Spelling suggestions: "subject:"metal−0rganic alframework"" "subject:"metal−0rganic cxframework""
111 |
Control of water and toxic gas adsorption in metal-organic frameworksMcPherson, Matthew Joseph January 2016 (has links)
The research presented in this thesis aims to determine the effectiveness of the uptake of toxic gases by several MOFs for future use in gas-mask cartridges, and to attempt to compensate for any deficiencies they show in “real-world” conditions. The main findings of this thesis confirm that MOFs are suitable candidates for the use in respirator cartridge materials and provide high capacity for adsorption of toxic gases like ammonia and STAM-1 in particular showed an impressive improvement in humid conditions, which normally decrease the performance of MOFs made from the same materials, such as HKUST-1. STAM-1's improved performance in humid conditions is attributed to the structural shift it displays upon dehydration and rehydration and this was shown to be the case in a structural analogue, CuEtOip, which was synthesised in the author's research group. This analogue was analysed using a combination of single crystal XRD and solid state MAS-NMR, both of which showed the structural change occurring and displays similar gas sorption behaviours, suggesting that this mechanism is the source of STAM-1's improved performance in humid conditions. This thesis also examines the “Armoured MOF” process and investigates the transferability of the process of deposition of mesoporous silica onto MOFs with vastly different properties and synthetic methods compared to those published in the original publication. Alongside this, attempts to protect MOFs using mesoporous silicates were investigated for their viability.
|
112 |
Engineering nanoporous materials for application in gas separation membranesBae, Tae-Hyun 11 August 2010 (has links)
The main theme of this dissertation is to engineer nanoporous materials and nanostructured surfaces for applications in gas separation membranes. Tunable methods have been developed to create inorganic hydroxide nanostructures on zeolite surfaces, and used to control the inorganic/polymer interfacial morphology in zeolite/polymer composite membranes. The study of the structure-property relationships in this material system showed that appropriate tuning of the surface modification methods leads to quite promising structural and permeation properties of the membranes made with the modified zeolites. First, a facile solvothermal deposition process was developed to prepare roughened inorganic nanostructures on zeolite pure silica MFI crystal surfaces. The functionalized zeolite crystals resulted in high-quality ̒mixed matrix̕ membranes, wherein the zeolite crystals were well-adhered to the polymeric matrix. Substantially enhanced gas separation characteristics were observed in mixed matrix membranes containing solvothermally modified MFI crystals. Gas permeation measurements on membranes containing nonporous uncalcined MFI revealed that the performance enhancements were due to significantly enhanced MFI-polymer adhesion and distribution of the MFI crystals. Solvothermal deposition of inorganic nanostructures was successfully applied to aluminosilicate LTA surfaces. Solvothermal treatment of LTA was tuned to deposit smaller/finer Mg(OH)₂ nanostructures, resulting in a more highly roughened zeolite surface. Characterization of particles and mixed matrix membranes revealed that the solvothermally surface-treated LTA particles were promising for application in mixed matrix membranes. Zeolite LTA materials with highly roughened surfaces were also successfully prepared by a new method: the ion-exchange-induced growth of Mg(OH)₂ nanostructures using the zeolite as the source of the Mg²⁺ ions. The size/shape of the inorganic nanostructures was tuned by adjusting several parameters such as the pH of the reagent solution and the amount of magnesium in the substrates and systematic modification of reaction conditions allowed generation of a good candidate for application in mixed matrix membranes. Zeolite/polymer adhesion properties in mixed matrix membranes were improved after the surface treatment compared to the untreated bare LTA. Surface modified zeolite 5A/6FDA-DAM mixed matrix membranes showed significant enhancement in CO₂ permeability with slight increases in CO₂/CH₄ selectivity as compared to the pure polymer membrane. The CO₂/CH₄ selectivity of the membrane containing surface treated zeolite 5A was much higher than that of membrane with untreated zeolite 5A. In addition, the use of metal organic framework (MOF) materials has been explored in mixed matrix membrane applications. ZIF-90 crystals with submicron and 2-μm sizes were successfully synthesized by a nonsolvent induced crystallization technique. Structural investigation revealed that the ZIF-90 particles synthesized by this method had high crystallinity, microporosity and thermal stability. The ZIF-90 particles showed good adhesion with polymers in mixed matrix membranes without any compatibilization. A significant increase in CO₂ permeability was observed without sacrificing CO₂/CH₄ selectivity when Ultem® and Matrimd® were used as the polymer matrix. In contrast, mixed matrix membranes with the highly permeable polymer 6FDA-DAM showed substantial enhancement in both permeability and selectivity, as the transport properties of the two phases were more closely matched.
