitrosylated proteins through a single step process in live cells. Overall, this study has shown that both human platelets and MEG-01 cells express NMDAR subunits, which have been demonstrated to form functional receptors in human platelets.
2

Evaluation of the actin architecture in dysplastic megakaryocytes expressing the NUP98-HOXD13 leukemic fusion gene

Okyere, Benjamin 30 August 2013 (has links)
Some myelodysplastic syndrome (MDS) patients present with macrothrombocytopenia due to impaired megakaryocyte (MK) differentiation. Transgenic mice that express the NUP98-HOXD13 (NHD13) fusion gene is a model for MDS and recapitulates the key features of MDS. The study investigated the hypothesis that expression of NHD13 disrupts actin architecture during MK differentiation leading to macrothrombocytopenia. To test the hypothesis, sternums were stained with hematoxylin and eosin, and evaluated by light microscopy to analyze MK morphology in vivo. NHD13 bone marrow (BM) contained many dysplastic MK. BM from wild type (WT) and NHD13 mice were also flushed, cultured in media supplemented with thrombopoietin only or with estrogen to induce proplatelet formation, and MK harvested after 5 days. Harvested MK and BM cores were processed and analyzed by transmission electron microscopy (TEM) to detail the ultrastructural features. TEM of MK revealed that NHD13 leads to formation of an irregular demarcation membrane system and fewer proplatelets. Cultured WT and NHD13 MK were also cytospun onto glass slides, labeled with fluorescent-tagged F-actin, α/β-tubulin and myosin IIa, and their cytoskeleton compared. Interestingly WT MK had actin either distributed evenly or predominantly in the periphery of the cytoplasm, NHD13 MK displayed only the former phenotype. Additionally, proplatelets lacked actin cytoplasmic extensions. The results from the present thesis demonstrate actin expression and architecture are impaired in dysplastic MK expressing the NHD13 leukemic fusion gene and leads to macrothromcytopenia. Understanding the molecular mechanisms of abnormal MK differentiation in MDS is important as many MDS patients die of hemorrhagic complications. / Master of Science
3

A β1-tubulin-based megakaryocyte maturation reporter system identifies novel drugs that promote platelet production / β1-tubulin遺伝子発現に基づく巨核球成熟レポーターシステムによる血小板産生を促進する薬剤の同定

Seo, Hideya 23 January 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21454号 / 医博第4421号 / 新制||医||1033(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邊 直樹, 教授 髙折 晃史, 教授 山下 潤 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
4

RUNX1 Mutation Leads to Megakaryocyte-Primed Hematopoietic Stem Cell Blockage and Familial Platelet Disorder

