• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 14
  • 8
  • 7
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 88
  • 22
  • 18
  • 18
  • 17
  • 15
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Effective Property Estimation of Carbon Composites using Micromechanical Modeling

Aswathi, S January 2014 (has links) (PDF)
In recent times, composite materials have gained mainstay acceptance as a structural material of choice due to their tailorability and improved thermal, specific strength/stiffness and durability performance. Carbon-Carbon (C/C) composites are used for high temperature applications such as exit nozzles for rockets, leading edges for missiles, nose cones, brake pads etc. Mechanical property estimation of C/C composites is challenging due to their highly heterogeneous microstructure. Computed Tomography (CT) images (volumetric imaging) coupled with Scanning Electron Microscopy (SEM) reveal a highly heterogeneous microstructure comprised of woven C-fibers, amorphous C-matrix, irregularly shaped voids, cracks and other inclusions. The images also disclose structural hierarchy of the C/C composite at different length scales. Predicting the mechanical behavior of such complex hierarchical materials like C/C composites forms the motivation for the present work. A systematic study to predict the effective mechanical properties of C/C Composite using numerical homogenization has been undertaken in this work. The Micro-Meso-Macro (MMM) principle of ensemble averages for estimating the effective properties of the composite has been adopted. The hierarchical length scales in C/C composites has been identified as micro (single fiber with matrix), meso (fabric) and macro (laminate). Numerical homogenization along with periodic boundary conditions (PBCs) have been used to estimate the effective engineering properties of the material at different length scales. Concurrently, mechanical testing has also been carried out at macro (compression tests) and micro scale (using nano-indentation studies) to characterize the mechanical behavior of C/C composites.
62

Micromechanics of Epithelial tissue-inspired structures

Tejas Ravindra Kulkarni (11820509) 19 December 2021 (has links)
Epithelial tissues, one of the four primary tissue structures found in our human body, are known to comprise of tiny cells interconnected in a unique continuous pattern. In most cases, they serve a dual purpose of protecting the internal organs from physical damage, and at the same time, enable in facilitating inter-cellular activities and prevent pathogen break ins. While the tissue mechanics and its proliferation have been scrutinized to great detail, it is their geometric uniqueness, that has remained more or less unexplored. With an intent of doing the same, this thesis identifies and explores those geometric properties/parameters that have an influence on the micro structure’s homogenized and localized response. However, it does so by extracting the microstructures profile and representing its cell edges via three dimensional beam elements - hence the name, bio-inspired structures. The analysis is carried out by first developing a staggered Representative Volume Element (RVE)using finite elements, and identifying its appropriate size. The staggered assembly aids in minimizing boundary effects from creeping in, and at the same time, provides the requisite statistical homogeneity. This is followed by the geometry study. A wide range of epithelial geometries are considered for the study, ranging from completely isotropic skin models, to in plane anisotropic cuboidal structures and out of plane anisotropic stratified geometries. The effects of orientation, relative density and edge length are extracted and studied in great detail. It is observed that cell edges initial orientation has a direct dependence on the particle distribution, whereas the change in orientation is largely dependent on the deformation the microstructure is subjected to. Relative density is documented to show a direct correlation to a materials homogenized response i.e. larger the relative density, greater is the microstructures stiffness and homogenized stress response to the same deformation. Edge length, on the other hand is observed to showcase a downward trend on the cell edge’s axial stress. On average, in any kind of distribution and any kind of deformation, smaller cell edges are known to showcase larger stresses, as compared to the larger cell edges.
63

Micromechanical modelling of creep in wooden materials

Falkeström, Oskar, Coleman, Kevin, Nilsson, Malin January 2021 (has links)
Wood is a complex organic orthotropic viscoelastic material with acellular structure. When stressed, wood will deform over timethrough a process called creep. Creep affects all wooden structureand can be difficult, time-consuming and expensive to measure. For this thesis, a simple computer model of the woodenmicrostructure was developed. The hypothesis was that the modelledmicrostructure would display similar elastic and viscoelasticproperties as the macroscopic material. The model was designed by finding research with cell geometries ofconiferous trees measured. The model considered late- and earlywoodgeometries as well as growth rings. Rays were ignored as they onlycomposed 5-10% of the material. By applying a finite element method, the heterogeneous late- andearlywood cells could be homogenized by sequentially loading thestrain vector and calculating the average stress. The computer model produced stiff but acceptable values for theelastic properties. Using the standard linear solid method to modelviscoelasticity, the computer model assembled creep curvescomparable to experimental results. With the model sufficiently validated, parametric studies on thecell geometry showed that the elastic and viscoelastic propertieschanged greatly with cell shape. An unconventional RVE was alsotested and shown to give identical result to the standard RVE. Although not perfect, the model can to a certain degree predict theelastic and viscoelastic characteristics for wood given itscellular geometry. Inaccuracies were thought to be caused byassumptions and approximations when building the model.
64

