• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 473
  • 159
  • 54
  • 52
  • 50
  • 34
  • 24
  • 20
  • 20
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1086
  • 171
  • 121
  • 106
  • 94
  • 79
  • 72
  • 71
  • 69
  • 67
  • 65
  • 63
  • 62
  • 60
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

[pt] CRIPTOGRAFIA NA EDUCAÇÃO BÁSICA: DAS ESCRITAS OCULTAS AO CÓDIGO RSA / [en] ENCRYPTION IN BASIC EDUCATION: FROM THE HIDDEN CODE WRITTEN TO RSA

IGOR NASCIMENTO DA SILVA 06 October 2016 (has links)
[pt] Essa dissertação se propõe a introduzir nas aulas de matemática da escola básica um tema que traga significado e interesse ao alunado e que, a partir dele, seja possível desenvolver conteúdos novos e clássicos da disciplina, pertinentes a esse nível de escolaridade. O tema escolhido foi a criptografia que possibilitou o desenvolvimento de uma abordagem histórica da sua evolução até o código RSA, a promoção de discussões sobre a relevância atual do assunto até os nossos dias e o trabalho com conteúdos importantes da matemática. Com o intuito de aprimorar e avaliar a proposta, uma pequena aplicação numa escola pública foi feita, através de uma oficina, com resultados bastante satisfatórios. Pretende-se que este trabalho seja mais uma fonte para auxiliar diversos professores na construção de novas propostas pedagógicas adaptadas à realidade de cada sala de aula com olhar motivador, significativo e contemporâneo. / [en] This dissertation proposes to introduce in the math class of the elementary school a theme that brings meaning and interest to the students and, from it, it is possible to develop new and classic content, relevant discipline at this level of education. The theme chosen was the encryption that made possible the development of a historical approach of its development until the RSA code, the promotion of discussions on the current relevance of the subject until our days and working with important content of mathematics. In order to improve and evaluate the proposal, a small application in a public school was made, through a workshop, with results quite satisfactory. It is intended that this work is more a source to assist several teachers in the construction of new pedagogical proposals adapted to the reality of each classroom with motivating, meaningful and contemporary look.
172

Fast prime field arithmetic using novel large integer representation

Alhazmi, Bader Hammad 10 July 2019 (has links)
Large integers are used in several key areas such as RSA (Rivest-Shamir-Adleman) public-key cryptographic system and elliptic curve public-key cryptographic system. To achieve higher levels of security requires larger key size and this becomes a limiting factor in prime finite field GF(p) arithmetic using large integers because operations on large integers suffer from the long carry propagation problem. Large integer representation has direct impact on the efficiency of the calculations and the hardware and software implementations. Attempts to use different representations such as residue number systems suffer from their own problems. In this dissertation, we propose a novel and efficient attribute-based large integer representation scheme capable of efficiently representing the large integers that are commonly used in cryptography such as the five NIST primes and the Pierpont primes used in supersingular isogeny Diffie-Hellman (SIDH) used in post-quantum cryptography. Moreover, we propose algorithms for this new representation to perform arithmetic operations such as conversions from and to binary representation, two’s complement, left-shift, numbers comparison, addition/subtraction, modular addition/subtraction, modular reduction, multiplication, and modular multiplication. Extensive numerical simulations and software implementations are done to verify the performance of the new number representation. Results show that the attribute-based large integer arithmetic operations are done faster in our proposed representation when compared with binary and residue number representations. This makes the proposed representation suitable for cryptographic applications on embedded systems and IoT devices with limited resources for better security level. / Graduate / 2020-07-04
173