|
113 |
A new metal–organic framework with ultra-high surface areaGrünker, Ronny, Bon, Volodymyr, Müller, Philipp, Stoeck, Ulrich, Krause, Simon, Mueller, Uwe, Senkovska, Irena, Kaskel, Stefan 21 July 2014 (has links) (PDF)
A new mesoporous MOF, Zn4O(bpdc)(btctb)4/3 (DUT-32), containing linear ditopic (bpdc2−; 4,4′-biphenylenedicarboxylic acid) and tritopic (btctb3−; 4,4′,4′′-[benzene-1,3,5-triyltris(carbonylimino)]tris-benzoate) linkers, was synthesised. The highly porous solid has a total pore volume of 3.16 cm3 g−1 and a specific BET surface area of 6411 m2 g−1, adding this compound to the top ten porous materials with the highest BET surface area.
|
114 |
Zr(IV) and Hf(IV) based metal–organic frameworks with reo-topologyBon, Volodymyr, Senkovskyy, Volodymyr, Senkovska, Irena, Kaskel, Stefan 09 April 2014 (has links) (PDF)
Zr and Hf based MOFs with enhanced pore accessibility for large molecules and good hydrothermal stability were obtained using a bent dithienothiophene dicarboxylate and Zr4+ or Hf4+ source. A modulator (benzoic acid) facilitates formation of an eight-connecting cluster leading to a new framework which adopts reo topology. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
115 |
Synthesis of Amine-Modified Aerogel Sorbents and Metal-Organic Framework-5 (MOF-5) Membranes for Carbon Dioxide SeparationJanuary 2010 (has links)
abstract: Amine-modified solid sorbents and membrane separation are promising technologies for separation and capture of carbon dioxide (CO2) from combustion flue gas. Amine absorption processes are mature, but still have room for improvement. This work focused on the synthesis of amine-modified aerogels and metal-organic framework-5 (MOF-5) membranes for CO2 separation. A series of solid sorbents were synthesized by functionalizing amines on the surface of silica aerogels. This was done by three coating methods: physical adsorption, magnetically assisted impact coating (MAIC) and atomic layer deposition (ALD). CO2 adsorption capacity of the sorbents was measured at room temperature in a Cahn microbalance. The sorbents synthesized by physical adsorption show the largest CO2 adsorption capacity (1.43-1.63 mmol CO2/g). An additional sorbent synthesized by ALD on hydrophilic aerogels at atmospheric pressures shows an adsorption capacity of 1.23 mmol CO2/g. Studies on one amine-modified sorbent show that the powder is of agglomerate bubbling fluidization (ABF) type. The powder is difficult to fluidize and has limited bed expansion. The ultimate goal is to configure the amine-modified sorbents in a micro-jet assisted gas fluidized bed to conduct adsorption studies. MOF-5 membranes were synthesized on α-alumina supports by two methods: in situ synthesis and secondary growth synthesis. Characterization by scanning electron microscope (SEM) imaging and X-ray diffraction (XRD) show that the membranes prepared by both methods have a thickness of 14-16 μm, and a MOF-5 crystal size of 15-25 μm with no apparent orientation. Single gas permeation results indicate that the gas transport through both membranes is determined by a combination of Knudsen diffusion and viscous flow. The contribution of viscous flow indicates that the membranes have defects. / Dissertation/Thesis / M.S. Chemical Engineering 2010
|
116 |
Synthesis and characterization of metal organic frameworks for energy and environmental applications / Synthèse et caractérisation des polymères de coordination cristallins pour des applications énergétiques et environnementalesNavarro Amador, Ricardo 15 November 2017 (has links)
La pollution de l'environnement, sa remédiation et l'obtention de sources d'énergie plus propres et plus efficaces sont des problématiques difficiles auxquels les humains sont confrontés. Parmi les nombreux matériaux développés par les scientifiques, les polymères de coordination cristallins type MOFs sont de plus en plus développés dans plusieurs domaines, du fait de la facilité et la versatilité de leur synthèse. La recherche sur ces matériaux est récente, mais les possibilités qu’offrent ces matériaux pour différentes applications sont énormes.C'est dans ce cadre que nous avons travaillé sur la conception et la synthèse de différents MOF pour la récupération, le recyclage et/ou la dégradation de