Compréhension, observation et quantification des mécanismes de rupture ductile par imagerie 3D / Understanding, observation and quantification of ductile failure mechanisms via 3D imaging

Buljac, Ante 28 September 2017 (has links)
Au cours des dernières décennies, des efforts importants ont été menés dans la modélisation des processus de rupture ductile entraînant des progrès substantiels. Cependant, la compréhension complète des mécanismes de rupture ductile dans des états de contraintes spécifiques demeure une question ouverte. Ceci est dû au manque de bases des données expérimentales et à la non validation des modèles pour ces conditions de chargement. Dans ce travail, les acquisitions de données sont principalement obtenues en utilisant la laminographie, ce qui rend possible l'imagerie de régions d'intérêt d'échantillons plats. L'utilisation d'éprouvettes larges (et minces) permet de générer différents états de contraintes et des conditions aux limites pertinentes pour l'ingénierie, qui ne pouvaient pas être évaluées jusqu'à présent en trois dimensions et en essais in-situ à des échelles micrométriques. La corrélation d'images volumiques (DVC) est utilisée pour mesurer les champs de déplacement à l'intérieur des échantillons en acquérant des images de laminographie 3D. Deux classes de matériaux représentatives de deux modes génériques de rupture ductile ont été examinées, à savoir les alliages d'aluminium (rupture par instabilité) et la fonte à graphite sphéroïdal (rupture par croissance de vide et coalescence).L'observation de la microstructure et les interactions déformations-endommagement pour différentes géométries d'échantillons et pour différents niveaux de triaxialité des contraintes associés ont été étudiées pour des alliages d'aluminium à une résolution micrométrique. De plus, un cadre combiné numérique-expérimental (DVC-FE) est introduit pour valider les simulations numériques à l'échelle microscopique pour la fonte à graphite sphéroïdal. Les simulations par éléments finis (FE), qui représentent la microstructure des matériaux étudiés, sont conduites avec des conditions aux limites de Dirichlet extraites des mesures DVC. Enfin, le cadre DVC-FE a été amélioré et utilisé comme une procédure d'identification intégrée pour l'étude du comportement élasto-plastique de la matrice ferritique de la fonte, non seulement en termes de champs cinématiques induits par la microstructure aléatoire, mais aussi avec les niveaux de charge globaux. / In the last few decades significant efforts have been made in modeling ductile failure processes resulting in substantial progress. However, the full understanding of ductile failure mechanisms under specific stress states still remains an open question. This is partly due to missing experimental data and validation of models for such loading conditions.In this work, data acquisitions are mainly obtained by using laminography, which makes the imaging of regions of interest in flat samples possible. The use of large (and thin) specimens allows various stress states and engineering-relevant boundary conditions to be generated, which could not be assessed in three dimensions and in-situ at micrometer scales before. Digital Volume Correlation (DVC) is used for measuring displacement fields in the bulk of samples by registering 3D laminography images. Two material classes that are representative of two generic modes of ductile failure have been examined, namely, Al-alloys (failure by instability) and cast iron (failure by void growth and coalescence). The observation of microstructure and strain-damage interactions at micrometer resolution for various specimen geometries and associated levels of stress triaxiality are studied for Al-alloys. Additionally, a combined computational-experimental (DVC-FE) framework is introduced to validate numerical simulations at the microscopic scale for nodular graphite cast iron. Finite Element (FE) simulations, which account for the studied material microstructure, are driven by Dirichlet boundary conditions extracted from DVC measurements.Last, the DVC-FE framework is upgraded to an integrated identification procedure to probe elasto-plastic constitutive law of the cast iron ferritic matrix not only in terms of kinematic fields induced by the random microstructure but also by overall load levels.
65