Design and implementation of high-speed algorithms for public-key cryptosystems

Joseph, George 09 June 2005 (has links)
The aim of this dissertation is to improve computational efficiency of modular exponentiation-based public-key cryptosystems. The operational speed of these public-key cryptosystems is largely determined by the modular exponentiation operation of the form A = ge mod m where g is the base, e is the exponent and m is the modulus. The required modular exponentiation is computed by a series of modular multiplications. Optimized algorithms are required for various platforms, especially for lower-end platforms. These require the algorithms to be efficient and consume as little resources as possible. In these dissertation algorithms for integer multiplication, modular reduction and modular exponentiation, was developed and implemented in software, as required for public-key cryptography. A detailed analysis of these algorithms is given, as well as exact measurement of the computational speed achieved by each algorithm. This research shows that a total speed improvement of 13% can be achieved on existing modular exponentiation based public-key cryptosystems, in particular for the RSA cryptosystem. Three novel approaches are also presented for improving the decryption speed efficiency of the RSA algorithm. These methods focus on the selection of the decryption exponent by careful consideration of the difference between the two primes p and q. The resulting reduction of the decryption exponent improves the decryption speed by approximately 45%. / Dissertation (MEng (Electronics))--University of Pretoria, 2006. / Electrical, Electronic and Computer Engineering / unrestricted
174

Modularisdering som produktstrategi : Fördelar, utmaningar och kundanpassning vid utveckling av modulära produkter / Modularization as product strategy : Benefits, challenges and customization in the development of modular products

Abdel-Daim, Felicia, Schelin, Matilda January 2023 (has links)
Syftet med studien var att studera fördelar samt utmaningar med att använda sig av modularisering. Vidare var syftet att undersöka hur kundens önskemål tas i beaktning vid produktutvecklingsprocessen för modulära produkter. Studien avgränsades till att undersöka ett svenskt teknikintensivt företag vars huvudsakliga produkterbjudande är lastbilar och bussar. En litteraturstudie genomfördes och låg till grund för resten av rapporten. Dessutom är rapporten baserad på en kvalitativ empirisk studie bestående av semistrukturerade intervjuer. Samtliga respondenter har goda kunskaper om modularisering och arbetar på olika avdelningar hos det studerade företaget. Studien visar många fördelar och utmaningar med att ha en modulär produktarkitektur. En av de främsta fördelarna är en stor slutproduktsvariantbildning vilket möjliggör skapande av högst kundanpassade produkter. Produktarkitekturen skapar tillfredsställda kunder som är- villiga att betala ett högre pris. Inom produktion leder den modulära produktarkitekturen till ett effektivare arbete samt kortare ledtider. Produkterna tillverkas efter order vilket minskar lagernivåerna samt logistikkostnaderna. Vid produktutveckling är det av stor betydelse att förhålla sig till befintliga gränssnitt och formfaktorer vilket gör att det krävs mer tankeverksamhet samt att kompromisser ibland behöver göras. Det är ett komplext system i många aspekter vilket ökar behovet av en stark företagskultur och en stabil IT-infrastruktur. / This report aims to study the benefits and challenges of using modularization. The purpose was also to investigate how customer requirements are taken into account in the product development process for modular products. The study was limited to examining a Swedish technology-intensive company whose main product offerings are trucks and buses. A literature review served as the basis for the rest of the report. In addition, the report is based on a qualitative empirical study consisting of semi-structured interviews. All respondents have good knowledge of modularization and work in different departments at the studied company. The study demonstrated many advantages and challenges of having a modular product architecture. One of the primary benefits was a large number of possible end product variations, which allows for highly customized products. Thus, the product architecture enables satisfied customers, making them willing to pay a higher price. In production, the modular product architecture leads to more efficient work and shorter lead times. Products are manufactured by make-to-order, reducing inventory levels and logistics costs. In product development, it is crucial to adhere to existing interfaces and form factors, which requires more thoughtful consideration and sometimes compromises. It is a complex system in many aspects, increasing the need for a strong corporate culture and a stable IT-infrastructure.
175

Utilization of heat from a nuclear high temperature cooled modulator reactor in a crude oil refinery : techno-economic feasibility analysis / Alistair Ian Herbert

