Spelling suggestions: "subject:"metal nanoparticles."" "subject:"metal anoparticles.""
101 |
Metal nanoparticles stabilized by alkaloids in glycerol : from design to catalytic applications / Nanoparticules métalliques stabilisées par des alcaloïdes dans le glycérol : du design à l’application en catalyseReina Tapia, Antonio 03 October 2017 (has links)
Les nanoparticules métalliques (MNPs) ont un grand succès dans les dernières décennies dû à la variété d'applications dans différents domaines (microélectronique, matériaux, catalyse). Mis à part les solvants organiques, les liquides ioniques, l'eau, le CO2 supercritique et les polyols, en particulier le glycérol, ont démontré leur capacité à stabiliser et immobiliser les nanoparticules métalliques. Ces milieux évitent l'agglomération des MNPs et facilitent leur recyclage. Des nanoparticules de Pd(0) et Ni(0) dans le glycérol, sphériques, petites en taille et bien dispersées, ont été synthétisées avec succès à partir d'une méthodologie simple sous pression d'hydrogène, en présence de différents stabilisants (alkaloïdes, phosphine, polymer). La caractérisation complète de ces matériaux en solution et à l'état solide, ainsi que la possibilité de faire des synthèses à grande échelle et de stocker les solutions catalytiques longtemps, montrent la grande stabilité de ces solutions colloïdales. Les nanoparticules dans le glycérol ont été impliquées dans une large variété de transformations : hydrogénations, hydrodéhalogénations, couplages de Hiyama, additions conjuguées et hydrosilylations. De plus, nous avons étudié l'effet du stabilisant sur la réactivité catalytique, nous permettant de contrôler l'état de surface des nanoparticules et moduler ainsi leur réactivité. Nous avons montré, de même, la capacité du glycérol pour immobiliser les catalyseurs, ce qui s'est traduit par la possibilité de recycler la phase catalytique entre 4 et 10 fois sans perte de metal. En parallèle, nous avons évalué le comportement du Ni(OAc)2 libre de ligands dans le glycérol, en tant que catalyseur alternatif pour des couplages C-C et C-hétéroélément. Nous présentons aussi une étude en flux continu, en collaboration avec la Maison Européenne des Procédés Innovants (MEPI), pour l'hydrogénation de différents groupes fonctionnels, en utilisant les PdNPs dans le glycérol synthétisées préalablement. / Metal nanoparticles (MNPs) have been largely studied in the last decades due to their interesting properties which found applications in several fields (microelectronics, materials and catalysis, among others). In contrast to common organic solvents, ionic liquids, water, supercritical CO2, polyols such as glycerol, represent innovative solvents for the immobilization of MNPs, avoiding their agglomeration and facilitating their recycling. Small, spherical, and well-dispersed Pd(0) and Ni(0) nanoparticles were synthesized under hydrogen pressure in glycerol, in the presence of different kinds of stabilizers (cinchona-based alkaloids, phosphine, polymer). The high stability of these colloidal solutions permitted the full characterization both in solution and at solid state, large-scale synthesis, and stocking the solutions for months. These colloidal catalysts were applied in a large variety of transformations including hydrogenations, hydrodehalogenations, Hiyama C-C couplings, hydrosilylation reactions, and Michael conjugate additions. Furthermore, we conducted a comparative study exhibiting the differences in catalytic reactivity by effect of the stabilizer, allowing us tuning the surface-state of the nanoparticles. Moreover, we showed the ability of glycerol to immobilize metal nanoparticles permitting the recycle of the catalytic phase between 4 and 10 times, without metal leaching. Additionally, we studied the behavior of ligand-free Ni(OAc)2 in glycerol as an alternative catalyst for C-C and C-heteroatom couplings. Also, we developped a continuous flow study, in collaboration with the Maison Européenne des Procédés Innovants (MEPI), for the hydrogenation of different functional groups, using PdNPs in glycerol
|
102 |
Alternative Mechanisms for Size Control in Synthesis of Nanoparticles - Population Balance Modelling and Experimental StudiesPerala, Siva Rama Krishna January 2013 (has links) (PDF)
The extensive growth of nanotechnology has necessitated the development of economical and robust methods for large scale production of nanomaterials. It requires detailed quantitative understanding of lab-scale processes to enable effective scale-up and development of new contacting strategies for their controlled synthesis. In this
thesis, attempts are made in both the directions using experimental and modelling approaches for synthesis of
different nanoparticles.
The two-phase Brust--Schiffrin protocol for the synthesis of gold nanoparticles was investigated first. The
mechanism of transfer of reactants from aqueous to organic phase using phase transfer catalyst (PTC) was investigated using the measurement of interfacial tension, viscosity, SLS, SAXS, 1H NMR, DOSY-NMR, and
Karl-Fischer titration. The study shows that the reactants are transferred to organic phase through the formation of hydrated complexes between reactants and PTC rather than through the solubilization of reactants in water core of inverse micelles of PTC, proposed recently in the literature. The particle synthesis reactions thus occur in
the bulk organic phase. The extensive body of seemingly disparate experimental findings on Brust--Schiffrin protocol were put together next. The emerging picture ruled out both thermodynamic considerations and
kinetics based arguments as exemplified by the classical LaMer's mechanism with sequential nucleation growth capping for size control in Brust--Schiffrin protocol. A new model for particle synthesis was developed.