Miniaturized tunable conical helix antenna

Zhu, F., Ghazaany, Tahereh S., Abd-Alhameed, Raed, Jones, Steven M.R., Noras, James M., Suggett, T., Marker, S. January 2014 (has links)
No / A miniaturized conical helix antenna is presented, which displays vertical polarization with electrically small dimensions of 10mm×10mm×45mm. The resonance of the antenna is made tunable by adding a variable digital MEMS capacitor load at the bottom of the helix, giving a tuning range of 316 MHz to 400 MHz. The antenna demonstrates considerable impedance matching bandwidth and gain over the entire tuning frequency band. Most importantly, the antenna is capable of compact, flexible and easy integration into a wireless device package or for platform installation. / Datong of Seven Technology Group, for their support under the KTP project grant No. 008734.
66

A Study of Mode Dependent Energy Dissipation in 2D MEMS Resonators

Doreswamy, Santhosh January 2014 (has links) (PDF)
With the advent of micro and nano electromechanical systems (MEMS/NEMS), there has been rapid development in the design and fabrication of sensitive resonant sensors. Sensitivity of such devices depends on the resonant frequency and the quality factor (Q). The Q of these devices are dependent on process induced prestress in the structural geometry, interaction with the external environment, and the encapsulation method. For high frequency sensors operating in air and under encapsulation condition, the Q is dominated by structural and fluid-structure interaction losses. In this thesis, we set out to study the dominant energy dissipative mechanisms that are constituent of the experimentally observed loss (Q-factor) in two specific test geometries—uncapped and capped circular MEMS drumhead resonators. Considering the importance of various factors, we consider four important problems pertaining to the uncapped as well as capped resonators. In the first problem, the most important factors perhaps are the acoustic radiation losses emanating from the annular plate, and the effect of added mass effect on the natural frequencies of the annular plate. The second problem is to investigate the dominant contribution of squeeze film losses and acoustic radiation losses with respect to various natural frequencies of the annular plate. The third problem is to consider the effect of prestress on the natural frequencies of the annular plate and its associated fluid-structure interaction losses (quality factors due to squeeze film damping and acoustic radiation losses). The fourth problem is to study the dominant fluid-structure interaction losses and structural losses that are constituent of experimentally measured Q-factors of the encapsulated annular plate (conceptual representation of MEMS device under packaged conditions). In the first problem, we study the mode dependent acoustic radiation losses in an uncapped drumhead microresonator which is represented by a annular circular plate fixed at its outer edge, suspended over a fixed substrate. There are two main effects which are associated with such systems due to the fluid-structure interaction. First is the “added mass effect,” which reduces the effective resonance frequency of the structure. The second is the acoustic radiation loss from the top side of the resonator, that affects the quality factor of the vibrating structure. In deriving the analytical solution, we first obtain the exact mode shapes of the structure ignoring any effect of the surrounding fluid (air) on the mode shape. Subsequently, we use these mode shapes to study the effect of the surrounding fluid on the associated natural frequencies and the Q-factor. The effect of “added mass” on the frequencies of the structure is found to be negligible. However, the acoustic radiation losses found to be significant. Additionally, we found that the variation in Qac over the first few modes (< 40 MHz) is marked with a local maximum and a minimum. Beyond this range, Qac increases monotonically over the higher frequency modes. It is also found that such kind of variation can be described using different acoustics parameters. Finally, comparing the acoustics radiation loss based quality factor with the experimental results for the uncapped drumhead resonator, the acoustic damping dominates only at higher modes. Therefore, our second problem forms the basis of finding other fluid-related damping. In the second problem, we explore the fluid losses due to squeeze film damping in the uncapped drumhead micro resonator. In this case, the squeeze film loss is due to the flow of the fluid film between the bottom surface of the annular plate and the fixed substrate. Based on the literature survey, it is found that the squeeze film damping reduces with increase in the air-gap thickness and the operating frequencies respectively. However, the squeeze film effect can not be ignored at lower frequencies. In order to investigate the contribution of squeeze film damping in uncapped resonator, we determine squeeze-film damping based quality factor Qsq corresponding to different modes of the resonators using FEM based software, ANSYS. On comparing Qsq with the experiments, we found that Qsq matches well with the experiments corresponding to the lower modes. Therefore, it is found that Qsq dominates at low frequencies (< 20 MHz) and Qac plays significant role at high frequencies (> 40 MHz). Both types of damping should be considered while modeling the fluid damping in uncapped resonator. In the next study, we discuss the effects of prestress on the resonant frequencies and quality factor. In the third study, we discuss the applicability of thin-plate theory with prestress and membrane theory in computing the frequencies and quality factor due to acoustic and squeeze film losses in the uncapped drumhead resonator. In the first two studies, although the quality factor due to acoustic losses and the squeeze film captures the correct trend of the experimental results, there is a mismatch between the experimental and theoretical frequencies computed with added mass effect. In order to improve the computation of frequencies corresponding to measured modes, we first used membrane theory to predict the frequencies, and finally we quantify that there exists discrepancy between computed and the corresponding experimental frequencies with error of about 8–55%. Since, both the membrane as well as thin plate theory without prestress do not correctly model the frequencies, we used the thin plate theory with prestress. For a prestress level of 96 MPa, we found the match between the computed frequencies and the corresponding quality factors with the measured values. However, we also found that there exists strong dependence of prestress on the acoustic radiation loss, with decrease in the acoustic loss based quality factors with increase in the prestress level. In the subsequent problem, we focus on the computation of losses in capped drumhead resonator which leads to a design possibility of improving the quality factor by containing the acoustic radiation losses. In the fourth problem, we study the structural and fluid-structure interaction losses which are dominant constituent of net Q-factor observed in experiments due to encapsulation of uncapped drumhead resonator. Essentially, the geometry of the capped resonator constitutes upper and lower cavities subjected to fluid-structure interaction losses on both sides of the annular plate. The dominant fluid-structure interaction loss is found to be due to squeezing action acting simultaneously in the upper and lower cavities. However, as we go to the higher modes, squeeze film damping become very small and the damping due to structure related losses such as clamping and thermoelastic losses becomes significant. We found the thermoelastic damping to be the dominant source of structural damping at higher resonant modes, whereas, the clamping losses are found to be relatively smaller. Finally, on comparing the net quality factor with the experimental results, we observed that the squeeze film losses are dominant at lower frequencies, and thermoelastic losses dominate at the higher frequencies. However, there remains some discrepancy between theoretical and experimental Q-factors particularly over higher frequency range. Such discrepancy may be due to some unaccounted factors which may be explored to improve the modeling of damping in capped resonators. The emphasis of this work has been towards developing a comprehensive understanding of different dominant dissipative mechanisms, classified into the fluid-structure interaction and the structural losses, that are constituent of the Q-factor at various resonant modes of uncapped and capped drumhead resonators.
67