certains polluants. En utilisant différentes approches de synthèse, nous avons obtenu des matériaux efficaces pour les diffèrent applications ciblées de ces matériaux. Nous pensons que les MOF ont le potentiel pour solutionner certains problèmes cruciaux comme la décontamination de l'environnement. / The pollution of the environment, its remediation and to obtain a cleaner and more efficient energy sources are some of the most challenging topics that humans are now facing. Among the several materials that scientists have developed, Metal Organic Frameworks (MOFs) are gaining a lot of attention on several fields due to the easiness and the versatility in which these materials can be designed, synthesized and used. Even when research on these materials is still young, the possibilities that they offer are enormous.It is on this frame that our work group has worked on the design and the synthesis of different MOFs for the recovery, the recycling and/or the degradation of some pollutants of interest. By using different synthesis approaches we have tested the versatility in the synthesis and the possible applications of these materials. We believe that MOFs hold the potential to solve some crucial issues in the recovery of the environment.
|
117 |
Estudo teórico das propriedades estruturais e espectroscópicas de redes metalorgânicas com aplicações em saúde, segurança pública, energia e meio ambiente / Theoretical study of structural and spectroscopic properties of metal organic frameworks with applications in health, public safety, energy, and environmentRodrigues, Nailton Martins 23 March 2018 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Hybrid coordination networks such as metal-organic networks, also known as MOF (Metal Organic Framework), have attracted great attention from the scientific community due to their wide diversity and wide range of applications, however, the investigation of applications of these structures still forms a large area of research, with great exploration potential, either through experimental or theoretical chemistry. The present work aims at the use of computational chemistry methods with focus on semiempirical methods for the study of MOFs, so we will initially address results regarding the evaluation of the prediction capacity of solid phase structures of MOFs containing lanthanide as a metallic center. Performed using the semi-empirical methods Sparkle/AM1, Sparkle/PM3, Sparkle/PM6, Sparkle/PM7, Sparkle/RM1 and RM1. The results obtained from the calculation of optimization of the structures suggest that the Sparkle/PM3 and Sparkle/RM1 methods provide more accurate results, with less variability and great agreement with the experimental data, both structural and luminescent. The health application study initially evaluated the structure of the drug doxorubicin and MOF ZnDBC ([Zn(BDC)(H2O)2]n), and then evaluated the drug’s anchoring potential, in order to obtain results that justify the MOF to be chosen as a candidate for application as a drug carrier. This analysis resulted in obtaining a viable anchorage between the MOF lamellae. A simulation of the effects of temperature variation on the structure of the MOF EuBTC ([Eu2(MELL)(H2O)6]) and its effect on the luminescent properties was performed to obtain data that could validate your application with gunshot residues marker, aiming at its use in public safety. This analysis explored the potential of structural description of Sparkle/PM3 as well as the obtaining of luminescent properties, which led to the conclusion that the increase in temperature resulted in an increase in the emission quantum yield caused by the loss of water molecules contained in the first sphere of the coordinating polyhedron. For the application of MOFs in energy, an investigation was carried out regarding the degree of adsorption of the hydrogen gas and methane in the IRMOF-8 and in this one after the doping of its aromatic rings with aluminum atoms, in order to elucidate the effect that the realization of this Doping brings the storage capacity of these gases, for use in gas storage cylinders used in motor vehicles. And it was verified a slight reduction in the storage capacity of the methane gas, since for the hydrogen gas no significant changes were