• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 24
  • 19
  • 13
  • 13
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

3-adic Properties of Hecke Traces of Singular Moduli

Beazer, Miriam 19 July 2021 (has links)
As shown by Zagier, singular moduli can be represented by the coefficients of a certain half integer weight modular form. Congruences for singular moduli modulo arbitrary primes have been proved by Ahlgren and Ono, Edixhoven, and Jenkins. Computation suggests that stronger congruences hold for small primes $p \in \{2, 3, 5, 7, 11\}$. Boylan proved stronger congruences hold in the case where $p=2$. We conjecture congruences for singular moduli modulo powers of $p \in \{3, 5, 7, 11\}$. In particular, we study the case where $p=3$ and reduce the conjecture to a congruence for a simpler modular form.
22

Congruences for Coefficients of Modular Functions in Levels 3, 5, and 7 with Poles at 0

Keck, Ryan Austin 01 March 2020 (has links)
We give congruences modulo powers of p in {3, 5, 7} for the Fourier coefficients of certain modular functions in level p with poles only at 0, answering a question posed by Andersen and Jenkins and continuing work done by the Jenkins, the author, and Moss. The congruences involve a modulus that depends on the base p expansion of the modular form's order of vanishing at infinity.
23

Vector-Valued Mock Theta Functions

Williams, Clayton 01 August 2022 (has links)
Ramanujan introduced his now celebrated mock theta functions in 1920, grouping them into families parameterized by an integer called the order. In 2010 Bringmann and Ono discovered generalizations of Ramanujan's mock theta functions for any order relatively prime to 6; this result was later strengthened by Garvan in 2016. It was also shown that by adding suitable nonholomorphic completion terms to the mock theta functions the family of mock theta functions corresponding to a given order constitute a complex vector space which is closed under the action of the modular group. We strengthen the Bringmann, Ono, and Garvan result by constructing a vector-valued modular form of weight 1/2 transforming according the Weil representation for orders greater than 3 by introducing an algorithm which simultaneously numerically constructs the form and proves its transformation laws. We also explicitly construct the 7th order form and prove analytically that it has the proper modular transformations. It is conjectured the same method will apply for other orders.
24

Periods of modular forms and central values of L-functions

Hopkins, Kimberly Michele 21 October 2010 (has links)
This thesis is comprised of three problems in number theory. The introduction is Chapter 1. The first problem is to partially generalize the main theorem of Gross, Kohnen and Zagier to higher weight modular forms. In Chapter 2, we present two conjectures which do this and some partial results towards their proofs as well as numerical examples. This work provides a new method to compute coefficients of weight k+1/2 modular forms for k>1 and to compute the square roots of central values of L-functions of weight 2k>2 modular forms. Chapter 3 presents four different interpretations of the main construction in Chapter 2. In particular we prove our conjectures are consistent with those of Beilinson and Bloch. The second problem in this thesis is to find an arithmetic formula for the central value of a certain Hecke L-series in the spirit of Waldspurger's results. This is done in Chapter 4 by using a correspondence between special points in Siegel space and maximal orders in quaternion algebras. The third problem is to find a lower bound for the cardinality of the principal genus group of binary quadratic forms of a fixed discriminant. Chapter 5 is joint work with Jeffrey Stopple and gives two such bounds. / text
25

The Atkin operator on spaces of overconvergent modular forms and arithmetic applications

Vonk, Jan Bert January 2015 (has links)
We investigate the action of the Atkin operator on spaces of overconvergent p-adic modular forms. Our contributions are both computational and geometric. We present several algorithms to compute the spectrum of the Atkin operator, as well as its p-adic variation as a function of the weight. As an application, we explicitly construct Heegner-type points on elliptic curves. We then make a geometric study of the Atkin operator, and prove a potential semi-stability theorem for correspondences. We explicitly determine the stable models of various Hecke operators on quaternionic Shimura curves, and make a purely geometric study of canonical subgroups.
26

The Arithmetic of Modular Grids

Molnar, Grant Steven 01 July 2018 (has links)
Let Mk(∞) (Gamma, nu) denote the space of weight k weakly holomorphic weight modular forms with poles only at the cusp (∞), and let widehat Mk(∞) (Gamma, nu) subseteq Mk(∞) (Gamma, nu) denote the space of weight k weakly holomorphic modular forms in Mk(∞) (Gamma, nu) which vanish at every cusp other than (∞). We construct canonical bases for these spaces in terms of Maass--Poincaré series, and show that the coefficients of these bases satisfy Zagier duality.
27