Experimental and Computational Investigation of the Microstructure-Mechanical Deformation Relationship in Polycrystalline Materials, Applied to Additively Manufactured Titanium Alloys

Ozturk, Tugce 01 May 2017 (has links)
Parts made out of titanium alloys demonstrate anisotropic mechanical properties when manufactured by electron beam melting, an emerging additive manufacturing technique. Understanding the process history dependent heterogeneous microstructure, and its effect on mechanical properties is crucial in determining the performance of additively manufactured titanium alloys as the mechanical behavior heavily relies on the underlying microstructural features. This thesis work focuses on combined experimental and computational techniques for microstructure characterization, synthetic microstructure generation, mechanical property measurement, and mechanical behavior modeling of polycrystalline materials, with special focus on dual phase titanium alloys. Macroscopic mechanical property measurements and multi-modal microstructure characterizations (high energy X-ray diffraction, computed tomography and optical microscopy) are performed on additively manufactured Ti-6Al-4V parts, revealing the heterogeneity of the microstructure and properties with respect to the build height. Because characterizing and testing every location within a build is not practical, a computational methodology is established in order to reduce the time and cost spent on microstructure-property database creation. First a statistical volume element size is determined for the Fast Fourier Transform based micromechanical modeling technique through a sensitivity study performed on an experimental Ni-based superalloy and syntheticW, Cu, Ni and Ti structures, showing that as the contrast of properties (e.g., texture, field localization, anisotropy, rate-sensitivity) increases, so does the minimum simulation domain size requirement. In all deformation regimes a minimum volume element is defined for both single and dual phase materials. The database is then expanded by generating statistically representative Ti structures which are modified for features of interest, e.g., lath thickness, grain size and orientation distribution, to be used in spectral full-field micromechanical modeling. The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions. Fast Fourier transform based technique, being a spectral, full-field deformation modeling tool, is shown to be capable of capturing the relative contribution from varying microstructural features such as phase fractions, grain morphology/ size and texture on the overall mechanical properties as the results indicate that the mean field behavior is predominantly controlled by the alpha phase fraction and the prior beta phase orientation.
68