Wang, Chen 23 August 2022 (has links)
No description available.
5

Cellular And Molecular Events Regulating Factor V Endocytosis By Megakaryocytes

Gertz, Jacqueline Michelle 01 January 2015 (has links)
Platelet- and plasma-derived factor Va are absolutely essential for thrombin generation catalyzed by the prothrombinase complex, a 1:1 stoichiometric complex of the serine protease factor Xa and the nonenzymatic cofactor, factor Va, assembled on an appropriate membrane surface in the presence of calcium ions. Two whole blood pools of the procofactor, factor V, exist: approximately 75% circulates in the plasma as a single chain inactive molecule, while the other 25% resides in platelet α-granules in a partially proteolytically-activated state. Our laboratory demonstrated that the platelet-derived cofactor originates following endocytosis of plasma-derived factor V by megakaryocytes, the platelet precursor cells, via a two receptor system including an uncharacterized, specific factor V receptor and low density lipoprotein receptor related protein-1. Following endocytosis factor V is physically and functionally modified and trafficked to the platelet α-granule from where it is released upon platelet activation at sites of vascular injury. The first goal of this dissertation was to define how factor V endocytosis changes over the course of megakaryocyte development. Hematopoietic multipotential stem cells were isolated from human umbilical cord blood and subjected to ex vivo differentiation into megakaryocytes. Megakaryocyte differentiation was assessed by flow cytometry using fluorescently-labeled antibodies against megakaryocyte- and platelet-specific markers and factor V directly conjugated to a fluorophore over 12 days. Differentiation was confirmed by a decrease in a stem cell marker (CD34) and an increase in a mature megakaryocyte marker (CD42) and coincident with factor V endocytosis. Live cell imaging verified differentiation and permitted the observation of proplatelet formation, the precursor to circulating platelets. Analogous experiments verified the trafficking of factor V into proplatelet extensions. Factor V is a highly glycosylated protein: potential roles of these glycans may be endocytosis and trafficking by megakaryocytes. We previously demonstrated that factor V endocytosis is mediated by the light chain region of the procofactor. This region of factor V contains three glycans - one high mannose and two complex N-linked glycans. In the second part of this dissertation, a role for the complex N-linked glycans at Asn1675 and Asn2181 of the factor V light chain in factor V endocytosis by megakaryocytes was assessed. Exoglycosidases were used to selectively trim the complex N-linked glycans on human factor V under native conditions. Treatment with neuraminidase removed 100% of the sialic acid residues on the factor V light chain as demonstrated by gel electrophoresis and mass spectrometry. Treatment with β-1,4-galactosidase removed 69% of the galactose residues at Asn1675 and 100% at Asn2181. Glycosidase-treated factor Va behaves similarly to untreated factor Va in thrombin generation assays suggesting that cofactor activity is unaltered by glycan trimming. In addition, glycan removal had no effect on factor V endocytosis by megakaryocyte-like cells. These observations suggest that complex N-linked glycans on the factor V light chain are not important for factor Va cofactor activity or factor V endocytosis by megakaryocyte-like cells, which strongly suggests that they have a role in trafficking.
6

Identification and Characterization of the Interaction between VPS33B and SNAREs

Puhacz, Michael 19 December 2011 (has links)
VPS33B is a Sec1/Munc18 protein required for the biogenesis of α-granules in megakaryocytes, which give rise to platelets. Mutations in VPS33B cause arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome. Platelets from ARC patients completely lack α-granules, causing a bleeding disorder. VPS33B plays a role in vesicular fusion events through its interaction with the SNARE proteins, though no such interactions have been identified. Here, it is shown that VPS33B interacts with STX6, a member of the syntaxin subfamily of SNAREs. The introduction of ARC mutations into VPS33B completely abrogated binding to STX6. Confocal microscopy studies revealed STX6 co-localizes well with markers of the α-granule biogenesis pathway. This implies a role for the interaction of VPS33B with STX6 in α-granule biogenesis. Based on the known structure of STX6 and that predicted of VPS33B, suggests a novel and unique mode of binding between VPS33B and STX6 compared to other identified SM-STX pairs.
7

Identification and Characterization of the Interaction between VPS33B and SNAREs

Puhacz, Michael 19 December 2011 (has links)
VPS33B is a Sec1/Munc18 protein required for the biogenesis of α-granules in megakaryocytes, which give rise to platelets. Mutations in VPS33B cause arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome. Platelets from ARC patients completely lack α-granules, causing a bleeding disorder. VPS33B plays a role in vesicular fusion events through its interaction with the SNARE proteins, though no such interactions have been identified. Here, it is shown that VPS33B interacts with STX6, a member of the syntaxin subfamily of SNAREs. The introduction of ARC mutations into VPS33B completely abrogated binding to STX6. Confocal microscopy studies revealed STX6 co-localizes well with markers of the α-granule biogenesis pathway. This implies a role for the interaction of VPS33B with STX6 in α-granule biogenesis. Based on the known structure of STX6 and that predicted of VPS33B, suggests a novel and unique mode of binding between VPS33B and STX6 compared to other identified SM-STX pairs.
8

Detecção do Vírus da Hepatite C (VHC) em megacariócitos expostos in vitro ao vírus provenientes de indivíduos não infectados

