Spelling suggestions: "subject:"modèles multiéchelles"" "subject:"modèles multiéchelle""
1 |
Modélisation multi-échelles de réservoir et calage d'historique de production / Multiscale simulation of reservoir and history-matchingGardet, Caroline 14 November 2014 (has links)
Dans cette thèse, nous proposons deux algorithmes multi-échelles pour la simulation de modèles géologiques de réservoir. Le premier algorithme relève des méthodes géostatistiques à deux points. Il s'agit d'une simulation séquentielle Gaussienne avec variable secondaire. Dans notre approche multi-échelle, la variable secondaire est supposée connue à une deuxième échelle, de résolution plus grossière. Elle représente alors la tendance ou moyenne de la variable principale. A partir d'une paramétrisation adéquate, on montre que le calage des propriétés du modèle géologique à l'échelle grossière est plus efficace que le calage de ces mêmes propriétés à l'échelle fine. Notre méthode est applicable aux variables continues et aux variables discrètes.Le deuxième algorithme est une adaptation d'un algorithme de synthèse de texture aux problèmes de réservoir. C'est un algorithme de simulation multipoints qui nécessite l'utilisation d'une image d'entrainement. Il permet de reproduire des objets géologiques de formes complexes comme des chenaux ou des réseaux de fractures. Comme tous les algorithmes multipoints, il requiert des temps de calcul important. Nous montrons alors comment l'introduction d'une échelle intermédiaire permet de diminuer ce temps de calcul et d'améliorer la reproduction des grandes structures. Nous testons deux techniques pour diminuer davantage encore le temps de calcul : le scan partiel de l'image d'entrainement ou l'organisation des informations extraites de cette même image. / In this manuscript, we propose two multiscale algorithms for the simulation of geological reservoir models.The first algorithm is based on two-points statistics methods. It is based upon the sequential Gaussian simulation with a secondary variable. In our multiscale approach, the scale of the secondary variable is considered as a second scale of coarser resolution. It represents the trend or the average of the primary variable. In the context of history-matching, it can be shown that adjusting the properties of the geological model at the coarse scale is more effective than doing the same at the fine scale provided a suitable parameterization technique is used. Our method holds for both continuous and discrete variables. The second algorithm is rooted in texture synthesis techniques developed in computer graphics and modified to cope with reservoir simulation. This is a multipoint simulation algorithm. As such, it requires the use of a training image. It permits to simulates complex geological objects like channels or networks of fractures. However, as all multipoint algorithms, it requires significant computation times. We show how the introduction of an intermediate scale reduces the computation time and improves the reproduction of large structures. We also test two techniques to further reduce the computation time: the partial scan of the training image and the preliminary organization of the information extracted from this image.
|
2 |
Analyse mathématique et numérique de modèles pour les matériaux, de l'échelle microscopique à l'échelle macroscopiqueLelievre, Tony 03 June 2009 (has links) (PDF)
La première partie du mémoire concerne l'étude de modèles multi-échelles (ou micro-macro) pour les fluides complexes. L'intérêt de ces modèles est d'éviter d'avoir à postuler des lois de comportements phénoménologiques, en couplant une description macroscopique classique (lois de conservations de la quantité de mouvement et de la masse) sur la vitesse et la pression, à des modèles microscopiques pour l'évolution des microstructures dans le fluide, à l'origine du caractère non-newtonien du fluide. La loi de comportement consiste alors à exprimer le tenseur des contraintes en fonction de la conformation des microstructures. Durant la thèse, nous avons obtenu quelques résultats d'existence et de convergence des méthodes numériques utilisées pour ces modèles. Plus récemment, nous proposons une méthode numérique pour coupler des modèles micro-macro (fins mais chers) avec des modèles macroscopiques (plus grossiers, mais beaucoup plus économiques en temps de calcul). Nous analysons par ailleurs une méthode de résolution des équations aux dérivées partielles en grande dimension qui a été proposée dans le contexte de la résolution numérique des modèles à l'échelle microscopique pour les fluides polymériques.<br /><br />L'essentiel de nos travaux les plus récents sur le sujet concerne le comportement en temps long de ces modèles, avec un double objectif : théoriquement, la compréhension des modèles physiques passe souvent par l'étude de la stabilité des solutions stationnaires, et de la vitesse de convergence vers l'équilibre ; numériquement, la stabilité des schémas en temps long est cruciale, car on utilise typiquement des simulations instationnaires en temps long pour calculer des solutions stationnaires. Nous montrons comment analyser le comportement des modèles micro-macro en temps long, en utilisant des méthodes d'entropie. Cette étude a ensuite permis de comprendre le comportement en temps long de modèles macroscopiques standard (type Oldroyd-B), et de préciser sous quelles conditions les schémas numériques vérifient des propriétés similaires de stabilité en temps long.