Herbert, Alistair Ian January 2014 (has links)
This research project will investigate the potential business case and technical feasibility of using nuclear generated heat in a crude oil refinery located some distance away. The key design element is an energy transportation mechanism that doesn’t compromise the safety, licensing or operability of the nuclear plant. In a crude oil refinery processing heat is generated by combusting fuels that are generally sellable products. The inherent safety features and high output temperature of a HTGR make it an appropriate replacement heat source for such a processing plant. An opportunity thus exists to replace the refinery hydrocarbon fuel usage with nuclear energy thereby improving refinery profitability. Three alternate proposed were generated. Alt 1: Generation of steam at HTGR, piped to the refinery to replace current supply. Alt 2: Closed loop reversible methanation reaction delivering potential chemical energy to the refinery which is released to the process in heat exchangers. Alt 3: Hydrogen production from water splitting at the HTGR, piped to the refinery and combusted in boilers or used for hydrotreating diesel. Utilizing data from refinery plant historian and journals, a basic engineering study assessed technical feasibility thereof. An economic model for the 2 most promising alternates was set up using quotations and factored data and evaluated against the existing refinery situation. A consistently increasing crude price was assumed. Alternates 1, 2 and 3 proved technically feasible and delivered 86 MW, 59 MW and 48MW to the refinery respectively. Generating steam at the HTGR (Alt 1) demonstrated an attractive business case, strengthened by co-locating the nuclear plant at the refinery. It is therefore concluded that using a HTGR for process heat in a petrochemical plant such as a refinery is techno-economically practical and demands further consideration. If future carbon emission legislation is promulgated this proposal will be key component of the solution. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
176

Utilization of heat from a nuclear high temperature cooled modulator reactor in a crude oil refinery : techno-economic feasibility analysis / Alistair Ian Herbert

Herbert, Alistair Ian January 2014 (has links)
This research project will investigate the potential business case and technical feasibility of using nuclear generated heat in a crude oil refinery located some distance away. The key design element is an energy transportation mechanism that doesn’t compromise the safety, licensing or operability of the nuclear plant. In a crude oil refinery processing heat is generated by combusting fuels that are generally sellable products. The inherent safety features and high output temperature of a HTGR make it an appropriate replacement heat source for such a processing plant. An opportunity thus exists to replace the refinery hydrocarbon fuel usage with nuclear energy thereby improving refinery profitability. Three alternate proposed were generated. Alt 1: Generation of steam at HTGR, piped to the refinery to replace current supply. Alt 2: Closed loop reversible methanation reaction delivering potential chemical energy to the refinery which is released to the process in heat exchangers. Alt 3: Hydrogen production from water splitting at the HTGR, piped to the refinery and combusted in boilers or used for hydrotreating diesel. Utilizing data from refinery plant historian and journals, a basic engineering study assessed technical feasibility thereof. An economic model for the 2 most promising alternates was set up using quotations and factored data and evaluated against the existing refinery situation. A consistently increasing crude price was assumed. Alternates 1, 2 and 3 proved technically feasible and delivered 86 MW, 59 MW and 48MW to the refinery respectively. Generating steam at the HTGR (Alt 1) demonstrated an attractive business case, strengthened by co-locating the nuclear plant at the refinery. It is therefore concluded that using a HTGR for process heat in a petrochemical plant such as a refinery is techno-economically practical and demands further consideration. If future carbon emission legislation is promulgated this proposal will be key component of the solution. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
177

Domain-specific environment generation for modular software model checking

Tkachuk, Oksana January 1900 (has links)
Doctor of Philosophy / Department of Computing and Information Sciences / Matthew Dwyer / John M. Hatcliff / To analyze an open system, one needs to close it with a definition of its environment, i.e., its execution context. Environment modeling is a significant challenge: environment models should be general enough to permit analysis of large portions of a system's possible behaviors, yet sufficiently precise to enable cost-effective reasoning. This thesis presents the Bandera Environment Generator (BEG), a toolset that automates generation of environment models to provide a restricted form of modular model checking of Java programs, where the module's source code is the subject of analysis along with an abstract model of the environment's behavior. Since the most general environments do not allow for tractable model checking, BEG has support for restricting the environment behavior based on domain-specific knowledge and assumptions about the environment behavior, which can be acquired from a variety of sources. When the environment code is not available, developers can encode their assumptions as an explicit formal specification. When the environment code is available, BEG employs static analyses to extract environment assumptions. Both specifications and static analyses can be tuned to reflect domain-specific knowledge, i.e., to describe domain-specific aspects of the environment behavior. Initially, BEG was implemented to handle general Java applications; later, it was extended to handle two specific domains: Graphical User Interfaces (GUI) implemented using the Swing/AWT libraries and web applications implemented using the J2EE framework. BEG was evaluated on several non-trivial case studies, including industrial applications from NASA, SUN, and Fujitsu. This thesis presents the domain-specific environment generation for GUI and web applications and describes BEG, its extensible architecture, usage, and how it can be extended to handle new domains.
178

