• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 12
  • 4
  • Tagged with
  • 37
  • 37
  • 37
  • 21
  • 21
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Observations bruitées d'une diffusion. Estimation, filtrage, applications.

Favetto, Benjamin 30 September 2010 (has links) (PDF)
Les modèles aléatoires basés sur l'observation bruitée de diffusions discrétisées sont couramment utilisés en biologie ou en finance pour rendre compte de la présence d'erreur (ou bruit) entâchant la mesure d'un phénomène dont le comportement est dirigé par une équation différentielle stochastique. Deux questions statistiques sont liées à ces modèles : l'estimation d'un paramètre theta déterminant le comportement de la diffusion cachée, et le calcul du filtre optimal, ou d'une approximation. La première partie de cette thèse porte sur l'étude d'un modèle d'Ornstein-Uhlenbeck bidimensionnel partiellement observé et bruité, en lien avec l'estimation de paramètres de microvascularisation pour un modèle pharmacocinétique stochastique. Plusieurs résultats sur données médicales sont présentés. Dans la seconde partie, des estimateurs pour les paramètres de la diffusion cachée, sont obtenus dans un contexte de données haute fréquence, comme minima de fonctions de contraste ou comme zéros de fonctions d'estimation basées sur des moyennes locales d'observations bruitées. On montre en particulier la consistence et la normalité asymptotique de ces estimateurs. Enfin, la troisième partie étudie la tension de la suite des variances asymptotiques obtenues dans le théorème central limite associé à l'approximation particulaire du filtre et de la prédiction dans un modèle de Markov caché.
22

Modélisation spatio-temporelle à base de modèles de Markov cachés pour la prévision des changements en imagerie satellitaire : cas de la végétation et de l'urbain / Spatio-temporal modelling based on hidden Markov models for predicting changes in satellite imagery : the case of vegetation and urban areas

Essid, Houcine 13 December 2012 (has links)
Les séries temporelles d'images satellitaires sont une source d'information importante pour le suivi des changements spatio-temporels des surfaces terrestres. En outre, le nombre d’images est en augmentation constante. Pour les exploiter pleinement, des outils dédiés au traitement automatique du contenu informationnel sont développés. Néanmoins ces techniques ne satisfont pas complètement les géographes qui exploitent pourtant, de plus en plus couramment, les données extraites des images dans leurs études afin de prédire le futur. Nous proposons dans cette thèse, une méthodologie générique à base d’un modèle de Markov caché pour l’analyse et la prédiction des changements sur une séquence d’images satellitaires. Cette méthodologie présente deux modules : un module de traitement intégrant les descripteurs et les algorithmes classiquement utilisés en interprétation d'images, et un module d’apprentissage basé sur les modèles de Markov cachés. La performance de notre approche est évaluée par des essais d’interprétations des évènements spatio-temporels effectués sur plusieurs sites d’études. Les résultats obtenus permettront d’analyser et de prédire les changements issus des différentes séries temporelles d’images SPOT et LANDSAT pour l’observation des évènements spatio-temporels telle que l'expansion urbaine et la déforestation. / The time series of satellite images are an important source of information for monitoring spatiotemporal changes of land surfaces. Furthermore, the number of satellite images is increasing constantly, for taking full advantage, tools dedicated to the automatic processing of information content is developed. However these techniques do not completely satisfy the geographers who exploit more currently, the data extracted from the images in their studies to predict the future. In this research we propose a generic methodology based on a hidden Markov model for analyzing and predicting changes in a sequence of satellite images. The methodology that is proposed presents two modules : a processing module which incorporating descriptors and algorithms conventionally used in image interpretation and a learning module based on hidden Markov models. The performance of the approach is evaluated by trials of interpretation of spatiotemporal events conducted in several study sites. Results obtained allow us to analyze and to predict changes from various time series of SPOT and LANDSAT images for observation of spatiotemporal events such as urban development and deforestation.
23

Early detection of cardiac arrhythmia based on Bayesian methods from ECG data / La détection précoce des troubles du rythme cardiaque sur la base de méthodes bayésiens à partir des données ECG