Caractérisation et modélisation multi-échelles de l’anisotropie et de l’hétérogénéité de la déformation plastique du α-titane en conditions de traction / Multi-scale characterization and modelling of the anisotropy and heterogeneity of α-titanium plastic deformation in tension conditions

Amouzou, Eva Kékéli 09 December 2015 (has links)
La déformation plastique du alpha-titane est fortement anisotrope. Elle met en jeu des familles de systèmes de glissement aux propriétés diverses et différents types de macles. Dans cette étude, des essais de traction sur des échantillons de alpha-titane de pureté commerciale sont couplés avec des mesures d'émission acoustique et d'extensométrie locale à haute résolution. Ces essais révèlent la présence d'un puits sur la courbe d'évolution du taux d'écrouissage. Un effet inverse de la vitesse de déformation sur la profondeur de ce puits est trouvé selon que les échantillons sont déformés suivant le sens long ou le sens travers de la tôle laminée initiale. Des analyses statistiques des lignes de glissement montrent une prédominance initiale du glissement prismatique, particulièrement prononcée dans les échantillons prélevés suivant le sens long. Une diminution de l'activité relative du glissement prismatique est observée au cours de la déformation des deux types d'éprouvettes. Les fractions volumiques de macles sont plus élevées dans les essais réalisés en sens travers mais restent néanmoins très faibles (< 5 %), en particulier au niveau du puits (< 2 %). Ces résultats fournissent une base physique pour l'élaboration d'un modèle capable d'expliquer ce comportement particulier de l'écrouissage. Le modèle s'appuie sur un schéma auto-cohérent en élastoviscoplasticité, basé sur la méthode des champs translatés et utilisant une linéarisation affine de la relation constitutive viscoplastique. Le modèle considère la plasticité cristalline et traite séparément la densité de dislocations mobiles et la vitesse moyenne des dislocations. Il suppose une plus faible sensibilité à la vitesse de déformation ainsi qu'une multiplication plus rapide des dislocations sur les systèmes prismatiques. A partir de ces différentes hypothèses, les courbes de traction sont correctement reproduites et des estimations raisonnables des coefficients de Lankford, de l'activité relative du glissement prismatique et de l'évolution des textures sont obtenues. Plus important encore, l'effet inverse de la vitesse de déformation sur la profondeur du puits du taux d'écrouissage selon l'orientation de l'axe de traction est retrouvé de manière qualitative, ce qui permet d'avancer une explication aux phénomènes observés. Par ailleurs, les mesures d'émission acoustique et d'extensométrie locale à haute résolution permettent d'analyser le caractère intermittent et ondulatoire du alpha-titane à une échelle mésoscopique. Ces données sont confrontées aux prédictions du modèle actuel et serviront de base pour le développement futur d’un modèle plus complexe / The plasticity of alpha-titanium is strongly anisotropic. It involves slip systems families with various properties and different kinds of twins. In this study, tensile tests on commercially pur alpha-titanium samples are coupled with acoustic emission and high-resolution extensometry measurements. These tests show the presence of a well on the strain dependence of the work hardening. An opposite strain rate effect on the well depth is found whether specimens are elongated along the rolling or the transverse direction of the initially laminated sheet. Slip lines analysis reveals an initial predominance of prismatic slip, particularly pronounced in specimens strained along the rolling direction. The relative activity of prismatic slip is then observed to decrease with the deformation of both kinds of samples. The twin volume fractions are higher in the tests performed in the transverse direction but still remain very low (< 5 %), especially around the well (< 2 %). These results provide grounds for elaboration of a model capable of explaining such peculiar work hardening behavior. The model relies on a self-consistent scheme in elastoviscoplasticity, based on the translated field method and an affine linearization of the viscoplastic flow rule. The model considers crystal plasticity and deals separately with mobile dislocation density and dislocation velocity. It assumes lower strain rate sensitivity as well as higher dislocation multiplication rate for prismatic systems. Based on these assumptions, the model reproduces correctly the stress-strain curves and gives sound estimates of Lankford coefficients, prismatic slip activity and textures evolution. Most importantly, the opposite effect of strain rate on the well depth with regard to the orientation of the tensile axis is qualitatively retrieved, which allows putting forward an explanation of the observed phenomena. Besides, acoustic emission and high-resolution extensometry measurements allow analyzing the intermittent and wave nature of alpha-titanium at a mesoscopic scale. These data are confronted with the predictions of the present model and will be used as grounds for the future development of a more complex model
69