verified. Finally, a study was carried out to evaluate the capture capacity of carbon dioxide and hydrogen sulfide gases in IRMOF-8 and in this doped with aluminum, so the same structure of the previous study was used. It was found that doping gave a considerable increase in the degree of adsorption, being more effective for the carbon dioxide, whose interactions had energy of magnitude of a chemical adsorption. / As redes metalorgânicas também conhecidas como MOF (do inglês Metal Organic Framework) têm atraído grande atenção da comunidade científica devido a sua ampla diversidade e vasta gama de aplicações. Entretanto, a investigação de aplicações destas estruturas ainda configura uma grande área de pesquisa, com potencial de exploração, seja por meio de um viés experimental ou teórico. O presente trabalho tem como objetivo o uso de métodos de química computacional com foco em métodos semiempíricos para o estudo das MOFs. Assim, inicialmente abordaremos resultados referentes à avaliação da capacidade de predição das estruturas em fase sólida de MOFs contendo íons lantanídeos como centro metálico. Este estudo foi realizado através do uso dos métodos semiempíricos Sparkle/AM1, Sparkle/PM3, Sparkle/PM6, Sparkle/PM7, Sparkle/RM1 e o RM1. Os resultados obtidos a partir do cálculo de otimização das estruturas sugerem que o método Sparkle/PM3 e o Sparkle/RM1 proporcionam resultados mais exatos, com menor variabilidade e grande concordância com os dados experimentais, tanto estruturais como luminescentes. Foi avaliado o potencial de ancoragem da doxorrubicina na MOF ZnDBC ([Zn(BDC)(H2O)2]n). Esta análise mostrou viabilidade de ancoragem entre as lamelas da MOF. Além disso, foi realizada uma simulação dos efeitos da variação da temperatura sobre as propriedades luminescentes da MOF EuBTC ([Eu2(MELL)(H2O)6). Com isso, buscou-se validar a aplicação desta MOF como marcador de resíduos de disparo de arma de fogo. Esta análise explorou o potencial de descrição estrutural do Sparkle/PM3, bem como obtenção de propriedades luminescentes. A elevação da temperatura resultou no aumento do rendimento quântico de emissão, causado pela perda de moléculas de água contidas na primeira esfera do poliedro de coordenação. Para aplicação de MOFs na área de energia, foi realizada uma investigação referente ao grau de adsorção de gás hidrogênio e metano na IRMOF-8. Foi realizada a inclusão de átomos de alumínio nos anéis aromáticos, visando elucidar qual o efeito provocado sobre a capacidade de armazenamento desses gases. A dopagem levou a uma leve redução na capacidade de armazenamento do gás metano. Já para o gás hidrogênio não foram verificadas alterações significativas. Por fim, foi feito um estudo de avaliação da capacidade de captura dos gases dióxido de carbono e sulfeto de hidrogênio na IRMOF-8, tanto pura quanto dopada com alumínio. Notou-se que a dopagem proporcionou um considerável aumento no grau de adsorção, sendo mais efetivo para o dióxido de carbono, cujas interações tiveram energia de magnitude de uma adsorção química. / São Cristóvão, SE
|
118 |
Tectonique moléculaire : réseaux de coordination hétérométalliques à base de dipyrrines / Molecular tectonics : dipyrrin based mixed metal organic frameworksBéziau, Antoine 13 October 2014 (has links)
Les réseaux de coordination, ou Metal Organic Frameworks (MOFs), sont des architectures cristallines hybrides organiques-inorganiques qui présentent des propriétés découlant de leurs compostions et de leurs architectures. L'objectif de ce travail fut la synthèse contrôlée de nouveaux réseaux de coordination homo- (MOFs) et hétérométalliques (M'MOFs) à base de ligands dipyrrines (dpms). Dans une première partie, une stratégie de synthèse basée sur l'auto-assemblage a permis l'obtention d'une nouvelle famille de réseaux constituée de MOFs luminescents [CdII(dpm)2] et de MOFs [NiII(dpm)2]. Dans une seconde partie, l'utilisation d'une stratégie séquentielle a permis de préparer des M'MOFs de type grille basés sur différents cations métalliques primaires (CuII, PdII, ZnII) et différents nœuds métalliques secondaires (CdCl2, Cd(NCS)2, Fe(NCS)2). Ces M'MOFs font partie des rares exemples d’architectures modulables conçues par une approche rationnelle et prédictible. De plus, il a été montré que ces