Modular forms and converse theorems for Dirichlet series

Karlsson, Jonas January 2009 (has links)
<p>This thesis makes a survey of converse theorems for Dirichlet series. A converse theo-rem gives sufficient conditions for a Dirichlet series to be the Dirichlet series attachedto a modular form. Such Dirichlet series have special properties, such as a functionalequation and an Euler product. Sometimes these properties characterize the modularform completely, i.e. they are sufficient to prove the proper transformation behaviourunder some discrete group. The problem dates back to Hecke and Weil, and has morerecently been treated by Conrey et.al. The articles surveyed are:</p><ul><li>"An extension of Hecke's converse theorem", by B. Conrey and D. Farmer</li><li>"Converse theorems assuming a partial Euler product", by D. Farmer and K.Wilson</li><li>"A converse theorem for ¡0(13)", by B. Conrey, D. Farmer, B. Odgers and N.Snaith</li></ul><p>The results and the proofs are described. The second article is found to contain anerror. Finally an alternative proof strategy is proposed.</p>
28

Modular forms and converse theorems for Dirichlet series

Karlsson, Jonas January 2009 (has links)
This thesis makes a survey of converse theorems for Dirichlet series. A converse theo-rem gives sufficient conditions for a Dirichlet series to be the Dirichlet series attachedto a modular form. Such Dirichlet series have special properties, such as a functionalequation and an Euler product. Sometimes these properties characterize the modularform completely, i.e. they are sufficient to prove the proper transformation behaviourunder some discrete group. The problem dates back to Hecke and Weil, and has morerecently been treated by Conrey et.al. The articles surveyed are: "An extension of Hecke's converse theorem", by B. Conrey and D. Farmer "Converse theorems assuming a partial Euler product", by D. Farmer and K.Wilson "A converse theorem for ¡0(13)", by B. Conrey, D. Farmer, B. Odgers and N.Snaith The results and the proofs are described. The second article is found to contain anerror. Finally an alternative proof strategy is proposed.
29

Modular forms for triangle groups

Edvardsson, Elisabet January 2017 (has links)
Modular forms are important in different areas of mathematics and theoretical physics. The theory is well known for the modular group PSL(2,Z), but is also of interest for other Fuchsian groups. In this thesis we will be interested in triangle groups with a cusp. We review some theory about mapping of hyperbolic triangles in order to derive an expression for the Hauptmodul of a triangle group, and use this to write a SageMath-program that calculates the Fourier series of the Hauptmodul. We then review some of the results presented in [4] that describe generalizations of well known concepts such as the Eisenstein series, the Serre derivative and some general results about the algebra of modular forms for triangle groups with a cusp. We correct some of the mistakes made in [4] and prove some further properties of the generators of the algebra of modular forms in the case of Hecke groups. Then we use the results from [4] to write a SageMath-program that calculates the Fourier series of the generators of the algebra of modular forms for triangle groups with a cusp and that also finds the relations between the generators in the special case of Hecke groups. Using the results from this program, we present some conjectures concerning the generators of the algebra of modular forms for a Hecke group, which, if proven to be true, give us a generalization of some of the Ramanujan equations. We conclude by explicitly calculating the generalized Ramanujan equations for the first few Hecke groups.
30

Formas modulares aplicadas a teoria dos numeros / Modular forms applied in number theory

Estrada, Eduardo Luis 03 July 2006 (has links)
Orientador: Jose Plinio de Oliveira Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T00:16:28Z (GMT). No. of bitstreams: 1 Estrada_EduardoLuis_M.pdf: 1229842 bytes, checksum: 17b398d3ef955f687a933b77677a7113 (MD5) Previous issue date: 2006 / Resumo: Abordamos, de maneira elementar, as estruturas algébrica e topológica sobre a qual são construídas as formas modulares, objetos principais do nosso estudo. Após a definição de formas modulares, realizamos um estudo particular sobre duas funções específicas relacionadas à teoria dos números: h(t) e. u(t). Trata-se de um texto introdutório, no qual apresentamos diversos conceitos e resultados extremamente importantes da teoria, tais como as demonstrações de que as duas funções supracitadas são formas modulares e a apresentação de uma fórmula explícita para seus sistemas multiplicadores / Abstract: In an elemmentary way, we have dealt with the algebraic and topological structures in which the modular forms are constructed. After the definition of this important tool, we have made a particular study about two specific functions related to number theory: h(t) and u(t). It is an introductory text, in which we have presented many concepts and results extremely importants of the theory, such as the proofs of the fact that the two functions h(t) and u(t) are modular forms and the presentation of an exact formula for their multiplier systems / Mestrado / Analise Matematica / Mestre em Matemática

Page generated in 0.0366 seconds