Montazeri Ghahjaverestan, Nasim 10 July 2015 (has links)
L'apnée est une complication fréquente chez les nouveaux-nés prématurés. L'un des problèmes les plus fréquents est l'épisode d'apnée bradycardie dont la répétition influence de manière négative le développement de l'enfant. C'est pourquoi les enfants prématurés sont surveillés en continu par un système de monitoring. Depuis la mise en place de ce système, l'espérance de vie et le pronostic de vie des prématurés ont été considérablement améliorés et ainsi la mortalité réduite. En effet, les avancées technologiques en électronique, informatique et télécommunications ont conduit à l'élaboration de systèmes multivoies de monitoring néonatal de plus en plus performants. L'un des principaux signaux exploités dans ces systèmes est l'électrocardiogramme (ECG). Toutefois, même si l'analyse de l'ECG a évolué au fil des années, l'ensemble des informations qu'il fournit n'est pas encore totalement exploité dans les processus de décision, notamment en monitoring en Unité de Soins Intensifs en Néonatalogie (USIN). L'objectif principal de cette thèse est d'améliorer la prise en compte des dynamiques multi-dimensionnelles en proposant de nouvelles approches basées sur un formalisme bayésien, pour la détection précoce des apnées bradycardies chez le nouveau-né prématuré. Aussi, dans cette thèse, nous proposons deux approches bayésiennes, basées sur les caractéristiques de signaux biologiques en vue de la détection précoce de l'apnée bradycardie des nouveaux-nés prématurés. Tout d'abord avec l'approche de Markov caché, nous proposons deux extensions du Modèle de Markov Caché (MMC) classique. La première, qui s'appelle Modèle de Markov Caché Couplé (MMCC), créé une chaîne de Markov à chaque dimension de l'observation et établit un couplage entre les chaînes. La seconde, qui s'appelle Modèle Semi-Markov Caché Couplé (MSMCC), combine les caractéristiques du modèle de MSMC avec le mécanisme de couplage entre canaux. Pour les deux nouveaux modèles (MMCC et MSMCC), les algorithmes récursifs basées sur la version classique de Forward-Backward sont introduits pour résoudre les problèmes d'apprentissage et d'inférence dans le cas couplé. En plus des modèles de Markov, nous proposons deux approches passées sur les filtres de Kalman pour la détection d'apnée. La première utilise les modifications de la morphologie du complexe QRS et est inspirée du modèle générateur de McSharry, déjà utilisé en couplant avec un filtre de Kalman étendu dans le but de détecter des changements subtils de l'ECG, échantillon par échantillon. La deuxième utilise deux modèles AR (l'un pour le processus normal et l'autre pour le processus de bradycardie). Les modèles AR sont appliqués sur la série RR, alors que le filtre de Kalman suit l'évolution des paramètres du modèle AR et fournit une mesure de probabilité des deux processus concurrents. / Apnea-bradycardia episodes (breathing pauses associated with a significant fall in heart rate) are the most common disease in preterm infants. Consequences associated with apnea-bradycardia episodes involve a compromise in oxygenation and tissue perfusion, a poor neuromotor prognosis at childhood and a predisposing factor to sudden-death syndrome in preterm newborns. It is therefore important that these episodes are recognized (early detected or predicted if possible), to start an appropriate treatment and to prevent the associated risks. In this thesis, we propose two Bayesian Network (BN) approaches (Markovian and Switching Kalman Filter) for the early detection of apnea bradycardia events on preterm infants, using different features extracted from electrocardiographic (ECG) recordings. Concerning the Markovian approach, we propose new frameworks for two generalizations of the classical Hidden Markov Model (HMM). The first framework, Coupled Hidden Markov Model (CHMM), is accomplished by assigning a Markov chain (channel) to each dimension of observation and establishing a coupling among channels. The second framework, Coupled Hidden semi Markov Model (CHMM), combines the characteristics of Hidden semi Markov Model (HSMM) with the above-mentioned coupling concept. For each framework, we present appropriate recursions in order to use modified Forward-Backward (FB) algorithms to solve the learning and inference problems. The proposed learning algorithm is based on Maximum Likelihood (ML) criteria. Moreover, we propose two new switching Kalman Filter (SKF) based algorithms, called wave-based and R-based, to present an index for bradycardia detection from ECG. The wave-based algorithm is established based on McSarry's dynamical model for ECG beat generation which is used in an Extended Kalman filter algorithm in order to detect subtle changes in ECG sample by sample. We also propose a new SKF algorithm to model normal beats and those with bradycardia by two different AR processes.
24