Tancler, Nathália Almeida Souza January 2017 (has links)
Orientador: Rejane Maria Tommasini Grotto / Resumo: Embora as células alvo do Vírus da Hepatite C (VHC) sejam hepatócitos, o RNA do vírus já foi descrito em outros compartimentos extra-hepáticos como células dendríticas, linfócitos, macrófagos e plaquetas. Estas últimas, são responsáveis pelo carreamento do vírus no paciente infectado, e apesar da ausência do principal receptor associado à entrada do vírus nas células alvo, o CD81, o VHC é capaz de interagir com plaquetas depois de incubação in vitro. Ainda, o vírus carreado pela plaqueta apresenta uma maior estabilidade quando comparado ao vírus circulante no plasma, o que faz com que o vírus presente na plaqueta adquira considerável importância no curso da Hepatite C crônica, podendo funcionar como reservatório para o vírus. No entanto, pouco se conhece se a presença do vírus em plaquetas pode advir de uma prévia interação do vírus com as células precursoras da plaqueta na medula óssea, os megacariócitos. Assim, o presente estudo avaliou a presença do VHC em megacariócitos expostos, in vitro, ao VHC. Material excedente de doadores voluntários e saudáveis de medula óssea foi utilizado como fonte para o isolamento dos megacariócitos, os quais, foram incubados in vitro com 100.000UI/mL de VHC de genótipo 1 (39 horas; 5% de emissão de CO2; homogeinização 3x/dia no mesmo horário). Depois da incubação, os megacariócitos foram isolados e submetidos a análise qualitativa e quantitativa buscando a presença do vírus. Os resultados do presente estudo demonstraram que o VHC pode interag... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
9

Rôle du couple Flt3-ligand/Flt3 et de l'activation des "Mitogen-activated protein kinases" p38 dans la dysmégacaryopoïèse des patients atteints de myélofibrose primitive / Rôle du couple Flt3-ligand/Flt3 et de l'activation des "Mitogen-activated protein kinases" p38 dans la dysmégacaryopoïèse des patients atteints de myélofibrose primitive

