Spelling suggestions: "subject:"moduli spaces."" "subject:"noduli spaces.""
21 |
Espaces de modules de fibrés vectoriels anti-invariants sur les courbes et blocs conformes / Moduli spaces of anti-invariant vector bundles over curves and conformal blocksZelaci, Hacen 29 September 2017 (has links)
Soit X une courbe projective lisse et irréductible munie d'une involution σ. Dans cette thèse, nous étudions les fibrés vectoriels invariants and anti-invariants sur X sous l'action induite par σ. On introduit la notion de modules σ-quadratiques et on l'utilise, avec GIT, pour construire ces espaces de modules, puis on en étudie certaines propriétés. Ces espaces de modules correspondent aux espaces de modules de G-torseurs parahoriques sur la courbe X/σ , pour certains schémas en groupes parahoriques G de type Bruhat-Tits, qui sont twistés dans le cas des anti-invariants. Nous développons les systèmes de Hitchin sur ces espaces de modules et on les utilise pour dériver une classification de leurs composantes connexes en les dominant par des variétés de Prym. On étudie aussi le fibré déterminant sur les espaces de modules des fibrés vectoriels anti-invariants. Dans certains cas, ce fibré en droites admet certaines racines carrées appelées fibrés Pfaffiens. On montre que les espaces des sections globales des puissances de ces fibrés en droites (les espaces des fonctions thêta généralisées) peuvent être canoniquement identifier avec les blocs conformes associés aux algèbres de Kac-Moody affines twistées de type A(2). / Let X be a smooth irreducible projective curve with an involution σ. In this dissertation, we studythe moduli spaces of invariant and anti-invariant vector bundles over X under the induced action of σ. We introduce the notion of σ-quadratic modules and use it, with GIT, to construct these moduli spaces, and than we study some of their main properties. It turn out that these moduli spaces correspond to moduli spaces of parahoric G-torsors on the quotient curve X/σ, for some parahoric Bruhat-Tits group schemes G, which are twisted in the anti-invariant case.We study the Hitchin system over these moduli spaces and use it to derive a classification of theirconnected components using dominant maps from Prym varieties. We also study the determinant of cohomology line bundle on the moduli spaces of anti-invariant vector bundles. In some cases this line bundle admits some square roots called Pfaffian of cohomology line bundles. We prove that the spaces of global sections of the powers of these line bundles (spaces of generalized theta functions) can be canonically identified with the conformal blocks for some twisted affine Kac-Moody Lie algebras of type A(2).
|
22 |
Modularity of elliptic curves defined over function fieldsde Frutos Fernández, María Inés 30 September 2020 (has links)
We provide explicit equations for moduli spaces of Drinfeld shtukas over the
projective line with Γ(N), Γ_1(N) and Γ_0(N) level structures, where N is an effective
divisor on P^1 . If the degree of N is big enough, these moduli spaces are relative
surfaces.
We study how the moduli space of shtukas over P^1 with Γ_0(N) level structure,
Sht^{2,tr}(Γ_0(N)), can be used to provide a notion of motivic modularity for elliptic
curves defined over function fields. Elliptic curves over function fields are known to
be modular in the sense of admitting a parametrization from a Drinfeld modular curve,
provided that they have split multiplicative reduction at one place. We conjecture a
different notion of modularity that should cover the curves excluded by the reduction
hypothesis.
We use our explicit equations for Sht^{2,tr}(Γ_0(N)) to verify our modularity conjecture
in the cases where N = 2(0) + (1) + (∞) and N = 3(0) + (∞).
|
23 |
Moduli spaces of framed symplectic and orthogonal bundles on P2 and the K-theoretic Nekrasov partition functions / 複素射影平面上のシンプレクティック束及び直交束のモジュライ空間とK理論ネクラソフ分配関数Choy, Jaeyoo 23 March 2015 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第12910号 / 論理博第1546号 / 新制||理||1590(附属図書館) / 32120 / ソウル大学大学院数学科 / (主査)教授 中島 啓, 教授 小野 薫, 教授 向井 茂 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DFAM
|
24 |
On Moduli Spaces of Weighted Pointed Stable Curves and ApplicationsHe, Zhuang 14 October 2015 (has links)
No description available.