composés pouvaient être synthétisés en une seule étape par une méthode avantageuse de synthèse "one pot". Pour finir, une stratégie "zip-Unzip-Rezip" consistant à convertir des MOFs préalablement formés en M'MOFs hétérométalliques par l'emploi de ligands auxiliaires a été mise au point. Cette nouvelle voie permet d'incorporer aisément de la fonctionnalité dans des architectures. / Coordination networks or Metal Organic Frameworks (MOFs) are hybrid organic-Inorganic crystalline architectures displaying properties resulting from their composition and organization. The aim of this work was to synthesize, in a controlled manner, dipyrrin based new homometallic (MOFs) and heterometallic (M'MOF) coordination networks.In the first part, a strategy based on self-Assembly leading to the formation of a new family of luminescent networks [CdII(dpm)2] MOFs and [NiII(dpm)2] MOFs is described.In a second part, generation of grid-Type M'MOFs based on different primary cations (CuII, PdII, ZnII) and secondary metallic nodes (CdCl2, Cd(NCS)2, Fe(NCS)2) by a sequential strategy is presented and discussed. These M'MOFs are among the rare examples of predesigned architectures displaying substantial modularity. Importantly, it has been also demonstrated that these architectures may be efficiently prepared by a "one pot" procedure. Finally, a "zip-Unzip-Rezip" strategy consisting in the conversion of preformed MOFs into M'MOFs using auxillary ligands was developed. This unprecedented approach allows the introduction of functionality within the architectures.
|
119 |
New luminescent hybrid materials : synthesis and properties / Nouveaux matériaux hybrides luminescents : synthèse et propriétésAtoini, Youssef 25 January 2017 (has links)
L'objectif de cette thèse est la synthèse, la caractérisation et l'étude de complexes métalliquesluminescents, en particulier de Pt (II), leurs propriétés d'agrégation en solution, mais également dansun espace confiné ainsi qu’en surface. L'incorporation de complexes de métaux de transition dans lastructure poreuse, et ainsi que leur dépôt à la surface de nanoparticules et dans un cadre métalloorganique(MOF), par greffage post-synthétique, ont été étudiés. Sont également étudiés lacorrélation entre les propriétés de films d’une série de complexes de Pt(II) avec leur morphologie,leur mobilité électronique et la simulation de leur structure auto-assemblée par diffraction auxrayons-X. Les propriétés de luminescence de complexes amphiphiles de Pt(II) sont améliorées àl’intérieur de nanoparticules de silice mesoporeuse par la création d’un d’espace confiné. Un effetsimilaire est observé par le dépôt de complexes de Pt(II) fonctionnalisés sur une surface denanoparticules d’or. La luminescence d’un cadre organométallique a été modifiée par greffage postsynthétiquede complexes d’Ir(III) et de Pt(II). / The aim of this thesis is the synthesis, characterization and investigation of luminescent metalcomplexes, and in particular of Pt(II) compounds, their aggregation properties in solution but inconfined space as well. The incorporation of transition metal complexes in porous structure, and inparticular in a metal-organic framework (MOF), by post-synthesis grafting, have been investigated.Luminescence properties of amphiphilic Pt(II) complexes were enhanced inside mesoporous silicananoparticles by the creation of a confined space. Similar effect is observed by deposition offunctionalized Pt(II) complexes on gold nanoparticles surface. Luminescence of metal organicframework was tuned by post-synthetic grafting of Ir(III) and Pt(II) complexes.
|
120 |
A new metal–organic framework with ultra-high surface areaGrünker, Ronny, Bon, Volodymyr, Müller, Philipp, Stoeck, Ulrich, Krause, Simon, Mueller, Uwe, Senkovska, Irena, Kaskel, Stefan 21 July 2014 (has links)
A new mesoporous MOF, Zn4O(bpdc)(btctb)4/3 (DUT-32), containing linear ditopic (bpdc2−; 4,4′-biphenylenedicarboxylic acid) and tritopic (btctb3−; 4,4′,4′′-[benzene-1,3,5-triyltris(carbonylimino)]tris-benzoate) linkers, was synthesised. The highly porous solid has a total pore volume of 3.16 cm3 g−1 and a specific BET surface area of 6411 m2 g−1, adding this compound to the top ten porous materials with the highest BET surface area.
|
Page generated in 0.0878 seconds