Desterke, Christophe 25 May 2011 (has links)
La myélofibrose primitive (MFP) est un néoplasme myéloprolifératif (NMP) chronique BCR-ABL1-négatif associant une dérégulation de l’hématopoïèse (myéloprolifération, dysmégacaryopoïèse et migration des cellules souches et progéniteurs hématopoïétiques (CSH/PH)) à une altération du stroma médullaire et splénique (fibrose ostéomyélosclérose, néoangiogenèse). Le mégacaryocyte (MK) est un acteur majeur de sa pathogenèse, via la production de cytokines et facteurs fibrosants, dans un contexte inflammatoire. Plusieurs arguments suggèrent que les mutations JAK2V617F et MPL515L/K qui caractérisent les NMP ne sont pas les événements initiaux de la MFP car elles ne sont retrouvées que chez la moitié des patients. L’objectif de mon travail a été de rechercher si d’autres anomalies, géniques ou non, pouvaient expliquer la pathogenèse de la MFP. Pour cela, parallèlement à une démarche génomique (transcriptome et CGH array), nous avons développé une approche de biologie cellulaire ciblée sur le rôle du stroma hématopoïétique. Bien que n’ayant pas identifié d’autres anomalies génomiques que celles décrites dans la littérature et en particulier, la délétion 13q, les approches génomiques que nous avons développées nous ont permis de préciser les bornes de cette délétion dans les PH CD34+ et les polynucléaires des patients. Cette délétion (région chromosomique minimale 13q14-13q21) est située à 2 mégabases (télomérique) du cluster FLT où est localisé le gène FLT3. Plusieurs arguments nous ont ensuite conduits à rechercher si le couple Flt3-ligand/Flt3 était impliqué dans la dérégulation de l’hématopoïèse et plus particulièrement dans la dysmégacaryopoïèse observée chez les patients. Parmi ceux-ci, citons : 1) l’existence d’une modulation d’expression de gènes inclus dans la zone de délétion 13q et dans le cluster FLT, dont le gène FLT3 et 2) le fait que Flt3, un récepteur clé de la régulation de l’hématopoïèse primitive, soit souvent impliqué dans la pathogenèse d’hémopathies malignes et que son ligand, Flt3-ligand, soit majoritairement produit par le stroma hématopoïétique. Notre étude montre une dérégulation de Flt3 et des MAPKs p38 dans les PH CD34+ et les MK des patients atteints de MFP et ceci, quelque soit leur statut mutationnel Jak2. Elle démontre également que la persistance de la stimulation de l’axe Flt3/p38 en réponse à une production accrue de Flt3 ligand, participe à la dysmégacaryopoïèse qui caractérise la maladie. En effet, nous avons mis en évidence : 1) une augmentation du taux sérique de Flt3 ligand et de son expression par les cellules du stroma médullaire et splénique ainsi que par les PH des patients atteints de MFP, 2) une surexpression spécifique de son récepteur Flt3 et de sa phosphorylation dans les CSH/PH CD34+ et les progéniteurs mégacaryocytaires (MK), qui persistent au cours de la différenciation MK, quelque soit le statut mutationnel de Jak2 des patients, 3) une activation de Flt3 dans les progéniteurs MK en réponse au Flt3 ligand conduisant à la phosphorylation en cascade de la voie de signalisation des MAPKs p38 et à l’expression de ses gènes cibles tels que AP-1, p53, NFATc4, ATF2, IL-8, 4) une restauration de la mégacaryopoïèse et une inhibition de la migration (Flt3-ligand)-dépendante des progéniteurs MK des patients après inhibition de Flt3 ou de p38.Nos résultats confirment l’importance d’une altération des MAPKs dans une dérégulation de l’hématopoïèse et soulignent le rôle d’une activation persistante de la voie p38, via le couple Flt3-ligand/Flt3, dans la dysmégacaryopoïèse qui caractérise la myélofibrose primitive. Ils suggèrent également que cette dérégulation participe au processus inflammatoire à l’origine de la réaction stromale et « lit » d’une transformation leucémique potentielle. Ce dialogue altéré entre les cellules hématopoïétiques pathologiques (Bad seeds), en particulier mégacaryocytaires et les cellules stromales (Bad soil), conforte notre concept « Bad seeds in Bad soil ». / The primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm (NMP) BCR-ABL1-negative associating a dysregulation of hematopoiesis (myeloproliferation, dysmegacaryopoiesis and egress of hematopoietic stem and progenitor cells (HSC / PH)) from an altered bone marrow stroma (osteosclerosis, fibrosis, angiogenesis) to the spleen. The megakaryocyte (MK) is a major player in its pathogenesis through the production of cytokines and fibrotic factors in an inflammatory context. Several arguments suggest that mutations JAK2V617F and MPL515L / K which characterize the NMP are not the initial events of the PMF since they are found only in half of patients. The aim of my work was to investigate whether other abnormalities, genetic or otherwise, could explain the pathogenesis of the PMF. For this, a process parallel to genomics (transcriptome and CGH array), we developed a cell biology approach focused on the role of hematopoietic stroma.Although we have not identified other genomic abnormalities as those described in the literature and in particular, deletion 13q, by genomic approaches we have clarified the limits of this deletion in the PH CD34+ and polymorphonuclear patients. This deletion (chromosomal region 13q14-13q21 minimum) is located 2 megabases (telomeric) of the cluster where is located the FLT gene FLT3. Several arguments have then led to inquire whether the couple was involved in Flt3-ligand/Flt3 deregulation of hematopoiesis, especially in the dysmegakaryopoiesis observed in patients. Among these are: 1) the existence of an expression modulation of genes included in the area of deletion 13q and FLT in the cluster, as gene FLT3 and 2) the fact that Flt3, a key receptor the regulation of primitive hematopoiesis, is often implicated in the pathogenesis of hematologic malignancies and its ligand, Flt3-ligand, was predominantly produced by the hematopoietic stroma.Our study shows dysregulation of Flt3 and p38 MAPKs in CD34+ and PH MK from patients with PMF and this, whatever their Jak2 mutation status. It also shows that persistent stimulation of the axis Flt3/p38 in response to increased production of Flt3 ligand, participates in the dysmegacaryopoiesis that characterizes the disease. Indeed, we have highlighted: 1) an increase in serum Flt3 ligand and its expression by stromal cells and bone marrow and spleen by PH patients with PMF, 2) a specific overexpression of its receptor Flt3 and its phosphorylation in HSC / PH CD34+ and megakaryocytic progenitors (MK), which persist during the MK differentiation, regardless of the mutational status of Jak2 patients, 3) activation of Flt3 in MK progenitors by the Flt3 ligand leads to phosphorylation cascade signaling pathway, p38 MAPK and expression of its target genes such as AP-1, p53, NFATc4, ATF2, IL-8, 4) a restoration of megakaryopoiesis and inhibition of migration (Flt3-ligand)-dependent patients after of MK progenitors by Flt3 or p38 inhibitors.Our results confirm the importance of an alteration of MAPKs in a deregulation of hematopoiesis and highlight the role of a persistent activation of the p38 pathway, via the couple Flt3-ligand/Flt3 in the dysmegakaryopoiesis that characterizes idiopathic myelofibrosis. They also suggest that this dysregulation contributes to the inflammatory process at the origin of the stromal reaction and "bed" of a leukemic transformation potential. The dialogue among impaired hematopoietic cell disease (Bad Seeds), especially the stromal cells and megakaryocyte (Bad Soil), reinforces our concept of "Bad Seeds in Bad Soil". This work could help improve the dialogue with therapeutic approaches targeting the axis Flt3-ligand/Flt3 mediated by activation of p38 which, by reducing the inflammatory process, re-establish a link between the "seed" and the "Soil".
10