|
25 |
Fibres vectoriels sur des courbes hyperelliptiques / Vector bundles on hyperelliptic curvesFernández Vargas, Néstor 04 April 2018 (has links)
Cette thèse est dédiée à l'étude des espaces de modules de fibrés sur une courbe algébrique et lisse sur le corps des nombres complexes. Le texte est composé de deux parties : Dans la première partie, je m'intéresse à la géométrie liée aux classifications de fibrés quasi-paraboliques de rang 2 sur une courbe elliptique 2-pointée, à isomorphisme près. Les notions d'indécomposabilité, simplicité et stabilité de fibrés donnent lieu à des espaces de modules qui classifient ces objets. La structure projective de ces espaces est décrite explicitement, et on prouve un théorème de type Torelli qui permet de retrouver la courbe elliptique 2-pointée. Cet espace de modules est aussi mis en relation avec l'espace de modules de fibrés quasi-paraboliques sur une courbe rationnelle 5-pointée, qui apparaît naturellement comme revêtement double de l'espace de modules de fibrés quasi-paraboliques sur la courbe elliptique 2-pointée. Finalement, on démontre explicitement la modularité des automorphismes de cet espace de modules. Dans la deuxième partie, j'étudie l'espace de modules de fibrés semistables de rang 2 et déterminant trivial sur une courbe hyperelliptique. Plus précisément, je m'intéresse à l'application naturelle donnée par le fibré déterminant, générateur du groupe de Picard de cet espace de modules. Cette application s'identifie à l'application theta, qui est de degré 2 dans notre cas. On définit une fibration de cet espace de modules vers un espace projective dont la fibre générique est birationnelle à l'espace de modules de courbes rationnelles 2g-épointées, et on décrit la restriction de theta aux fibres de cette fibration. On montre que cette restriction est, à une transformation birationnelle près, une projection osculatoire centrée en un point. En utilisant une description due à Kumar, on démontre que la restriction de l'application theta à cette fibration ramifie sur la variété de Kummer d'une certaine courbe hyperelliptique de genre g – 1. / This thesis is devoted to the study of moduli spaces of vector bundles over a smooth algebraic curve over field of complex numbers. The text consist of two main parts : In the first part, I investigate the geometry related to the classifications of rank 2 quasi-parabolic vector bundles over a 2-pointed elliptic curves, modulo isomorphism. The notions of indecomposability, simplicity and stability give rise to the corresponding moduli spaces classifying these objects. The projective structure of these spaces is explicitely described, and we prove a Torelli theorem that allow us to recover the 2-pointed elliptic curve. I also explore the relation with the moduli space of quasi-parabolic vector bundles over a 5-pointed rational curve, appearing naturally as a double cover of the moduli space of quasi-parabolic vector bundles over the 2-pointed elliptic curve. Finally, we show explicitely the modularity of the automorphisms of this moduli space. In the second part, I study the moduli space of semistable rank 2 vector bundles with trivial determinant over a hyperelliptic curve C. More precisely, I am interested in the natural map induced by the determinant line bundle, generator of the Picard group of this moduli space. This map is identified with the theta map, which is of degree 2 in our case. We define a fibration from this moduli space to a projective space whose generic fiber is birational to the moduli space of 2g-pointed rational curves, and we describe the restriction of the map theta to the fibers of this fibration. We show that this restriction is, up to a birational map, an osculating projection centered on a point. By using a description due to Kumar, we show that the restriction of the map theta to this fibration ramifies over the Kummer variety of a certain hyperelliptic curve of genus g - 1.