The model brought out continued nucleation--growth--capping based size control, an hitherto unknown mechanistic route for the synthesis of monodisperse particles, as the main mechanism. The model not only
captured the reported features of the synthesis but also helped to improve the uniformity of the synthesized
particles, validated experimentally.
The two-step mechanism of Finke--Watzky---first order nucleation from precursor and autocatalytic growth of particles---proposed as an alternative to LaMer model to explain an induction period followed by a sigmoidal
decrease in precursor concentration for the synthesis of iridium nanoparticles was investigated next. The mechanism is tested using an equivalent population balance model for its ability to explain the experimentally
observed near constant breadth of the evolving size distribution as well. The predictions show that while it
captures precursor conversion well, it fails to explain particle synthesis on account of its inability to suppress nucleation. A minimal four-step mechanism with additional steps for nucleation from reduced iridium atoms and their scavenging using particle surface is proposed. The new mechanism when combined with the first or second order nucleation, or classical nucleation with no scavenging of reduced atoms also fails to suppress nucleation.
A burst like onset of nuclei formation with homogeneous nucleation and the scavenging of reduced atoms by particles are simultaneously required to explain all the reported features of the synthesis of iridium nanoparticles.
A new reactor is proposed for continuous production of CaCO3 nanoparticles in gas-liquid reaction route. The key feature of the new reactor is the control of flow pattern to ensure efficient mixing of reactants. A liquidliquid reaction route for production of CaCO3 nanoparticles is also optimized to produce nanoparticles at high loading. Optimum supersaturation combined with efficient breakup of initial gel-like
structure by mechanical agitation and charge control played a crucial role in producing nano sized CaCO3 particles.
|
103 |
Mechanisms of Formation and Thermal Stabililty of Functional NanostructuresAnumol, E A January 2012 (has links) (PDF)
There are many challenges in materializing the applications utilizing inorganic nanoparticles. The primary drawback is the degradation of properties due to aggregation and sintering either due to elevated temperatures or prevailing chemical/electrochemical conditions. In this thesis, various wet chemical synthesis methods are developed to obtain metal nanostructures with enhanced thermal stability. The thesis is organized as below:
Chapter 1 presents the problems and challenges in materializing the application of nanomaterials associated with the thermal stability of nanomaterials. A review of the existing techniques to improve the thermal stability and the scope of the thesis are presented.
Chapter 2 gives a summary of the various materials synthesized, the method adopted for the synthesis and the characterization techniques used in the material characterization.
Chapter 3 presents a general template-less strategy for the synthesis of nanoporous alloy aggregates by controlled aggregation of nanoparticles in the solution phase with excellent control over morphology and composition as illustrated using PdPt and PtRu systems as examples. The Pt-based nanoporous clusters exhibit excellent activity for methanol oxidation with good long term stability and CO tolerance.
Chapter 4 presents a detailed study on the thermal stability of spherical mesoporous aggregates consisting of nanoparticles. The thermal stability study leads to a general conclusion that nanoporous structures transform to hollow structures on heating to elevated temperatures before undergoing complete densification.
Chapter 5 presents a simple and facile method for the synthesis of single crystalline intermetallic PtBi hollow nanoparticles. A mechanism is proposed for the formation of intermetallic PtBi hollow structures. The intermetallic PtBi hollow structures synthesised show excellent electrocatalytic activity for formic acid oxidation reaction.
Chapter 6 presents a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene. The method involves the nucleation of a metal precursor phase on graphite oxide surfaces and subsequent reduction with a strong reducing agent. The electrocatalytic activity of the composites is investigated for methanol oxidation reaction.
Chapter 7 presents a microwave-assisted synthesis method for selective heterogeneous nucleation of metal nanoparticles on oxide supports leading to the synthesis of high activity catalysts. The catalytic activity of the hybrids synthesized by this method for investigated for H2 combustion.
Chapter 8 presents thermal stability studies carried out on nanostructures by in-situ heating in transmission electron microscope. The microstructural changes during the sintering process are observed in real time and the observations lead to the understanding of the mechanism of particle growth and sintering.
At the end, the results of the investigations were summarized with conclusions drawn.
|
104 |
Theoretical Studies of Energy Transport in Complex SystemsBhattacharya, Pallavi January 2014 (has links) (PDF)
Photosynthesis involves the absorption of photons by light-harvesting pigments and the subsequent transfer of excitation from the absorption centre to the reaction centre. This highly efficient phenomenon of excitation transfer has traditionally been explained by the Forster mechanism of incoherent hopping of excitation from one chromophore to another. Recently 2D electronic spectroscopic evidences were gathered by Fleming and coworkers on the photosynthetic Fenna-Matthews-Olson (FMO) complex in green sulfur bacteria [1]. Subsequent simulation studies by the same group [2] led to the proposition of a quantum-mechanical, coherent, wave-like transfer of excitation among the chromophores. However, Fleming's conclusions regarding retention of coherence appeared surprising because, the complex would interact with the numerous degrees of freedom of the protein scaffold surrounding it, leading to decoherence, which is expected to be rapid. Thus, we were interested in proposing an analytical treatment to rationalize the excitation transfer.