Modèle statistique de l'animation expressive de la parole et du rire pour un agent conversationnel animé / Data-driven expressive animation model of speech and laughter for an embodied conversational agent

Ding, Yu 26 September 2014 (has links)
Notre objectif est de simuler des comportements multimodaux expressifs pour les agents conversationnels animés ACA. Ceux-ci sont des entités dotées de capacités affectives et communicationnelles; ils ont souvent une apparence humaine. Quand un ACA parle ou rit, il est capable de montrer de façon autonome des comportements multimodaux pour enrichir et compléter son discours prononcé et transmettre des informations qualitatives telles que ses émotions. Notre recherche utilise les modèles d’apprentissage à partir données. Un modèle de génération de comportements multimodaux pour un personnage virtuel parlant avec des émotions différentes a été proposé ainsi qu’un modèle de simulation du comportement de rire sur un ACA. Notre objectif est d'étudier et de développer des générateurs d'animation pour simuler la parole expressive et le rire d’un ACA. En partant de la relation liant prosodie de la parole et comportements multimodaux, notre générateur d'animation prend en entrée les signaux audio prononcés et fournit en sortie des comportements multimodaux. Notre travail vise à utiliser un modèle statistique pour saisir la relation entre les signaux donnés en entrée et les signaux de sortie; puis cette relation est transformée en modèle d’animation 3D. Durant l'étape d’apprentissage, le modèle statistique est entrainé à partir de paramètres communs qui sont composés de paramètres d'entrée et de sortie. La relation entre les signaux d'entrée et de sortie peut être capturée et caractérisée par les paramètres du modèle statistique. Dans l'étape de synthèse, le modèle entrainé est utilisé pour produire des signaux de sortie (expressions faciale, mouvement de tête et du torse) à partir des signaux d'entrée (F0, énergie de la parole ou pseudo-phonème du rire). La relation apprise durant la phase d'apprentissage peut être rendue dans les signaux de sortie. Notre module proposé est basé sur des variantes des modèles de Markov cachés (HMM), appelées HMM contextuels. Ce modèle est capable de capturer la relation entre les mouvements multimodaux et de la parole (ou rire); puis cette relation est rendue par l’animation de l’ACA. / Our aim is to render expressive multimodal behaviors for Embodied conversational agents, ECAs. ECAs are entities endowed with communicative and emotional capabilities; they have human-like appearance. When an ECA is speaking or laughing, it is capable of displaying autonomously behaviors to enrich and complement the uttered speech and to convey qualitative information such as emotion. Our research lies in the data-driven approach. It focuses on generating the multimodal behaviors for a virtual character speaking with different emotions. It is also concerned with simulating laughing behavior on an ECA. Our aim is to study and to develop human-like animation generators for speaking and laughing ECA. On the basis of the relationship linking speech prosody and multimodal behaviors, our animation generator takes as input human uttered audio signals and output multimodal behaviors. Our work focuses on using statistical framework to capture the relationship between the input and the output signals; then this relationship is rendered into synthesized animation. In the training step, the statistical framework is trained based on joint features, which are composed of input and of output features. The relation between input and output signals can be captured and characterized by the parameters of the statistical framework. In the synthesis step, the trained framework is used to produce output signals (facial expression, head and torso movements) from input signals (F0, energy for speech or pseudo-phoneme of laughter). The relation captured in the training phase can be rendered into the output signals. Our proposed module is based on variants of Hidden Markov Model (HMM), called Contextual HMM. This model is capable of capturing the relationship between human motions and speech (or laughter); then such relationship is rendered into the synthesized animations.
25

Reconnaissance de séquences d'états par le Modèle des Croyances Transférables. Application à l'analyse de vidéos d'athlétisme.