|
26 |
Groupes discrets en géométrie hyperbolique : aspects effectifs / Discrete groups in hyperbolic geometry : effective aspectsGranier, Jordane 08 December 2015 (has links)
Cette thèse traite de deux problèmes en géométrie hyperbolique réelle et complexe. On étudie dans un premier temps des structures géométriques sur des espaces de modules de métriques plates à singularités coniques sur la sphère. D'après des travaux de W. Thurston, l'espace de modules des métriques plates sur S^2 à n singularités coniques d'angles donnés admet une structure de variété hyperbolique complexe non complète, dont le complété métrique est une variété conique hyperbolique complexe. On étudie dans cette thèse des formes réelles de ces espaces complexes en se restreignant à des métriques invariantes par une involution. On décrit une structure hyperbolique réelle sur les espaces de modules de métriques plates symétriques à 6 (respectivement 8) singularités d'angles égaux. On décrit les composantes connexes de ces espaces comme ouverts denses d'orbifolds hyperboliques arithmétiques. On montre que les complétés métriques de ces composantes connexes admettent un recollement naturel, dont on étudie la structure.La deuxième partie de cette thèse traite des ensembles limites de groupes discrets d'isométries du plan hyperbolique complexe. On construit le premier exemple explicite de sous-groupe discret de PU(2,1) dont l'ensemble limite est homéomorphe à l'éponge de Menger / This thesis is concerned with two problems in real and complex hyperbolic geometry. The first problem is the study of geometric structures on moduli spaces of flat metrics on the sphere with cone singularities. W. Thurston proved that the moduli space of flat metrics on S^2 with n singularities of given angles forms a non complete complex hyperbolic manifold, and that its metric completion is a complex hyperbolic cone-manifold. In this thesis we study real forms of these complex spaces by restricting our attention to metrics that are invariant under an involution. We describe a real hyperbolic structure on moduli spaces of flat symmetric metrics of 6 (respectively 8) singularities of same angle. We describe explicitly the connected components of these spaces as dense open subsets of arithmetic hyperbolic orbifolds. We show that the metric completions of these components admit a natural gluing, and we study the structure of the glued space. The second part of this thesis is devoted to the study of limit sets of discrete subgroups of the isometry group of complex hyperbolic plane. We construct the first known explicit example of a discrete subgroup of PU(2,1) which admits a limit set homeomorphic to the Menger curve
|
27 |
Moduli de feixes de quádricas e de formas bináriasSilva, William Frederico Vasconcellos 12 July 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-29T14:33:20Z
No. of bitstreams: 1
williamfredericovasconcellossilva.pdf: 451866 bytes, checksum: bfeb4aa8aa637b66cf493889e77ebca1 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-29T19:47:08Z (GMT) No. of bitstreams: 1
williamfredericovasconcellossilva.pdf: 451866 bytes, checksum: bfeb4aa8aa637b66cf493889e77ebca1 (MD5) / Made available in DSpace on 2017-05-29T19:47:08Z (GMT). No. of bitstreams: 1
williamfredericovasconcellossilva.pdf: 451866 bytes, checksum: bfeb4aa8aa637b66cf493889e77ebca1 (MD5)
Previous issue date: 2012-07-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O principal objetivo do trabalho é estudar a relação entre o espaço de Moduli de feixes
de quádricas em Pn e o espaço de Moduli de formas binárias de grau (n + 1). Este
estudo foi baseado no artigo (AVRITZER; LANGE, 2000). Em linhas gerais, um espaço
de Moduli é uma variedade algébrica que parametriza uma coleção de objetos C, módulo
uma relação de equivalência. No nosso caso, C é o conjunto de feixes de quádricas em Pn
ou o conjunto de formas binárias de grau (n + 1), e a relação de equivalência é pertencer
à mesma órbita pela ação de um grupo G. Para estabelecermos a relação entre esses
espaços foi importante considerar o símbolo de Segre que é um invariante dos feixes de
quádricas. Além disso, estudamos a forma normal, uma maneira de reescrever o feixe
de quádricas, na qual conhecemos facilmente o símbolo de Segre. Estudamos ação de
grupos, para podermos classificar um feixe de quádrica e uma forma binária como estável,
semi-estável ou instável, e quociente categórico, já que os espaços de Moduli são obtidos
através do quociente. / The main objective is to study the relationship between space Moduli of pencil of quadrics,
and Moduli space of binary forms. This study was based on article (AVRITZER; LANGE,
2000). In general, a Moduli space is an algebraic variety that parametrizes a collection of
objects C, modulo an equivalence relation. In our case, C is the set of pencil of quadrics
or set of binary forms of degree (n + 1), and the equivalence relation is to belong to the
same orbit by the action of a group G. To establish the relationship between these spaces
is important to consider the Segre symbol of which is an invariant of pencils of quadrics.