<br /><br /><br />La seconde partie du mémoire résume des travaux en simulation moléculaire, à l'échelle quantique, ou à l'échelle de la dynamique moléculaire classique. A l'échelle quantique, nous nous intéressons aux méthodes Quantum Monte Carlo. Il s'agit de méthodes numériques probabilistes pour calculer l'état fondamental d'une molécule (plus petite valeur propre de l'opérateur de Schrödinger à N corps). Essentiellement, il s'agit de donner une interprétation probabiliste du problème par des formules de Feynman-Kac, afin de pouvoir appliquer des méthodes de Monte Carlo (bien adaptées pour des problèmes de ce type, en grande dimension). Nous proposons tout d'abord une étude théorique de la méthode Diffusion Monte Carlo, et notamment<br />d'un biais introduit par l'interprétation probabiliste (appelé fixed node approximation). Nous analysons ensuite les méthodes numériques utilisées en Diffusion Monte Carlo, et proposons une nouvelle stratégie pour améliorer l'échantillonnage des méthodes Variational Monte Carlo.<br /><br />En dynamique moléculaire, nous étudions des méthodes numériques pour le calcul de différences d'énergie libre. Les modèles consistent à décrire l'état d'un système par la position (et éventuellement la vitesse) de particules (typiquement les positions des noyaux dans un système moléculaire), qui interagissent au travers d'un potentiel (qui idéalement proviendrait d'un calcul de mécanique quantique pour déterminer l'état fondamental des électrons pour une position donnée des noyaux). L'objectif est de calculer des moyennes par rapport à la mesure de Boltzmann-Gibbs associée à ce potentiel (moyennes dans l'ensemble canonique). Mathématiquement, il s'agit d'un problème d'échantillonnage de mesures métastables (ou multi-modales), en très grande dimension. La particularité de la dynamique moléculaire est que, bien souvent, on a quelques informations sur les "directions de métastabilité" au travers de coordonnées de réaction. En utilisant cette donnée, de nombreuses méthodes ont été proposées pour permettre l'échantillonnage de la mesure de Boltzmann-Gibbs. Dans une série de travaux, nous avons analysé les méthodes basées sur des équations différentielles stochastiques avec contraintes (dont les solutions vivent sur des sous-variétés définies comme des lignes de niveaux de la coordonnée de réaction). Il s'agit en fait d'analyser des méthodes d'échantillonnage de mesures définies sur des sous-variétés de grande dimension. Plus récemment, nous avons étudié des méthodes adaptatives qui ont été proposées pour se débarrasser des métastabilités. Mathématiquement, il s'agit de méthodes d'échantillonnage préférentiel, avec une fonction d'importance qui est calculée au cours de la simulation de manière adaptative. Nous avons étudié la vitesse de convergence vers la mesure d'équilibre pour ces méthodes adaptatives, en utilisant des méthodes d'entropie. Nous avons proposé de nouvelles méthodes numériques à la communauté appliquée pour utiliser au mieux ces idées.<br /><br /><br />La troisième partie du mémoire résume des travaux issus d'une collaboration avec l'entreprise Rio Tinto (anciennement Pechiney puis Alcan), leader mondial pour la technologie des cuves d'électrolyse de l'aluminium. Cette collaboration a été entamée il y a plusieurs années par C. Le Bris, et notamment au travers de la thèse de J-F. Gerbeau. Mathématiquement, il s'agit d'analyser et de discrétiser les équations de la magnétohydrodynamique pour deux fluides incompressibles non miscibles, séparés par une interface libre. Nous expliquons le contexte industriel et la modélisation, nous résumons la méthode numérique adoptée (méthode Arbitrary Lagrangian Eulerian) et donnons quelques propriétés satisfaites par le schéma (stabilité, conservation de la masse). Nous montrons ensuite comment ce modèle permet d'étudier un phénomène (potentiellement déstabilisant) observé dans les cuves d'électrolyse : le rolling. Ces résultats ont été pour la plupart obtenus durant la thèse.<br /><br />Plus récemment, dans le prolongement de l'étude industrielle, nous nous sommes intéressés à un problème de modélisation fondamentale pour les écoulements à surface (ou interface) libre: le mouvement de la ligne de contact (i.e. le bord de la surface libre qui glisse le long de la paroi). En résumé, nos travaux consistent essentiellement en deux contributions: (i) une compréhension variationnelle d'une condition aux limites permettant de modéliser correctement le mouvement de la ligne de contact (Generalized Navier Boundary Condition), et son implémentation dans un schéma Arbitrary Lagrangian Eulerian, (ii) une analyse de la stabilité du schéma obtenu.