Ramasso, Emmanuel 05 December 2007 (has links) (PDF)
Cette thèse porte sur la problématique de reconnaissance automatique de systèmes dynamiques. Une méthodologie basée sur des modèles de séquences d'états est employée : les états permettent de décrire le système à un instant particulier tandis que des transitions permettent au système d'évoluer au cours du temps. Dans le cadre de la thèse, deux nouvelles méthodes de représentation et de reconnaissance de séquences d'états basées sur le Modèle des Croyances Transférables, modèle non probabiliste de raisonnement incertain basé sur les fonctions de croyance, sont proposées. La première méthode est déterministe et inspirée des travaux en Intelligence Artificielle, la seconde est stochastique et basée sur une généralisation aux fonctions de croyance des modèles de Markov cachés initialement développés dans la théorie des probabilités. Ces algorithmes, dont le cadre formel est générique, ont été intégrés dans un système de reconnaissance de mouvements humains dans les vidéos d'athlétisme que nous avons mis en place en collaboration avec l'Université de Crète dans le cadre du Réseau d'Excellence Européen SIMILAR. Les méthodes de reconnaissance de séquences ont été évaluées sur une base de 74 vidéos et comparées aux modèles de Markov cachés probabilistes.
26

Reconstitution de la parole par imagerie ultrasonore et vidéo de l'appareil vocal : vers une communication parlée silencieuse

Hueber, Thomas 09 December 2009 (has links) (PDF)
L'objectif poursuivi dans ce travail de thèse est la réalisation d'un dispositif capable d'interpréter une parole normalement articulée mais non vocalisée, permettant ainsi la " communication parlée silencieuse ". Destiné, à terme, à être léger et portatif, ce dispositif pourrait être utilisé d'une part, par une personne ayant subi une laryngectomie (ablation du larynx suite à un cancer), et d'autre part, pour toute communication, soit dans un milieu où le silence est requis (transport en commun, opération militaire, etc.), soit dans un environnement extrêmement bruité. Le dispositif proposé combine deux systèmes d'imagerie pour capturer l'activité de l'appareil vocal pendant " l'articulation silencieuse " : l'imagerie ultrasonore, qui donne accès aux articulateurs internes de la cavité buccale (comme la langue), et la vidéo, utilisée pour capturer le mouvement des lèvres. Le problème traité dans cette étude est celui de la synthèse d'un signal de parole " acoustique ", uniquement à partir d'un flux de données " visuelles " (images ultrasonores et vidéo). Cette conversion qualifiée ici de " visuo-acoustique ", s'effectue par apprentissage artificiel et fait intervenir quatre étapes principales : l'acquisition des données audiovisuelles, leur caractérisation, l'inférence d'une cible acoustique à partir de l'observation du geste articulatoire et la synthèse du signal. Dans le cadre de la réalisation du dispositif expérimental d'acquisition des données, un système de positionnement de la sonde ultrasonore par rapport à la tête du locuteur, basé sur l'utilisation combinée de deux capteurs inertiaux a tout d'abord été conçu. Un système permettant l'enregistrement simultané des flux visuels et du flux acoustique, basé sur la synchronisation des capteurs ultrasonore, vidéo et audio par voie logicielle, a ensuite été développé. Deux bases de données associant observations articulatoires et réalisations acoustiques, contenant chacune environ une heure de parole (continue), en langue anglaise, ont été construites. Pour la caractérisation des images ultrasonores et vidéo, deux approches ont été mises en œuvre. La première est basée sur l'utilisation de la transformée en cosinus discrète, la seconde, sur l'analyse en composantes principales (approche EigenTongues/EigenLips). La première approche proposée pour l'inférence des paramètres acoustiques, qualifiée de " directe ", est basée sur la construction d'une " fonction de conversion " à l'aide d'un réseau de neurones et d'un modèle par mélange de gaussiennes. Dans une seconde approche, qualifiée cette fois " d'indirecte ", une étape de décodage des flux visuels au niveau phonétique est introduite en amont du processus de synthèse. Cette étape intermédiaire permet notamment l'introduction de connaissances linguistiques a priori sur la séquence observée. Elle s'appuie sur la modélisation des gestes articulatoires par des modèles de Markov cachés (MMC). Deux méthodes sont enfin proposées pour la synthèse du signal à partir de la suite phonétique décodée. La première est basée sur une approche par concaténation d'unités ; la seconde utilise la technique dite de " synthèse par MMC ". Pour permettre notamment la réalisation d'adaptations prosodiques, ces deux méthodes de synthèse s'appuient sur une description paramétrique du signal de parole du type "Harmonique plus Bruit" (HNM).
27

Contribution to deterioration modeling and residual life estimation based on condition monitoring data / Contribution à la modélisation de la détérioration et à l'estimation de durée de vie résiduelle basées sur les données de surveillance conditionnelle

