• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 15
  • Tagged with
  • 140
  • 140
  • 45
  • 42
  • 30
  • 29
  • 26
  • 23
  • 22
  • 21
  • 20
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Study and characetrization of plastic encapsulated packages for MEMS

Deshpande, Anjali W 14 January 2005 (has links)
Technological advancement has thrust MEMS design and fabrication into the forefront of modern technologies. It has become sufficiently self-sustained to allow mass production. The limiting factor which is stalling commercialization of MEMS is the packaging and device reliability. The challenging issues with MEMS packaging are application specific. The function of the package is to give the MEMS device mechanical support, protection from the environment, and electrical connection to other devices in the system. The current state of the art in MEMS packaging transcends the various packaging techniques available in the integrated circuit (IC) industry. At present the packaging of MEMS includes hermetic ceramic packaging and metal packaging with hermetic seals. For example the ADXL202 accelerometer from the Analog Devices. Study of the packaging methods and costs show that both of these methods of packaging are expensive and not needed for majority of MEMS applications. Due to this the cost of current MEMS packaging is relatively high, as much as 90% of the finished product. Reducing the cost is therefore of the prime concern. This Thesis explores the possibility of an inexpensive plastic package for MEMS sensors like accelerometers, optical MEMS, blood pressure sensors etc. Due to their cost effective techniques, plastic packaging already dominates the IC industry. They cost less, weigh less, and their size is small. However, porous nature of molding materials allows penetration of moisture into the package. The Thesis includes an extensive study of the plastic packaging and characterization of three different plastic package samples. Polymeric materials warp upon absorbing moisture, generating hygroscopic stresses. Hygroscopic stresses in the package add to the thermal stress due to high reflow temperature. Despite this, hygroscopic characteristics of the plastic package have been largely ignored. To facilitate understanding of the moisture absorption, an analytical model is presented in this Thesis. Also, an empirical model presents, in this Thesis, the parameters affecting moisture ingress. This information is important to determine the moisture content at a specific time, which would help in assessing reliability of the package. Moisture absorption is modeled using the single phase absorption theory, which assumes that moisture diffusion occurs freely without any bonding with the resin. This theory is based on the Fick's Law of diffusion, which considers that the driving force of diffusion is the water concentration gradient. A finite difference simulation of one-dimensional moisture diffusion using the Crank-Nicolson implicit formula is presented. Moisture retention causes swelling of compounds which, in turn, leads to warpage. The warpage induces hygroscopic stresses. These stresses can further limit the performance of the MEMS sensors. This Thesis also presents a non invasive methodology to characterize a plastic package. The warpage deformations of the package are measured using Optoelectronic holography (OEH) methodology. The OEH methodology is noninvasive, remote, and provides results in full-field-of-view. Using the quantitative results of OEH measurements of deformations of a plastic package, pressure build up can be calculated and employed to assess the reliability of the package.
112

Experimental and theoretical assessment of Through-Silicon Vias for 3D integrated microelectronic packages

Liu, Xi 13 January 2014 (has links)
With continued push toward 3D integrated packaging, Through-Silicon Vias (TSVs) play an increasingly important role in interconnecting stacked silicon dies. Although progress is being made in the fabrication of TSVs, experimental and theoretical assessment of their thermomechanical reliability is still in infancy. This work explores the thermomechanical reliability of TSVs through numerical models and innovative experimental characterization techniques. Starting with free-standing wafers, this work examines failure mechanisms such as Si and SiO₂ cohesive cracking as well as SiO₂/Cu interfacial cracking. Such cohesive crack propagation and interfacial crack propagation are studied using fracture mechanics finite-element modeling, and the energy available for crack propagation is determined through crack extension using the proposed centered finite-difference approach (CFDA). In parallel to the simulations, silicon wafers with TSVs are designed and fabricated and subjected to thermal shock test. Cross-sectional SEM failure analysis is carried out to study cohesive and interfacial crack initiation and propagation under thermal excursions. In addition, local micro-strain fields under thermal excursions are mapped through synchrotron X-ray diffraction. To understand the 3D to 2D strain measurement data projection process, a new data interpretation method based on beam intensity averaging is proposed and validated with measurements. Building upon the work on free-standing wafers, this research studies the package assembly issues and failure mechanisms in multi-die stacks. Comprehensive design-of-simulations study is carried out to assess the effect of various material and geometry parameters on the reliability of 3D microelectronic packages. Through experimentally-measured strain fields, thermal cycling tests, and simulations, design guidelines are developed to enhance the thermomechanical reliability of TSVs used in future 3D microelectronic packages.
113

Response of multi-path compliant interconnects subjected to drop and impact loading