|
3 |
Contributions à la modélisation multi-échelles de la réponse immunitaire T-CD8 : construction, analyse, simulation et calibration de modèles / Contribution of the understanding of Friction Stir Welding of dissimilar aluminum alloys by an experimental and numerical approach : design, analysis, simulation and calibration of mathematical modelsBarbarroux, Loïc 03 July 2017 (has links)
Lors de l’infection par un pathogène intracellulaire, l’organisme déclenche une réponse immunitaire spécifique dont les acteurs principaux sont les lymphocytes T-CD8. Ces cellules sont responsables de l’éradication de ce type d’infections et de la constitution du répertoire immunitaire de l’individu. Les processus qui composent la réponse immunitaire se répartissent sur plusieurs échelles physiques inter-connectées (échelle intracellulaire, échelle d’une cellule, échelle de la population de cellules). La réponse immunitaire est donc un processus complexe, pour lequel il est difficile d’observer ou de mesurer les liens entre les différents phénomènes mis en jeu. Nous proposons trois modèles mathématiques multi-échelles de la réponse immunitaire, construits avec des formalismes différents mais liés par une même idée : faire dépendre le comportement des cellules TCD8 de leur contenu intracellulaire. Pour chaque modèle, nous présentons, si possible, sa construction à partir des hypothèses biologiques sélectionnées, son étude mathématique et la capacité du modèle à reproduire la réponse immunitaire au travers de simulations numériques. Les modèles que nous proposons reproduisent qualitativement et quantitativement la réponse immunitaire T-CD8 et constituent ainsi de bons outils préliminaires pour la compréhension de ce phénomène biologique. / Upon infection by an intracellular pathogen, the organism triggers a specific immune response,mainly driven by the CD8 T cells. These cells are responsible for the eradication of this type of infections and the constitution of the immune repertoire of the individual. The immune response is constituted by many processes which act over several interconnected physical scales (intracellular scale, single cell scale, cell population scale). This biological phenomenon is therefore a complex process, for which it is difficult to observe or measure the links between the different processes involved. We propose three multiscale mathematical models of the CD8 immune response, built with different formalisms but related by the same idea : to make the behavior of the CD8 T cells depend on their intracellular content. For each model, we present, if possible, its construction process based on selected biological hypothesis, its mathematical study and its ability to reproduce the immune response using numerical simulations. The models we propose succesfully reproduce qualitatively and quantitatively the CD8 immune response and thus constitute useful tools to further investigate this biological phenomenon.