Furthermore, we studied the normal form, a way to rewrite the pencil of quadrics, which
easily met the Segre symbol, action of groups, in order to classify a pencil of quadric and
a binary form as stable or semistable unstable, and quotient categorical, since the spaces's
moduli are obtained by quotient.
|
28 |
Théorie de l’intersection sur les espaces de différentielles holomorphes et méromorphes / Intersection theory of spaces of holomorphic and meromorphic differentialsSauvaget, Adrien 30 November 2017 (has links)
Nous construisons l'espace des différentielles stables : un espace des modules de différentielles méromorphes avec des pôles d'ordres fixés. Cet espace est un cône au dessus de l'espace Mg,n des courbes stables. Si l'ensemble de poles est vide, il s'agit du fibré de Hodge. Nous introduisons l'anneau tautologique du projectivisé de l'espace des différentielles stables par analogie avec Mg,n. L'espace des différentielles stables est stratifié en fonction des ordres des zéros de la différentielle. Nous montrons que la classe de cohomologie Poincaré-duale de chaque strate est tautologique et peut être calculée explicitement, ce qui constitue le résultat principal de la thèse. Nous appliquons ces résultats pour calculer des nombres de Hurwitz et pour prouver plusieurs identités dans le groupe de Picard des strates. Ensuite, nous nous intéressons aux espaces des modules des différentielles d'ordre supérieur. Une courbe munie d'une k-différentielle holomorphe possède un revêtement naturel de groupe de Galois Z/kZ. Le fibré de Hodge sur la courbe revêtante se décompose en une somme directe de sous-fibrés en fonction du car- actère de Z/kZ. Nous calculons la première classe de Chern de chacun de ces sous-fibrés. Un dernier chapitre sera consacré à l'exposé des liens conjecturaux entre les classes des strates de différentielles, les espaces de courbes r-spin et les cycles de double ramification. / We construct the space of stable differentials: a moduli space of meromorphic differentials with poles of fixed order. This space is a cone over the moduli space Mg,n of stable curves. If the set of poles is empty, then this cone is the Hodge bundle. We introduce the tautological ring of the projectivized space of stable differentials by analogy with Mg,n. The space of stable differentials is stratified according to the orders of zeros of the differential. We show that the Poincaré-dual cohomology classes of these strata are tautological and can be explicitly computed, this constitutes the main result of this thesis. We apply this result to compute Hurwitz numbers and to show several identities in the Picard group of the strata. Then, we interest ourselves to moduli spaces of differentials of superior order. A curve endowed with a k-differential carry a natural ramified covering of Galois group Z/kZ. The Hodge bundle over the covering curve is decomposed into a direct sum of sub-vector bundles according to the character of Z/kZ. We compute the first Chern class of each of these sub-bundles. A last chapter will be dedicated to the presentation of conjectural relations between classes of strata of differentials, moduli of r-spin structures and double ramification cycles.