Impact des contraintes physiques sur la maturation des mégacaryocytes : rôle de la rigidité de l'environnement / Impact of physical constraints on megakaryocytes’ maturation : role of the environmental stiffness

Aguilar, Alicia 10 April 2017 (has links)
La mégacaryopoïèse regroupe l’ensemble des processus de différenciation et de maturation des mégacaryocytes (MKs) dans le but de produire des plaquettes capables d’arrêter les saignements. Or ces mécanismes sont mal connus. Afin de mieux les comprendre, nous avons mimé l’environnement médullaire in vitro, en 3D à l’aide d’un hydrogel de rigidité comparable à celle de la moelle osseuse. Dans cette étude nous avons: i) caractérisé le comportement physique de l’hydrogel de méthylcellulose et mis au point la culture de progéniteurs mégacaryocytaires dans ce système, ii) montré la capacité du MK à ressentir les contraintes physiques de son environnement, ainsi que, iii) l’impact de ces contraintes sur la maturation des MKs et la génération des proplaquettes, et enfin, iv) mis en évidence l’existence d’une réponse cellulaire des MKs à la rigidité. Les MKs sont « mécanosensibles », c’est-à-dire capables de ressentir les modifications physiques de leur environnement et de s’y adapter. L’activation de voies de mécanotransduction (dont MKL1) et la réorganisation du cytosquelette en réponse aux contraintes physiques extracellulaires favorisent la maturation des MKs, en termes de ploïdie, d’ultrastructure et in fine de génération de proplaquettes. / Megakaryopoiesis is the process of differentiation and maturation of megakaryocytes (MKs) in the aim to produce platelets able to prevent hemorrhages. These mechanisms are not well known. To better understand the process of platelet formation, we mimicked the medullar microenvironment in vitro, in 3D using hydrogel of stiffness comparable to the bone marrow. In this study we: i) characterized the physical properties of the hydrogel and design the culture of hematopoietic progenitors in this system, ii) showed the MKs ability to feel the physical constraints of their environment, then iii) showed the impact of these constraints on the MK maturation and proplatelet generation, and finally iv) highlighted the MK response to stiffness. MKs are “mecanosensitives”, being able to feel and to adapt to the physicals modifications of the environment. The activation of mechanotransduction pathways (including MKL1) and the cytoskeleton reorganization in response to extracellular physical constraints improves MK maturation, in terms of ploïdy, ultrastructure and ultimately proplatelet generation.

Page generated in 0.0305 seconds