Traditional approaches employed for studying excitation energy transfer involve the master equation techniques where the system-bath coupling is perturbative and is truncated after a few orders. It is important to note that the system-bath coupling causes both decoherence and population relaxation. Such a perturbative approximation is difficult to justify for the photosystem, as the system-bath coupling and the interchromophoric electronic coupling have comparable values. Also, these treatments are largely numerical studies and demand involved calculations. Thus, exact calculations for such a system (7-level) are very difficult. Consequently, we were interested in developing an analytical approach where the coupling is treated as non-perturbative. We devised a novel analytical treatment which employs a unitary transformation analogous to the one used for the theory of nonadiabatic effects in chemical reactions [3]. Our treatment rests on an adiabatic basis which are eigenstates calculated at each nuclear position (i.e. at each configuration of the bath) bearing a parametric dependence in Qi, where Qi denotes the shift of the exciton at site `i' due to the environment. The treatment is justified because in the case of coherent transfer, the excitation would travel mostly amongst the adiabatic states and the effects of non-adiabaticity are small.
We observed that the system-bath coupling, after the unitary transformation, could be decoupled at the lowest order into two parts: a) an adiabatic contribution, which accounts solely for decoherence (this is evaluated almost exactly in our approach) and b) a non-adiabatic contribution which accounts for population relaxation from one adiabatic state to another (treated by a Markovian master equation). When we applied our technique to the FMO complex, our prediction for population evolution at the chromophores showed excellent correspondence with those obtained by Nalbach and coworkers using path-integral calculations [4], which are exact. These were calculations where the environment was modelled using a Drude spectral density. Our method allowed the calculations to be readily performed for different temperatures as well. It should be specifically emphasized that, unlike the involved and cumbersome path-integral calculations by Nalbach and coworkers [4] or the hierarchical equation calculations by Ishizaki et al. [2], our method is simple, easy to apply and computationally expedient. Further it became evident that the ultra-efficiency of energy transfer in photosynthetic complexes is not completely captured by coherence alone but is the result of an interplay of coherence and the dissipative influence of the environment (also known as ENAQT or Environment Assisted Quantum Transport [5]).
An added advantage of our analytical treatment was the flexibility it offered. Thus, we could use our formalism to perform expedient analyses on the behavior of the system under various conditions. For example, we may wish to evaluate the consequences of introducing correlations among the bath degrees of freedom on the efficiency of transfer to the reaction centre. To this end, we applied our formalism by introducing correlations among the bath degrees of freedom and then by introducing anticorrelations among the bath degrees of freedom. The conclusions were interesting, for they suggested that the efficiency of transfer to the reaction centre was enhanced by the presence of anti-correlations, when compared with an uncorrelated bath. Uncorrelated baths, in turn, had a higher efficiency of energy transfer than correlated baths [6]. Thus, the population evolution is fastest for the anti-correlated bath, followed by the uncorrelated bath and is slowest for the correlated bath. Similar conclusions have been reached at by Tiwari et al. [7].
We could also extend the formalism for studying the system under different spectral densities for the environment, apart from just the Drude spectral density which is popularly used in literature associated with FMO calculations. For instance, the FMO system could be analyzed for the Adolphs-Renger spectral density [3, 8]. Once again our results showed excellent agreement with those reported by Nalbach. We also analyzed the FMO system under the spectral density proposed by Kleinekathofer and coworkers [9]. It was found that these latter spectral densities had more profound participation from the environment, therefore coherences were destroyed more effectively and population relaxation was faster. The excitation transfer to the final site (site closest to the reaction centre in the FMO complex) was found to be faster for the Adolphs and Renger spectral density and the spectral density proposed by Kleinekathofer and coworkers, when compared to the Drude spectral density. Also, the excitation transfer was fastest when we modelled the environment using the Kleinekathofer spectral density. This reinforced the previous conclusions that the dissipative effects of the environment promote a faster energy transport.
Being an almost analytical approach, our technique could be applied to systems with larger number of levels as well. A good example of such a case is the MEH-PPV polymer. 2D electronic-spectroscopic experiments performed on this polymer in solution speculate that the excitation energy transfer might be coherent even at physiological temperatures [10]. A prototype for studying this system might be a conjugated polymer with around 80-100 chromophores.
Linewidths and Lineshapes in the vicinity of Graphene
It has been reported that a vibrating dipole may de-excite by transferring energy non-radiatively to a neighboring metal surface [11]. It is also understood that due to its delocalized pi-cloud, graphene has a continuum of energy states and can behave like a metal sheet and accept energies. Thus, we proposed that if a vibrationally excited dipole de-excites in the vicinity of a graphene sheet, graphene may get electronically excited and thus serve as an effective quencher for such vibrational excitations. Depending on the distance of the dipole from the graphene sheet, the transfer might be intense enough to be spectroscopically probed. We have investigated the rate of such an energy transfer.