|
29 |
Compactification géométrique de l'espace de modules des structures de demi-translation sur une surface / Geometric compactification of the moduli space of half-translation structures on a surfaceMorzadec, Thomas 11 December 2015 (has links)
L'objectif de la thèse est de construire une compactification géométrique de l'espace des structures de demi-translation sur une surface S compacte, connexe, orientable, de genre au moins égal à 2. Il s’inscrit dans le très large thème d’étude des déformations de structures géométriques sur les surfaces. Une structure de demi-translation sur S est une métrique localement euclidienne (de courbure constante nulle) sur S, avec des singularités coniques d'angles k pi, avec k un entier et k>2, telle que l'holonomie de tout lacet lisse de S, disjoint des singularités, est Id ou -Id.Je définis l'ensemble des structures mixtes sur S, qui sont des structures arborescentes (au sens de Drutu-Sapir), équivariantes par le groupe fondamentalde S et CAT(0), obtenues par recollement de pièces par des arêtes, éventuellement réduites à des points, telles que l'espace obtenu par écrasement des pièces est un arbre réel simplicial (la plupart des arêtes ont une longueur non nulle), et les pièces sont ou bien des arbres réels, ou bien des revêtements universels de sous-surfaces (ouvertes) de S, munies de structures de demi-translation. Je munis l'espace Mix(Sigma) des (classes d'isométries équivariantes par le groupe fondamental de S) de structures mixtes sur S d'une topologie géométrique naturelle, appelée topologie de Gromov équivariante. Je montre alors, par des techniques d'ultralimites à la Gromov, que l'espace Flat(S) des (classes d'isotopie de) structures de demi-translation sur S, identifié à l’ensemble des structures de demi-translation équivariantes par le groupe fondamental de S sur le revêtement universel de S, est un ouvert dense de Mix(S), et que le projectifié PMix(S), muni de la topologie quotient, est compact. Le projectifié PMix(S) est donc une compactification du projectifié PFlat(S) de l'espace Flat(S) (qui s'identifie à l'espace des structure de demi-translation d'aire 1 sur S). / The goal of this thesis is to build a geometric compactification of the space of half-translation structures on a connected, compact surface S, with genus at least 2. It is a part of the wide thema of study of the deformations of metric structures on surfaces.A half-translation structure on S is a locally euclidean metric (with null constant curvature) on S, with conical singularities of angles k pi, with k an integer and k>2, such that the holonomy of every smooth curve of S, disjoint from the singularities, is contained in Id or -Id.I define the set of mixed structures on S, which are tree-graded spaces (in the sense of Drutu-Sapir), equivariant by the fundamental group of S and CAT(0), obtained by gluing some pieces by some edges, possibly reduced to a point, such that the space obtained by replacing the pieces by some points is a simplicialtree (most edges have a positive length), and the pieces are either some trees or some universal covers of (open) subsurfaces of S endowed with a half-translation structures. I endow the space Mix(S) of (classes of isometry equivariant by the fundamental group of S of) mixed structures on S with a natural geometric topology, called the Gromov equivariant topology. I show, by techniques using ultralimits "à la Gromov", that the space Flat(S) of (isotopy classes of) half-translation structures on S, identified with the set of half-translation structures on the universal cover of S which are equivariant for the fundamental group of S, is a dense and open subset of Mix(S), and the projectified space PMix(S) is compact. The projectified space PMix(S) is then a compactification of the projectified space PFlat(S) (which identifies with the space of half-translations structures of area 1 on S.
|
30 |
Orienting Moduli Spaces of Flow Trees for Symplectic Field TheoryKarlsson, Cecilia January 2016 (has links)
This thesis consists of three scientific papers dealing with invariants of Legendrian and Lagrangian submanifolds. Besides the scientific papers, the thesis contains an introduction to contact and symplectic geometry, and a brief outline of Symplectic field theory with focus on Legendrian contact homology. In Paper I we give an orientation scheme for moduli spaces of rigid flow trees in Legendrian contact homology. The flow trees can be seen as the adiabatic limit of sequences of punctured pseudo-holomorphic disks with boundary on the Lagrangian projection of the Legendrian. So to equip the trees with orientations corresponds to orienting the determinant line bundle of the dbar-operator over the space of Lagrangian boundary conditions on the punctured disk. We define an orientation of this line bundle and prove that it is well-defined in the limit. We also prove that the chosen orientation scheme gives rise to a combinatorial algorithm for computing the orientation of the trees, and we give an explicit description of this algorithm. In Paper II we study exact Lagrangian cobordisms with cylindrical Legendrian ends, induced by Legendrian isotopies. We prove that the combinatorially defined DGA-morphisms used to prove invariance of Legendrian contact homology for Legendrian knots over the integers can be derived analytically. This is proved using the orientation scheme from Paper I together with a count of abstractly perturbed flow trees of the Lagrangian cobordisms. In Paper III we prove a flexibility result for closed, immersed Lagrangian submanifolds in the standard symplectic plane.
|
Page generated in 0.0374 seconds