Le, Thanh Trung 08 December 2015 (has links)
La maintenance prédictive joue un rôle important dans le maintien des systèmes de production continue car elle peut aider à réduire les interventions inutiles ainsi qu'à éviter des pannes imprévues. En effet, par rapport à la maintenance conditionnelle, la maintenance prédictive met en œuvre une étape supplémentaire, appelée le pronostic. Les opérations de maintenance sont planifiées sur la base de la prédiction des états de détérioration futurs et sur l'estimation de la vie résiduelle du système. Dans le cadre du projet européen FP7 SUPREME (Sustainable PREdictive Maintenance for manufacturing Equipment en Anglais), cette thèse se concentre sur le développement des modèles de détérioration stochastiques et sur des méthodes d'estimation de la vie résiduelle (Remaining Useful Life – RUL en anglais) associées pour les adapter aux cas d'application du projet. Plus précisément, les travaux présentés dans ce manuscrit sont divisés en deux parties principales. La première donne une étude détaillée des modèles de détérioration et des méthodes d'estimation de la RUL existant dans la littérature. En analysant leurs avantages et leurs inconvénients, une adaptation d’une approche de l'état de l'art est mise en œuvre sur des cas d'études issus du projet SUPREME et avec les données acquises à partir d’un banc d'essai développé pour le projet. Certains aspects pratiques de l’implémentation, à savoir la question de l'échange d'informations entre les partenaires du projet, sont également détaillées dans cette première partie. La deuxième partie est consacrée au développement de nouveaux modèles de détérioration et les méthodes d'estimation de la RUL qui permettent d'apporter des éléments de solutions aux problèmes de modélisation de détérioration et de prédiction de RUL soulevés dans le projet SUPREME. Plus précisément, pour surmonter le problème de la coexistence de plusieurs modes de détérioration, le concept des modèles « multi-branche » est proposé. Dans le cadre de cette thèse, deux catégories des modèles de type multi-branche sont présentées correspondant aux deux grands types de modélisation de l'état de santé des système, discret ou continu. Dans le cas discret, en se basant sur des modèles markoviens, deux modèles nommés Mb-HMM and Mb-HsMM (Multi-branch Hidden (semi-)Markov Model en anglais) sont présentés. Alors que dans le cas des états continus, les systèmes linéaires à sauts markoviens (JMLS) sont mis en œuvre. Pour chaque modèle, un cadre à deux phases est implémenté pour accomplir à la fois les tâches de diagnostic et de pronostic. A travers des simulations numériques, nous montrons que les modèles de type multi-branche peuvent donner des meilleures performances pour l'estimation de la RUL par rapport à celles obtenues par des modèles standards mais « mono-branche ». / Predictive maintenance plays a crucial role in maintaining continuous production systems since it can help to reduce unnecessary intervention actions and avoid unplanned breakdowns. Indeed, compared to the widely used condition-based maintenance (CBM), the predictive maintenance implements an additional prognostics stage. The maintenance actions are then planned based on the prediction of future deterioration states and residual life of the system. In the framework of the European FP7 project SUPREME (Sustainable PREdictive Maintenance for manufacturing Equipment), this thesis concentrates on the development of stochastic deterioration models and the associated remaining useful life (RUL) estimation methods in order to be adapted in the project application cases. Specifically, the thesis research work is divided in two main parts. The first one gives a comprehensive review of the deterioration models and RUL estimation methods existing in the literature. By analyzing their advantages and disadvantages, an adaption of the state of the art approaches is then implemented for the problem considered in the SUPREME project and for the data acquired from a project's test bench. Some practical implementation aspects, such as the issue of delivering the proper RUL information to the maintenance decision module are also detailed in this part. The second part is dedicated to the development of innovative contributions beyond the state-of-the-are in order to develop enhanced deterioration models and RUL estimation methods to solve original prognostics issues raised in the SUPREME project. Specifically, to overcome the co-existence problem of several deterioration modes, the concept of the "multi-branch" models is introduced. It refers to the deterioration models consisting of different branches in which each one represent a deterioration mode. In the framework of this thesis, two multi-branch model types are presented corresponding to the discrete and continuous cases of the systems' health state. In the discrete case, the so-called Multi-branch Hidden Markov Model (Mb-HMM) and the Multi-branch Hidden semi-Markov model (Mb-HsMM) are constructed based on the Markov and semi-Markov models. Concerning the continuous health state case, the Jump Markov Linear System (JMLS) is implemented. For each model, a two-phase framework is carried out for both the diagnostics and prognostics purposes. Through numerical simulations and a case study, we show that the multi-branch models can help to take into account the co-existence problem of multiple deterioration modes, and hence give better performances in RUL estimation compared to the ones obtained by standard "single branch" models.
28