We use the Dirac cone approximation for graphene, as this enables us to obtain analyt-ical results. The Fermi Golden rule was used to evaluate the rate of energy transfer from the excited dipole to the graphene sheet [12]. The calculations were performed for both the instances: a) energy transfer from a dipole to undoped graphene and, b) energy trans-fer from a dipole to doped graphene. For undoped graphene, the carrier (electron) charge density in the conduction band is zero and we would only have transitions from the valence band to the conduction band. As a consequence of absence of carrier charge density in CB (conduction band), the screening of Coulombic interactions in the graphene plane is ineffective. Thus, one could use the non-interacting polarizability for undoped graphene in the rate expression [13]. However, when we consider the case of doped graphene where EF is shifted upwards into CB, the conduction band electrons will contribute to screening. In this case, we have two sets of transitions: a) from ki in VB (valence band) to kf in CB and b) ki in CB to kf in CB, where ki and kf are the wavevectors which correspond to the initial and final electronic states in graphene. So we have used the polarizability propagator in the random phase approximation [14] to calculate the rate following the approach of [13].
It is also known that the imaginary part of the frequency domain dipole-dipole corre-lation function is a measure of the lineshape [15]. We were, thus, interested in evaluating the lineshape for these transitions. For evaluating the correlation function, we used the partitioning technique developed by L•owdin [16] and subsequently extracted the lineshape from its imaginary part. Using this method, we calculated lineshape for the vibrational excitation of CO molecule in the vicinity of an undoped graphene lattice. The linewidth for this system also was obtained. It could be seen that the vibrational linewidth for 1 CO in the vicinity (5 A) of undoped graphene (EF = 0:00eV ) is small (0:012 cm ) but could be observed experimentally. The lineshape calculations were also extended to cases where it is possible to have atomic transitions by placing an electronically excited atom in the vicinity of the graphene sheet. We considered the following two cases: a) 3p ! 2s transition in hydrogen atom, at a distance of 12 A from the graphene sheet and, b) 4p ! 3s transition in hydrogen atom, at a distance of 20 A from the graphene sheet. The linewidths for atomic transitions could be easily probed in these cases ( 55 cm 1 for 3p ! 2s and 56 cm 1 for 4p ! 3s). In the preceding calculations, the transi-tion dipoles were considered perpendicular to the graphene surface. It is worthwhile to note that if the transition dipoles are considered parallel to the graphene surface, the respective linewidths would be half of those obtained for the case where the transition dipoles are perpendicular. Another interesting possibility would be to consider a lanthanide metal complex placed within a few nanometers from graphene. Lanthanides are known to have sharp f-f transitions [17] and consequently, one could easily observe the effects of broadening due to energy transfer to the electronic system of graphene.
Energy Eigenmodes for arrays of Metal Nanoparticles
In the final part of the thesis we consider organized assemblies of metal nanoparti-cles, specifically helical and cylindrical assemblies and investigate the plasmonic excitation transfer across these assemblies. These were motivated by recent studies which reported growth of chiral asymmetric assemblies of nanoparticles on D and L- isomers of dipheny-lalanine peptide nanotubes [18]. The plasmons in the helical/cylindrical assemblies are expected to couple with each other via electromagnetic interactions. We construct the Hamiltonian for such systems and evaluate the eigenmodes and energies pertaining to these modes in the wave vector space. We also perform calculations for the group velocity for each eigenmode as this gives us an idea of which eigenmode transports excitation the fastest.
|
105 |
Study of Light-Matter Interaction at the Nanoscale with Quantum Dots in Photonic and Plasmonic MetamaterialsIndukuri, S R K Chaitanya January 2016 (has links) (PDF)
Optical properties of nanoscopic materials have been intensively pursued over last couple of decades due to their tunable optical properties. Recent interests in this field have been mainly focused on the preparation of ordered arrays of nano materials and study of their optical properties. These interests have been motivated by the applications of such systems for nano photonic devices. Theoretical predictions from such systems reveal complex absorption and emission properties, different from individual ones mainly because of energy transfer between them. These properties can be controlled further by preparing hybrid arrays of nanostructures, including nano crystals of different types. Hybrid arrays with semiconductor quantum dots and metallic nanoparticles are an example of such system. Optical properties of such a system can be tuned by controlling the interaction between excitons and plasmons. This thesis presents the experimental studies on optical properties of polymer capped nanoparticles, quantum dot arrays and hybrid arrays with semi conducting quantum dot and metal nanoparticles. A brief summary of the experimental methods and results have been highlighted below.