|
4 |
Mathematical modelling of blood coagulation and thrombus formation under flow in normal and pathological conditions / Modélisation mathématique de la coagulation sanguine et la formation du thrombus sous l'écoulement dans les conditions normales et pathologiquesBouchnita, Anass 04 December 2017 (has links)
Cette thèse est consacrée à la modélisation mathématique de la coagulation sanguine et de la formation de thrombus dans des conditions normales et pathologiques. La coagulation sanguine est un mécanisme défensif qui empêche la perte de sang suite à la rupture des tissus endothéliaux. C'est un processus complexe qui est règlementé par différents mécanismes mécaniques et biochimiques. La formation du caillot sanguin a lieu dans l'écoulement sanguin. Dans ce contexte, l'écoulement à faible taux de cisaillement stimule la croissance du caillot tandis que la circulation sanguine à fort taux de cisaillement la limite. Les désordres qui affectent le système de coagulation du sang peuvent provoquer différentes anomalies telles que la thrombose (coagulation exagérée) ou les saignements (insuffisance de coagulation). Dans la première partie de la thèse, nous présentons un modèle mathématique de coagulation sanguine. Le modèle capture la dynamique essentielle de la croissance du caillot dans le plasma et le flux sanguin quiescent. Ce modèle peut être réduit à un modèle qui consiste en une équation de génération de thrombine et qui donne approximativement les mêmes résultats. Nous avons utilisé des simulations numériques en plus de l'analyse mathématique pour montrer l'existence de différents régimes de coagulation sanguine. Nous spécifions les conditions pour ces régimes sur différents paramètres pathophysiologiques du modèle. Ensuite, nous quantifions les effets de divers mécanismes sur la croissance du caillot comme le flux sanguin et l'agrégation plaquettaire. La partie suivante de la thèse étudie certaines des anomalies du système de coagulation sanguine. Nous commençons par étudier le développement de la thrombose chez les patients présentant une carence en antihrombine ou l'une des maladies inflammatoires. Nous déterminons le seuil de l'antithrombine qui provoque la thrombose et nous quantifions l'effet des cytokines inflammatoires sur le processus de coagulation. Puis, nous étudions la compensation de la perte du sang après un saignement en utilisant un modèle multi-échelles qui décrit en particulier l'érythropoïèse et la production de l'hémoglobine. Ensuite, nous évaluons le risque de thrombose chez les patients atteints de cancer (le myélome multiple en particulier) et le VIH en combinant les résultats du modèle de coagulation sanguine avec les produits des modèles hybrides (discret-continues) multi-échelles des systèmes physiologiques correspondants. Finalement, quelques applications cliniques possibles de la modélisation de la coagulation sanguine sont présentées. En combinant le modèle de formation du caillot avec les modèles pharmacocinétiques pharmacodynamiques (PK-PD) des médicaments anticoagulants, nous quantifions l'action de ces traitements et nous prédisons leur effet sur des patients individuels / This thesis is devoted to the mathematical modelling of blood coagulation and clot formation under flow in normal and pathological conditions. Blood coagulation is a defensive mechanism that prevents the loss of blood upon the rupture of endothelial tissues. It is a complex process that is regulated by different mechanical and biochemical mechanisms. The formation of the blood clot takes place in blood flow. In this context, low-shear flow stimulates clot growth while high-shear blood circulation limits it. The disorders that affect the blood clotting system can provoke different abnormalities such thrombosis (exaggerated clotting) or bleeding (insufficient clotting). In the first part of the thesis, we introduce a mathematical model of blood coagulation. The model captures the essential dynamics of clot growth in quiescent plasma and blood flow. The model can be reduced to a one equation model of thrombin generation that gives approximately the same results. We used both numerical simulations and mathematical investigation to show the existence of different regimes of blood coagulation. We specify the conditions of these regimes on various pathophysiological parameters of the model. Then, we quantify the effects of various mechanisms on clot growth such as blood flow and platelet aggregation. The next part of the thesis studies some of the abnormalities of the blood clotting system. We begin by investigating the development of thrombosis in patients with antihrombin deficiency and inflammatory diseases. We determine the thrombosis threshold on antithrombin and quantify the effect of inflammatory cytokines on the coagulation process. Next, we study the recovery from blood loss following bleeding using a multiscale model which focuses on erythropoiesis and hemoglobin production. Then, we evaluate the risk of thrombosis in patients with cancer (multiple myeloma in particular) and HIV by combining the blood coagulation model results with the output of hybrid multiscale models of the corresponding physiological system. Finally, possible clinical applications of the blood coagulation modelling are provided. By combining clot formation model with pharmacokinetics-pharmacodynamics (PK-PD) models of anticoagulant drugs, we quantify the action of these treatments and predict their effect on individual patients
|
Page generated in 0.0723 seconds