Pronostic des systèmes complexes par l’utilisation conjointe de modèle de Markov caché et d’observateur / Prognosis of complex systems based on the joint use of an observer and a hidden Markov model

Aggab, Toufik 12 December 2016 (has links)
Cette thèse porte sur le diagnostic et le pronostic pour l’aide à la maintenance de systèmes complexes. Elle présente deux approches de diagnostic/pronostic qui permettent de générer les indicateurs utiles pour l’optimisation de la stratégie de maintenance. Plus précisément, ces approches permettent d’évaluer l’état de santé et de prédire la durée de vie résiduelle du système. Les approches présentées visent en particulier à pallier le problème d’absence d’indicateurs de dégradation. Les développements sont fondés sur l’utilisation d’observateurs, de formalisme de Modèle de Markov Caché, des méthodes d’inférences statistiques et des méthodes de prédiction de séries temporelles à base d’apprentissage afin de caractériser et prédire les modes de fonctionnement du système. Les deux approches sont illustrées sur des exemples de dégradation d’un système de régulation de niveau d’eau, d’une machine asynchrone et d’une batterie Li-Ion. / The research presented in this thesis deals of diagnosis and prognosis of complex systems. It presents two approaches that generate useful indicators for optimizing maintenance strategies. Specifically, these approaches are used to assess the level of degradation and estimate the Remaining Useful Life of the system. The aim of these approaches is to overcome for the lack of degradation indicators. The developments are based on observers, Hidden Markov Model formalism, statistical inference methods and learning-based methods in order to characterize and predict the system operating modes. To illustrate the proposed failure diagnosis/prognosis approaches, a simulated tank level control system, an induction motor and a Li-Ion battery were used.
29

Modélisation de signaux temporels hautes fréquences multicapteurs à valeurs manquantes : Application à la prédiction des efflorescences phytoplanctoniques dans les rivières et les écosystèmes marins côtiers / Modelling of high frequency time signals, multisensors with missing values : predicting application to algal blooms in rivers and coastal aquatic ecosystems

Rousseeuw, Kévin 11 December 2014 (has links)
La prise de conscience des problèmes d'environnement et des effets directs et indirects des activités humaines a conduit à renforcer la surveillance haute fréquence des écosystèmes marins par l'installation de stations de mesures multicapteurs autonomes. Les capteurs, installés dans des milieux hostiles, sont sujets à des périodes de calibration, d'entretien voire des pannes et sont donc susceptibles de générer des données bruitées, manquantes voire aberrantes qu'il est nécessaire de filtrer et compléter avant toute exploitation ultérieure. Dans ce contexte, l'objectif du travail est de concevoir un système numérique automatisé robuste capable de traiter de tel volume de données afin d’améliorer les connaissances sur la qualité des systèmes aquatiques, et plus particulièrement en considérant le déterminisme et la dynamique des efflorescences du phytoplancton. L'étape cruciale est le développement méthodologique de modèles de prédiction des efflorescences du phytoplancton permettant aux utilisateurs de disposer de protocoles adéquats. Nous proposons pour cela l'emploi du modèle de Markov caché hybridé pour la détection et la prédiction des états de l'environnement (caractérisation des phases clefs de la dynamique et des caractéristiques hydrologiques associées). L'originalité du travail est l'hybridation du modèle de Markov par un algorithme de classification spectrale permettant un apprentissage non supervisé conjoint de la structure, sa caractérisation et la dynamique associée. Cette approche a été appliquée sur trois bases de données réelles : la première issue de la station marine instrumentée MAREL Carnot (Ifremer) (2005-2009), la seconde d’un système de type Ferry Box mis en œuvre en Manche orientale en 2012 et la troisième d’une station de mesures fixe, installée le long de la rivière Deûle en 2009 (Agence de l’Eau Artois Picardie - AEAP). Le travail s’inscrit dans le cadre d’une collaboration étroite entre l'IFREMER, le LISIC/ULCO et l'AEAP afin de développer des systèmes optimisés pour l’étude de l’effet des activités anthropiques sur le fonctionnement des écosystèmes aquatiques et plus particulièrement dans le contexte des efflorescences de l’algue nuisible, Phaeocystis globosa. / Because of the growing interest for environmental issues and to identify direct and indirect effects of anthropogenic activities on ecosystems, environmental monitoring programs have recourse more and more frequently to high resolution, autonomous and multi-sensor instrumented stations. These systems are implemented in harsh environment and there is a need to stop measurements for calibration, service purposes or just because of sensors failure. Consequently, data could be noisy, missing or out of range and required some pre-processing or filtering steps to complete and validate raw data before any further investigations. In this context, the objective of this work is to design an automatic numeric system able to manage such amount of data in order to further knowledge on water quality and more precisely with consideration about phytoplankton determinism and dynamics. Main phase is the methodological development of phytoplankton bloom forecasting models giving the opportunity to end-user to handle well-adapted protocols. We propose to use hybrid Hidden Markov Model to detect and forecast environment states (identification of the main phytoplankton bloom steps and associated hydrological conditions). The added-value of our approach is to hybrid our model with a spectral clustering algorithm. Thus all HMM parameters (states, characterisation and dynamics of these states) are built by unsupervised learning. This approach was applied on three data bases: first one from the marine instrumented station MAREL Carnot (Ifremer) (2005-2009), second one from a Ferry Box system implemented in the eastern English Channel en 2012 and third one from a freshwater fixed station in the river Deûle in 2009 (Artois Picardie Water Agency). These works fall within the scope of a collaboration between IFREMER, LISIC/ULCO and Artois Picardie Water Agency in order to develop optimised systems to study effects of anthropogenic activities on aquatic systems functioning in a regional context of massive blooms of the harmful algae, Phaeocystis globosa.
30