In this thesis, we study the controlling decay dynamics of CdSe quantum dots by 2D photonic-plasmonic and metamaterial templates. In Chapter 1 we provide a detailed background on the theoretical methods of Light-Matter interaction at nano scale. We also have given the detailed information on both weak and strong coupling region in the light-matter interaction. This chapter includes the discussion controlling light-matter interaction with both photonic crystals and plasmonic materials with some appropriate examples from the literature. In this chapter we have also explained the relevance of our work in this area and organization of the chapters and there importance has given. In chapter 2 we provide details about various experimental methods used in this thesis. A brief introduction is given on the materials used, their synthesis and the preparation of different type of self assembled plasmonic-photonic templates. This chapter starts with an explanation of the materials used along with the justification; moves on to the preparation of different 2D wire metamaterial. The characterization techniques for these different types of templates like spectroscopic ellipsometer, atomic force spectroscopy, scanning electron microscopy and transmission electron microscopy are discussed. We also discussed optical spectroscopic techniques like confocal optical microscopy and near field optical microscopy techniques. The first two chapters form the basis of all the experiments discussed in the forth coming chapters. In chapter 3 Finite difference time domain (FDTD) simulations were performed on two different plasmonic sub wavelength photonic templates embedded with CdSe quantum dots. Tunable loading of these templates with plasmonic nano antenna allowed control of the emission from the embedded quantum dots. We discuss how large loading of nano antenna can effectively control the optical density of states for the quantum dots leading to enhancement of their radiative decay rates as observed in experiments. On the other hand, at low level of loading, while FDTD fails to capture the observed enhancement of decay rates in experiment, an alternative mechanism is suggested to exist in such cases. Thus, subtle interplay of multiple mechanisms engineered by appropriate placement and loading of plasmonic nano antenna in such templates is demonstrated as an effective method to control optical density of states and hence spontaneous emission of embedded quantum dots. In Chapter 4 we report results of controlled tuning of the local density of states (LDOS) in versatile, flexible and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nano antenna within a polymer template randomly dispersed with quantum dots, we show how the photo-luminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators. In chapter 5 we reported enhancement optical properties of quantum dot monolayers on top of the functional, flexible and hierarchical self-assembled plasmonic template using extremely small gold (Au) nanoparticles of diameter 5 nm. We reported how the LODS changes with different polarizations for CdSe quantum dot present on top of the template. We observed the enhanced radiative LDOS from the nano antenna filled pores indicating plasmonic enhanced emission from these templates. The difference in spectral and spatial profile of LDOS and Pur-cells with polarization of quantum dot emission results in the anisotropic emission in these templates. In chapter 6 we reported the emergence of strong coupling between quantum emitters and 2D hyperbolic metamaterials (HMM). We studied both spectral dependence and effect of filling fraction of the HMM on strong interaction. We also show the controlling of the transition from weak coupling region to strong coupling region by changing the distance between QD monolayer and HMM. By using FDTD simulation we are able to calculate both spectral function S(!) and coupling efficiency. In chapter 7 as a conclusion we concluded the work done in this thesis. We also indicated the future directions in this field and possible application.
|
106 |
Excitation Energy Transfer In Donor-Acceptor Systems Involving Metal Nanoparticles, And In Conjugated PolymersSaini, Sangeeta 07 1900 (has links) (PDF)
This thesis consists of two parts and nine chapters. The first part (Part I) presents theoretical studies on non-radiative mode of excitation energy transfer (EET) in donor-acceptor (D-A) systems involving metal nanoparticles. Part I contains four chapters and describes EET in following different D-A systems: (i) dye and a spherical metal nanoparticle of different sizes, (ii) two spherical metal nanoparticles, and (iii) two prolate shaped metal nanoparticles at different relative orientations. Part II provides a detailed study on the origin of photochemical funneling of excitation energy in conjugated polymers like poly-[phenylenevinylene] (PPV) and consists of three chapters. The ninth chapter provides a concluding note.
The thesis begins with a basic introduction on Forster resonance energy transfer(FRET), presented in chapter 1. This chapter provides a detail derivation of Forster’s rate expression for a non-radiative process of EET from a donor to an acceptor molecule and discusses the limitations of Forster theory. The chapter highlights the huge success of FRET technique in understanding biological processes assisted by changes in conformations of biopolymers under conditions where Frster theory is valid. The chapter also discusses practical limitations of FRET technique such as use of pre-averaged value of orientation factor and photobleaching of dye molecules.
Part I starts with chapter 2 which explains the advantages of using metal nanoparticles over dye molecules in D-A systems. The chapter discusses recent experimental re-ports of excitation energy transfer to nanoparticles, now commonly referred to as nanoparticle surface energy transfer (NSET). Theories describing the process of EET from a dye molecule (dye molecule is assumed to be a point dipole) to a planar metallic surface are discussed. In the case of energy transfer from a donor dye molecule to a planar metallic
surface, the distance dependence of the rate of EET is found to vary as 1/d4 where dis a distance from the center of a dye molecule to the metallic surface. This is unlike conven-tional FRET where rate of EET follows 1/R6 distance dependence with R as a distance between the centers of D and A. Also, a recent experimental study by Yun et al [J. Am. Chem. Soc. 127, 3115 (2005)] on energy transfer from a dye molecule to a spherical gold nanoparticle reports that the rate of EET follows 1/d4 distance dependence. The remaining chapters of this part focus on understanding this deviation from the Forster theory in different D-A systems.