Bhat, Anirudh 27 August 2012 (has links)
Conventional solder balls used in microelectronic packaging suffer from thermo- mechanical damage due to difference in coefficient of thermal expansion between the die and the substrate or the substrate and the board. Compliant interconnects are replacements for solder balls which accommodate this differential displacement by mechanically decoupling the die from the substrate or the substrate from the board and aim to improve overall reliability and life of the microelectronic component. Research is being conducted to develop compliant interconnect structures which offer good mechanical compliance without adversely affecting electrical performance, thus obtaining good thermo-mechanical reliability. However, little information is available regarding the behavior of compliant interconnects under shock and impact loads. The objective of this thesis is to study the response of a proposed multi-path compliant interconnect structure when subjected to shock and impact loading. As part of this work, scaled-up substrate-compliant interconnect-die assemblies will be fabricated through stereolithography techniques. These scaled-up prototypes will be subjected to experimental drop testing. Accelerometers will be placed on the board, and strain gauges will be attached to the board and the die at various locations. The samples will be dropped from different heights to different shock levels in the components, according to Joint Electron Devices Engineering Council (JEDEC) standards. In parallel to such experiments with compliant interconnects, similar experiments with scaled-up solder bump interconnects will also be conducted. The strain and acceleration response of the compliant interconnect assemblies will be compared against the results from solder bump interconnects. Simulations will also be carried out to mimic the experimental conditions and to gain a better understanding of the overall response of the compliant interconnects under shock and impact loading. The findings from this study will be helpful for improving the reliability of compliant interconnects under dynamic mechanical loading.
114

Conductive anodic filament reliability of fine-pitch through-vias in organic packaging substrates

Ramachandran, Koushik 13 January 2014 (has links)
This research reports for the first time conductive anodic filament reliability of copper plated-through-vias with spacing of 75 – 200 µm in thin glass fiber reinforced organic packaging substrates with advanced epoxy-based and cyclo-olefin polymer resin systems. Reliability studies were conducted in halogenated and halogen-free substrates with improved test structure designs including different conductor spacing and geometry. Accelerated test condition (temperature, humidity and DC bias voltage) was used to investigate the effect of conductor spacing and substrate material influence on insulation reliability behavior. Characterization studies included gravimetric measurement of moisture sorption, extractable ion content analysis, electrical resistance measurement, impedance spectroscopy measurement, optical microscopy and scanning electron microscopy analysis and elemental characterization using energy dispersive x-ray spectroscopy. The accelerated test results and characterization studies indicated a strong dependence of insulation failures on substrate material system, conductor spacing and geometry. This study presents advancements in the understanding of failure processes and chemical nature of failures in fine-pitch copper plated-through-vias in newly developed organic substrates and demonstrates potential methods to mitigate failures for high density organic packages.
115

Copper to copper bonding by nano interfaces for fine pitch interconnections and thermal applications

Jha, Gopal Chandra 06 March 2008 (has links)
Ever growing demands for portability and functionality have always governed the electronic technology innovations. IC downscaling with Moore s law at IC level and system miniaturization with System-On-Package (SOP) paradigm at system level, have resulted and will continue to result in ultraminiaturized systems with unprecedented functionality at reduced cost. However, system miniaturization poses several electrical and thermal challenges that demand innovative solutions including advanced materials, bonding and assembly techniques. Heterogeneous material and device integration for thermal structures and IC assembly are limited by the bonding technology and the electrical and thermal impedance of the bonding interfaces. Solder - based bonding technology that is prevalent today is a major limitation to future systems. The trend towards miniaturized systems is expected to drive downscaling of IC I/O pad pitches from 40µm to 1- 5µm in future. Solder technology imposes several pitch, processability and cost restrictions at such fine pitches. Furthermore, according to International Technology Roadmap for Semiconductors (ITRS-2006), the supply current in high performance microprocessors is expected to increase to 220 A by 2012. At such supply current, the current density will exceed the maximum allowable current density of solders. The intrinsic delay and electromigration in solders are other daunting issues that become critical at nanometer sized technology nodes. In addition, formation of intermetallics is also a bottleneck that poses significant mechanical issues. Similarly, thermal power dissipation is growing to unprecedented high with a projected power of 198 W by 2008 (ITRS 2006). Present thermal interfaces are not adequate for such high heat dissipation. Recently, copper based thin film bonding has become a promising approach to address the abovementioned challenges. However, copper-copper direct bonding without using solders has not been studied thoroughly. Typically, bonding is carried out at 400oC for 30 min followed by annealing for 30 min. High thermal budget in such process makes it less attractive for integrated systems because of the associated process incompatibilities. Hence, there is a need to develop a novel low temperature copper to copper bonding process. In the present study, nanomaterials - based copper-to-copper bonding is explored and developed as an alternative to solder-based bonding. To demonstrate fine pitch bonding, the patterning of these nanoparticles is crucial. Therefore, two novel self-patterning techniques based on: 1.) Selective wetting and 2.) Selective nanoparticle deposition, are developed to address this challenge. Nanoparticle active layer facilitates diffusion and, thus, a reliable bond can be achieved using less thermal budget. Quantitative characterization of the bonding revealed good metallurgical bonding with very high bond strength. This has been confirmed by several morphological and structural characterizations. A 30-micron pitch IC assembly test vehicle is used to demonstrate fine pitch patternability and bonding. In conclusion, novel nanoparticle synthesis and patterning techniques were developed and demonstrated for low-impedance and low-cost electrical and thermal interfaces.
116