Étude des fonctions B-splines pour la fusion d'images segmentées par approche bayésienne / Study of B-spline function for fusion of segmented images by Bayesian approach

Hadrich Ben Arab, Atizez 02 December 2015 (has links)
Dans cette thèse nous avons traité le problème de l'estimation non paramétrique des lois de probabilités. Dans un premier temps, nous avons supposé que la densité inconnue f a été approchée par un mélange de base B-spline quadratique. Puis, nous avons proposé un nouvel estimateur de la densité inconnue f basé sur les fonctions B-splines quadratiques, avec deux méthodes d'estimation. La première est base sur la méthode du maximum de vraisemblance et la deuxième est basée sur la méthode d'estimation Bayésienne MAP. Ensuite, nous avons généralisé notre étude d'estimation dans le cadre du mélange et nous avons proposé un nouvel estimateur du mélange de lois inconnues basé sur les deux méthodes d'estimation adaptées. Dans un deuxième temps, nous avons traité le problème de la segmentation statistique semi supervisée des images en se basant sur le modèle de Markov caché et les fonctions B-splines. Nous avons montré l'apport de l'hybridation du modèle de Markov caché et les fonctions B-splines en segmentation statistique bayésienne semi supervisée des images. Dans un troisième temps, nous avons présenté une approche de fusion basée sur la méthode de maximum de vraisemblance, à travers l'estimation non paramétrique des probabilités, pour chaque pixel de l'image. Nous avons ensuite appliqué cette approche sur des images multi-spectrales et multi-temporelles segmentées par notre algorithme non paramétrique et non supervisé. / In this thesis we are treated the problem of nonparametric estimation probability distributions. At first, we assumed that the unknown density f was approximated by a basic mixture quadratic B-spline. Then, we proposed a new estimate of the unknown density function f based on quadratic B-splines, with two methods estimation. The first is based on the maximum likelihood method and the second is based on the Bayesian MAP estimation method. Then we have generalized our estimation study as part of the mixture and we have proposed a new estimator mixture of unknown distributions based on the adapted estimation of two methods. In a second time, we treated the problem of semi supervised statistical segmentation of images based on the hidden Markov model and the B-sline functions. We have shown the contribution of hybridization of the hidden Markov model and B-spline functions in unsupervised Bayesian statistical image segmentation. Thirdly, we presented a fusion approach based on the maximum likelihood method, through the nonparametric estimation of probabilities, for each pixel of the image. We then applied this approach to multi-spectral and multi-temporal images segmented by our nonparametric and unsupervised algorithm.

Page generated in 0.0778 seconds