Chapter 3 describes quantized electro-hydrodynamic approach used to model the plasmonic excitations in metal nanoparticles. The optical absorption frequencies of nanoparticles computed here are subsequently used in chapters 4 and 5 for the calculation of the rate of EET. The chapter discusses the merits and de-merits of electro-hydrodynamic approach in comparison to other available techniques. The electro-hydrodynamic method of calculating the absorption frequencies provide a physically appealing, mathematically simple and numerically tractable approach to the problem and is also at the same time, semi-quantitatively reliable. The optical frequencies obtained as a function of size and aspect ratio of metal nanoparticles are found to be in good agreement with physical predictions.
Chapter 4 studies the distance dependence of rate of EET for a D-A system similar to one studied by Yun et al [J. Am. Chem. Soc. 127, 3115 (2005)]. The chapter contains the relevant derivations of the quantities required for computing the interaction matrix elements. The dependence of the rate of EET on R is found surprisingly to be in agreement with Forster theory even at intermediate distances compared to the size of spherical nanoparticles (a). However, the dependence of rate of EET on d is found to vary as 1/dσwith σ=3 - 4 at intermediate distances which is in good agreement with the experimental results of Yun et al. At large values of d, the distance dependence of rate is found to vary as 1/d6 . The chapter discusses the physical basis behind these results. The theory predicts a non-trivial dependence of rate on the size of a nanoparticle which ultimately attains the asymptotic a3 size dependence. The rate of EET is also studied for different orientations of dye molecule.
Chapter 5 studies surface plasmon mediated EET between two metal nanoparticles. The rate of EET between two prolate and spherical shaped silver nanoparticles is studied as a function of Rand d. d, in present chapter denotes surface-to-surface separation distance between two nanoparticles. In case of EET between two non-spherical nanoparticles, even at separations larger than the size of the nanoparticle, a significant deviation from 1/R6 dependence is obtained. However, 1/R6 distance dependence of EET rate is found to be robust for spherical nanoparticles over an entire range of separations. The deviation of rate from 1/R6 distance dependence becomes more pronounced with in-crease in the aspect ratio of the nanoparticle. The relative orientation of the nanoparticles is found to markedly influence the R-dependence of EET rate. Interestingly, the relative orientation of nanoparticles effect the d-distance dependence of the rate to a lesser extend in comparison to the R-dependence of the rate. Therefore, we predict that for non-spherical nanoparticles studying EET rate as a function of will provide more conclusive results. The chapter also discusses the size dependence of rate of EET for this particular D-A system.
In Part II, excitation energy transfer (EET) in a conjugated polymer is studied. To start with, chapter 6 provides a brief introduction to photophysics of conjugated polymers. The chapter discusses the nature of photoexcitations in these systems and stresses on the influence of polymer’s morphology on the optical properties of conjugated polymers.
Chapter 7 describes the theory used for modeling conjugated polymer chain. A polymer chain consists of number of spectroscopic units (chromophores) of varying lengths. The average length of chromophores in conjugated polymer depends on defect concentration. In the present study we treat an excitation generated on each chromophore within “particle-in-a-box” formalism but one that takes into account the electron-hole interactions. The transition dipole moments and the radiative rates are computed for different lengths of chromophores with parameters appropriate for PPV chain. These quantities are used in chapter 8 for calculating the absorption and emission spectra of conjugated polymer chains at different defect concentrations.
The main aim of Chapter 8 is to understand the origin of photochemical funneling of excitation energy in conjugated polymers. PPV chain is modeled as a polymer with
the length distribution of chromophores given either by a Gaussian or by a Poissonian distribution. We observe that the Poissonian distribution of length segments explains the optical spectra of PPV rather well than the Gaussian distribution. The Pauli’s master equation is employed to describe the excitation energy transfer among different chromophores. The rate of energy transfer is assumed to be given here, as a first approximation, by the well-known Forster expression. The observed excitation population dynamics confirm the photochemical funneling of excitation energy from shorter to longer chromophores of the polymer chain. The calculations show that even in steady state more than one type of chromophore contribute towards the emission spectrum. The observed difference between the calculated emission spectra at equilibrium and in steady state indicates the existence of local domains in a polymer chain within which the non-radiative excitation energy transfer from shorter to longer chromophores take place. These results are found to be in agreement with recent experimental reports.
The concluding chapter 9 gives a brief summary of the outcome of the thesis and ends up with suggestion of a few future problems which in current scenario are of great interest.
|
107 |
Study of Optical Properties of Semiconductor Quantum Dot Based Hybrid Nano AssembliesMullapudi, Praveena January 2016 (has links) (PDF)
Over the last few decades, a vast research is going on, to study the optical properties of the nano particles i.e., metal and semiconductors thoroughly. Till date most of the optical studies are based on single particle measurement of a quantum dot (QD) or a chromophore under the influence of an external plasmonic field stimulus. In this the-sis, we tried to address the energy transfer at non local level on a layer of compact, monolayer QD assemblies over micro meter range. The energy transfer occurs in the presence of external field of metal particles or nanorods leads to the enhancement or quenching the emission from a layer of QDs.