Micromechanics of strength and strain hardening in mono- and multiphase fine grained materials

Delincé, Marc 28 February 2008 (has links)
In the transportation industry, weight reduction is essential in order to reduce fuel consumption. A solution towards lighter structures is to improve the mechanical properties while keeping a sufficient ductility for the forming operations. The aim of the thesis was to investigate the enhancement of the mechanical properties of metallic alloys by the refinement of the grain size while playing with other microstructural features in order to maintain the strain hardening, and thus the ductility, as high as possible. Various fine grained dual phase steels were produced by severe plastic deformation followed by thermal treatment. Nano-indentation and tensile tests have been performed to measure the change of flow properties associated to the grain refinement. A new methodology, based on performing nano-indentation tests at different depth inside each phases of the steels, has been proposed in order to separate the different hardening contributions affecting the behaviour of the material. In order to gain a better understanding of the link between the fine grained microstructure and the flow properties, three models were developed introducing successively a richer and richer description of the microstructure. The first model allows interpreting the nano-indentation data at different depths. The second model predicts the flow curve of dual phase steels by considering the accumulation of dislocations on the grain boundaries with the associated back stress and the saturation of this accumulation of excess dislocations, while introducing the second phase particles through a homogenization scheme. Finally, the third model promotes a new explanation of the Hall-Petch law and the interaction of the grain size and the texture for pure copper using a multigrain crystal plasticity model incorporating grain boundary effects. Guidelines are given to optimize the microstructures towards an improvement of the structural properties and formability.
70

Compensation and trimming for silicon micromechanical resonators and resonator arrays for timing and spectral processing

Samarao, Ashwin Kumar 04 April 2011 (has links)
This dissertation reports very novel solutions for the trimming and compensation of various parameters of silicon micromechanical resonators and resonator-arrays. Post-fabrication trimming of resonance frequency to a target value is facilitated by diffusing in a deposited thin metal layer into a Joule-heated silicon resonator. Up to ~400 kHz of trimming-up and trimming-down in a 100 MHz Silicon Bulk Acoustic Resonators (SiBARs) are demonstrated via gold and aluminum diffusion respectively. The dependence of the trimming range on the duration of Joule heating and value of current passed are presented and the possibility of extending the trimming range up to ~4 MHz is demonstrated. Passive temperature compensation techniques are developed to drastically reduce the temperature coefficient of frequency (TCF) of silicon resonators. The dependence of TCF on the charge carriers in silicon are extensively studied and exploited for the very first time to achieve temperature compensation. A charge surplus via degenerate doping using boron and aluminum is shown to reduce a starting TCF of -30 ppm/°C to -1.5 ppm/°C while a charge depletion effected by creating multiple pn-junctions reduces the TCF to -3 ppm/°C. Further, shear acoustic waves in silicon microresonators have also been identified to effect a TCF reduction and have been excited in a concave SiBAR (or CBAR) to exhibit a TCF that is 15 ppm/°C lesser than that of a conventional rectangular SiBAR. The study on quality factor (Q) sensitivity to the various crystallographic axis of transduction in silicon resonators show that the non-repeatability of Q across various fabrication batches are due to the minor angular misalignment of ≤ 0.5° during the photolithography processes. Preferred axes of transduction for minimal misalignment sensitivity are identified and novel low-loss resonator-array type performances are also reported from a single resonator while transduced along certain specific crystallographic axes. Details are presented on an unprecedented new technique to create and fill charge traps on the silicon resonator which allows the operation of the capacitive SiBARs without the application of any polarization voltages (Vp) for the first time, making them very attractive candidates for ultra-low-power oscillator and sensor applications. Finally, a fabrication process that integrates both the capacitive and piezoelectric actuation/sensing schemes in microresonators is developed and is shown to compensate for the parasitics in capacitive silicon resonators while maintaining their high-Q.

Page generated in 0.074 seconds