ARCHITECTURE DISTRIBUTED ON EUROPEAN LAUNCHER

Blondeau, Fabrice 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Space vehicle telemetry requirements have evolved considerably over the past decade. More and more onboard data need to be acquired, not only for purposes of launch vehicle qualification in flight, but also for calibrating simulations. The flexibility required of the architecture has also changed the hardware considerably in order to fit into many different configurations without redoing the whole equipment development. EADS-LV accommodates these evolving needs and costs with a modular, distributed Telemetry channel architecture. This uses a single product line to meet the various needs ranging from the small launch vehicle to the heavy Ariane 5 vehicles.
179

A toolbox for multi-objective optimisation of low carbon powertrain topologies

Mohan, Ganesh 05 1900 (has links)
Stricter regulations and evolving environmental concerns have been exerting ever-increasing pressure on the automotive industry to produce low carbon vehicles that reduce emissions. As a result, increasing numbers of alternative powertrain architectures have been released into the marketplace to address this need. However, with a myriad of possible alternative powertrain configurations, which is the most appropriate type for a given vehicle class and duty cycle? To that end, comparative analyses of powertrain configurations have been widely carried out in literature; though such analyses only considered limited types of powertrain architectures at a time. Collating the results from these literature often produced findings that were discontinuous, which made it difficult for drawing conclusions when comparing multiple types of powertrains. The aim of this research is to propose a novel methodology that can be used by practitioners to improve the methods for comparative analyses of different types of powertrain architectures. Contrary to what has been done so far, the proposed methodology combines an optimisation algorithm with a Modular Powertrain Structure that facilitates the simultaneous approach to optimising multiple types of powertrain architectures. The contribution to science is two-folds; presenting a methodology to simultaneously select a powertrain architecture and optimise its component sizes for a given cost function, and demonstrating the use of multi-objective optimisation for identifying trade-offs between cost functions by powertrain architecture selection. Based on the results, the sizing of the powertrain components were influenced by the power and energy requirements of the drivecycle, whereas the powertrain architecture selection was mainly driven by the autonomy range requirements, vehicle mass constraints, CO2 emissions, and powertrain costs. For multi-objective optimisation, the creation of a 3-dimentional Pareto front showed multiple solution points for the different powertrain architectures, which was inherent from the ability of the methodology to concurrently evaluate those architectures. A diverging trend was observed on this front with the increase in the autonomy range, driven primarily by variation in powertrain cost per kilometre. Additionally, there appeared to be a trade-off in terms of electric powertrain sizing between CO2 emissions and lowest mass. This was more evident at lower autonomy ranges, where the battery efficiency was a deciding factor for CO2 emissions. The results have demonstrated the contribution of the proposed methodology in the area of multi-objective powertrain architecture optimisation, thus addressing the aims of this research.
180

Transient & steady-state thermodynamic modeling of modular data centers

Khalid, Rehan 27 May 2016 (has links)
The data center industry currently focuses on initiatives to reduce its enormous energy consumption and minimize its adverse environmental impact. Modular data centers provide considerable operational flexibility in that they are mobile, and are manufactured using standard containers. This thesis aims at developing steady-state energy and exergy destruction models for modular data centers using four different cooling approaches: direct expansion cooling, direct and indirect evaporative cooling, and free air cooling. Furthermore, transient thermal response of these data centers to dynamic loads, such as varying server load through change in user requirement over the cloud, and/or to changes in outside weather conditions has been studied. The effect of server thermal mass has also been accounted for in developing the transient regime. The change in performance of the data center is reported through changes in the Power Usage Effectiveness (PUE) metric, and through change in the exergy destruction in the individual hot and cold aisles. The core simulation software used for this work is EnergyPlus, an open source software from the U.S. Department of Energy. Moreover, EnergyPlus is used as the simulation engine within the in-house developed software package Data Center EnergyPlus (DCE+).

Page generated in 0.0497 seconds