Ultra thin ultrafine-pitch chip-package interconnections for embedded chip last approach

Mehrotra, Gaurav 18 March 2008 (has links)
Ever growing demands for portability and functionality have always governed the electronic technology innovations. IC downscaling with Moore s law and system miniaturization with System-On-Package (SOP) paradigm has resulted and will continue to result in ultraminiaturized systems with unprecedented functionality at reduced cost. The trend towards 3D silicon system integration is expected to downscale IC I/O pad pitches from 40µm to 1- 5 µm in future. Device- to- system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. As supply currents will increase upto 220 A by 2012, the current density will exceed the maximum allowable current density of solders. The intrinsic delay and electromigration in solders are other daunting issues that become critical at nanometer size technology nodes. In addition, formation of intermetallics is also a bottleneck that poses significant mechanical issues. Recently, many research groups have investigated various techniques for copper-copper direct bonding. Typically, bonding is carried out at 400oC for 30 min followed by annealing for 30 min. High thermal budget in such process makes it less attractive for integrated systems because of the associated process incompatibilities. In the present study, copper-copper bonding at ultra fine-pitch using advanced nano-conductive and non-conductive adhesives is evaluated. The proposed copper-copper based interconnects using advanced conductive and non-conductive adhesives will be a new fundamental and comprehensive paradigm to solve all the four barriers: 1) I/O pitch 2) Electrical performance 3) Reliability and 4) Cost. This thesis investigates the mechanical integrity and reliability of copper-copper bonding using advanced adhesives through test vehicle fabrication and reliability testing. Test vehicles were fabricated using low cost electro-deposition techniques and assembled onto glass carrier. Experimental results show that proposed copper-copper bonding using advanced adhesives could potentially meet all the system performance requirements for the emerging micro/nano-systems.
117

Multiscale EM and circuit simulation using the Laguerre-FDTD scheme for package-aware integrated-circuit design

Srinivasan, Gopikrishna 19 May 2008 (has links)
The objective of this research work is to develop an efficient methodology for chip-package cosimulation. In the traditional design flow, the integrated circuit (IC) is first designed followed by the package design. The disadvantage of the conventional sequential design flow is that if there are problems with signal and power integrity after the integration of the IC and the package, it is expensive and time consuming to go back and change the IC layout for a different input/output (IO) pad assignment. To overcome this limitation, a concurrent design flow, where both the IC and the package are designed together, has been recommended by researchers to obtain a fast design closure. The techniques from this research work will enable multiscale cosimulation of the chip and the package making the concurrent design flow paradigm possible. Traditional time-domain techniques, such as the finite-difference time-domain method, are limited by the Courant condition and are not suitable for chip-package cosimulation. The Courant condition gives an upper bound on the time step that can be used to obtain stable simulation results. The smaller the mesh dimension the smaller is the Courant time step. In the case of chip-package cosimulation the on-chip structures require a fine mesh, which can make the time step prohibitively small. An unconditionally stable scheme using Laguerre polynomials has been recommended for chip-package cosimulation. Prior limitations in this method have been overcome in this research work. The enhanced transient simulation scheme using Laguerre polynomials has been named SLeEC, which stands for simulation using Laguerre equivalent circuit. A full-wave EM simulator has been developed using the SLeEC methodology. A scheme for efficient use of full-wave solver for chip-package cosimulation has been proposed. Simulation of the entire chip-package structure using a full-wave solver could be a memory and time-intensive operation. A more efficient way is to separate the chip-package structure into the chip, the package signal-delivery network, and the package power-delivery network; use a full-wave solver to simulate each of these smaller subblocks and integrate them together in the following step, before a final simulation is done on the integrated network. Examples have been presented that illustrate the technique.
118

Assembly process development, reliability and numerical assessment of copper column flexible flip chip technology

Lin, Ta-Hsuan. January 2008 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Systems Science and Industrial Engineering, Thomas J. Watson School of Engineering and Applied Science, 2008. / Includes bibliographical references.
119

Investigation of bulk solder and intermetallic failures in PB free BGA by joint level testing

Tumne, Pushkraj Satish. January 2009 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department or Systems Science and Industrial Engineering, 2009. / Includes bibliographical references.
120

Strain measurement of flip-chip solder bumps using digital image correlation with optical microscopy

Lee, Dong Gun. January 2009 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009. / Includes bibliographical references.

Page generated in 0.0583 seconds