Chapter 1 is introduction to the basic theoretical aspects of excitons in semiconductor (QDs) and its optical properties under strong confinement regime. The discussion is followed with the optical properties of gold nanoparticles and rods, describing size and shape dependent variation of absorption properties, based on Mie and Mie-Gans theory. Theoretical background of collective effects in QD assemblies based on exciton-plasmonic interactions at single particle level as well as polarization based plasmo-nenhanced fluorescence has been subjected. Experimental techniques are explained in chapter 2 which contains the details of the synthesis of polymer capped nanoparticles with the respective characterization. A discussion on the synthesis methods for cadmium selenide QDs, gold nano particles and the rods with different polymer cap-ping legends and the related capping exchange methods. The thin film preparation of QD monolayers as well as hybrid nano assemblies using several techniques, i.e., Langmuir-Blodgett (LB), dip coat methods are provided. Further the details of surface morphology of the prepared thin films has been studied by different microscopic techniques i.e., atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The details of the PL emission measurements of these hybrid arrays using confocal, Raman and polarization based near field scanning optical microscope (NSOM) modes followed with the life time measurements. In third chapter, the substantial strong coupling and collective emission regime is engineered in the QD monolayer films embedded with tiny gold nano particles keeping the QD density same. Tuning the photoluminescence (PL) of semiconducting QD assemblies using small Au NPs in different ratio, different packing density and extent of spectral overlap between QD photoluminescence and the metal nanoparticle absorbance has been discussed.
We provided possible experimental and theoretical evidence for the plasmon-mediated emergence of collective emission and enhanced quantum efficiency in these QD films with the consolidation of multiple emitters and multiple NPs. The quantum efficiency of these hybrid assemblies is further explored with different material as well as the size effect of metal nano particles.
Chapter 4 comprises the experiment results of the self-assembled compact and partially aligned gold nano rod (GNR) arrays on QD monolayer films. We experimentally demonstrated the quantum efficiency of these QD hybrid assemblies is gaining max-imum when the longitudinal surface plasmon resonance (LSPR) absorption maxima of GNR arrays is resonant with the QD monolayer PL maxima and is always non-existent for the off resonant case. Further, we reported the variability in the size and morphology of these GNR domains leads to the maximum achieved enhancement as well as anisotropy value in comparison with isolated rods and the explored conditions to further enhance the efficiency in these QD hybrid assemblies.
|
108 |
Metal nanoparticles encapsulated in membrane-like zeolite single crystals : application to selective catalysis / Nanoparticules métalliques encapsulées dans des nanoboites zéolithiques : applications à des réactions de catalyse sélectiveLi, Shiwen 05 May 2015 (has links)
Les matériaux « coeur-coquille » composés d’une nanoparticule métallique encapsulée à l'intérieur de coquilles inorganiques (oxydes, carbone …) attirent de plus en plus l'attention par leurs propriétés particulières, en particulier dans le domaine de la catalyse. Les particules métalliques sont protégées par la coquille, qui empêche entre autres le frittage et la croissance des particules à haute température. Cependant, les coquilles sont généralement méso à macroporeuses et elles ne peuvent pas jouer le rôle de tamis moléculaire pour les molécules de taille nanométrique. En revanche, les zéolithes sont des solides cristallins microporeux dont les pores bien définis permettent une forte discrimination des réactifs basée sur la taille, la forme ou leur coefficient de diffusion. L’objectif de cette thèse visait à la synthèse de catalyseurs de type coeur-coquille dans lesquels la coquille est une zéolite microporeuse de structure MFI (silicalite-1 et ZSM-5), le coeur étant soit une particule de métal noble (Au, Ag, Pt, Pd), soit des alliages de ces différents métaux, soit enfin un métal de transition (Co, Ni, Cu). Ces catalyseurs ont été appliqués dans des réactions d'hydrogénation sélective (aromatiques substitués) et l'oxydation sélective de CO en présence d'hydrocarbures. Nous avons ainsi montré que la coquille zéolithique, tout en protégeant les particules du frittage, modifie la sélectivité des réactions en interdisant aux réactifs volumineux d’atteindre les sites catalytiques / Nanostructured yolk-shell materials, which consist of metal nanoparticle cores encapsulated inside hollow shells, attract more and more attention in material science and catalyst applications during the last two decades. Metal particles are usually highly mono-dispersed in size and isolated from each other by the shell, which prevents growth by sintering at high temperature. Because they are generally made of meso/macroporous oxides or amorphous carbon, shells cannot carry out molecular sieve-type separation of molecules at the nanometric scale. The aim of the present thesis was to synthesize yolk-shell catalyst with microporous zeolite shells (silicalite-1 and ZSM-5), containing noble (Au, Pt, Pd) transition (Co, Ni, Cu) and alloy metal nanoparticles. Zeolites are crystalline microporous solids with well-defined pores capable of discriminating nanometric reactants on the basis of size, shape and diffusion rate. Zeolite-based yolk-shell catalysts have been applied in selective hydrogenation (toluene and mesitylene) and oxidation (CO) reactions in the presence of hydrocarbons. Zeolite shells not only plaid a key role as membranes, thus changing selectivities as compared to conventional supported catalysts, but they also protected metal nanoparticles from sintering under reaction conditions
|
109 |
Wirt-Gast-Systeme - optische Eigenschaften von Farbstoffen und Metall-Nanopartikel in mikro- und mesoporösen AlumosilikatenKahle, Ingolf 11 July 2014 (has links)
Die vorliegende Arbeit beinhaltet die Synthese neuartiger Hybridmaterialien basierend auf der Einlagerung optischer Materialien, wie Farbstoffmoleküle und Metallnanopartikel, in anorganische Wirtsmaterialien mit definierten Porenstrukturen. Hierfür wurden mikro- und mesoporöse alumosilikatische Verbindungen, wie z.B. Zeolithe und Vertreter aus der Familie der sogenannten „Mobile Composition of Matter“ (MCM), verwendet. Mit Hilfe dieses Konzeptes konnte z.B. der Einfluss der Wirtsmaterialien hinsichtlich ihrer Porengrößen und inneren Polarität auf die optischen Eigenschaften von photochromen Naphthopyranfarbstoffen untersucht werden. Neue photochrome Kompositmaterialien, welche sich durch einfache industrielle Prozesse, wie z.B. der Extrusion in eine Polymermatrix, weiterverarbeiten lassen, wurden auf diesem Wege synthetisiert. Durch die Einkapselung eines solvatochromen Spiropyranderivats innerhalb der Superkäfige von Faujasiten konnten Rückschlüsse auf die Polaritätsparameter der äußeren und inneren Oberfläche der Molekularsiebe gewonnen werden.
Zudem wurde ein neues Synthesekonzept zur Herstellung fluoreszierender Silbernanopartikel innerhalb eines Zeolith Y entwickelt, um auf sehr einfachem Weg ein stabiles Material mit interessanten Fluoreszenzeigenschaften zu erhalten. Der Einfluss der Wirtsoberfläche auf fluoreszierende Farbstoffe wurde des Weiteren an Benzylidenketonfarbstoffen untersucht, die mittels „Ship in a Bottle reaction“ in Zeolith Y eingekapselt wurden. Um das Konzept zur Synthese optischer Effektpigmente zu erweitern, wurden neue photochrome Naphthopyrane, welche in Konjugation zu fluoreszierenden Farbstoffen stehen, synthetisiert und untersucht.
|
110 |
Metal nanoparticles reveal the organization of single-walled carbon nanotubes in bundlesRodriguez, Raul D., Blaudeck, Thomas, Kalbacova, Jana, Sheremet, Evgeniya, Schulze, Steffen, Adner, David, Hermann, Sascha, Hietschold, Michael, Lang, Heinrich, Schulz, Stefan E., Zahn, Dietrich R. T. 12 February 2016 (has links)
Single-walled carbon nanotubes (SWCNTs) were decorated with metal nanoparticles. Using a complementary analysis with spatially resolved micro-Raman spectroscopy, high resolution transmission electron microscopy, electron diffraction, and tip-enhanced Raman spectroscopy, we show that the SWCNTs form bundles in which smaller diameter SWCNTs are the ones preferentially affected by the presence of Au and Ag nanoparticles. This result is exploited to evaluate the structural organization of SWCNTs with mixed chiralities in bundles, leading us to postulate that smaller diameter SWCNTs surround larger ones. We found that this effect occurs for very distinct scenarios including SWCNTs both in nanometer thin films and in field effect transistor configurations at the wafer-level, suggesting a universal phenomenon for SWCNTs deposited from dispersions. / Einwandige Kohlenstoffnanoröhren (SWCNTs) wurden mit Metallnanopartikeln dekoriert. Nach Anwendung von ortsauflösender Raman-Mikroskopie und -Spektroskopie, Transmissionselektronenmikroskopie, Elektronenbeugung und spitzenverstärkter Ramanspektroskopie wird festgestellt, dass sich aus den SWCNTs fasrige Bündel formen, wobei die analytischen Signaturen der SWCNTs mit kleinerem Durchmesser stärker von der Präsenz der Gold- und Silbernanopartikel beeinflusst werden als die der größeren. Dieses Resultat kann damit erklärt werden, dass in der Struktur solcher Bündel SWCNTs mit kleinerem Durchmesser außen und SWCNTs mit größerem Durchmesser innen zu liegen kommen. Wir konnten diesen Effekt für verschiedene Szenarien nachweisen: i) für SWCNTs in nanometerdünnen ungeordneten Filmen und ii) für SWCNTs, ausgerichtet zwischen Elektroden in der Geometrie eines Feldeffekttransistors. Diese Feststellung legt nahe, dass es sich um ein universelles Phänomen für aus flüssigen Dispersionen abgeschiedene SWCNTs handelt. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
Page generated in 0.0727 seconds