Spelling suggestions: "subject:"7molecular weight"" "subject:"bimolecular weight""
201 |
Occupational Exposure and New-onset Asthma in a Population-based Study in Northern Europe (RHINE)Lillienberg, Linnea, Andersson, Eva, Janson, Christer, Dahlman-Hoglund, Anna, Forsberg, Bertil, Holm, Mathias, Gislason, Thorarinn, Joegi, Rain, Omenaas, Ernst, Schlunssen, Vivi, Sigsgaard, Torben, Svanes, Cecilie, Toren, Kjell January 2013 (has links)
In a large population-based study among adults in northern Europe the relation between occupational exposure and new-onset asthma was studied. The study comprised 13 284 subjects born between 1945 and 1973, who answered a questionnaire 19891992 and again 19992001. Asthma was defined as Asthma diagnosed by a physician with reported year of diagnose. Hazard ratios (HR), for new-onset adult asthma during 19802000, were calculated using a modified job-exposure matrix as well as high-risk occupations in Cox regression models. The analyses were made separately for men and women and were also stratified for atopy. During the observation period there were 429 subjects with new-onset asthma with an asthma incidence of 1.3 cases per 1000 person-years for men and 2.4 for women. A significant increase in new-onset asthma was seen for men exposed to plant-associated antigens (HR 3.6; 95% CI [confidence interval] 1.49.0), epoxy (HR 2.4; 95% CI 1.34.5), diisocyanates (HR 2.1; 95% CI 1.23.7) and accidental peak exposures to irritants (HR 2.4; 95% CI 1.34.7). Both men and women exposed to cleaning agents had an increased asthma risk. When stratifying for atopy an increased asthma risk were seen in non-atopic men exposed to acrylates (HR 3.3; 95% CI 1.47.5), epoxy compounds (HR 3.6; 95% CI 1.67.9), diisocyanates and accidental peak exposures to irritants (HR 3.0; 95% CI 1.27.2). Population attributable risk for occupational asthma was 14% for men and 7% for women. This population-based study showed that men exposed to epoxy, diisocyanates and acrylates had an increased risk of new-onset asthma. Non-atopics seemed to be at higher risk than atopics, except for exposure to high molecular weight agents. Increased asthma risks among cleaners, spray painters, plumbers, and hairdressers were confirmed.
|
202 |
Polyaniline: Synthesis, Characterization, Solution Properties, And CompositesYilmaz, Faris Sad 01 July 2007 (has links) (PDF)
Polyaniline was chemically synthesized at three different temperatures of 25, 0, and -25oC, by oxidative polymerization with ammonium peroxidisulfate at equimolar of aniline to oxidant ratio and 1M HCl. The resulted polyaniline was in a powder form which was characterized by several techniques such as: electrical conductivity, elemental analysis, thermal analysis, wide-angle X-Ray diffraction, and scanning electron microscope. The solution properties of the reduced polymer were studied by viscometry, static and dynamic light scattering.
It was found that as the polymerization temperature decreased, the molecular weight, crystallinity, and thermal stability of polyaniline increased, while the electrical conductivity was independent of the polymerization temperature. Moreover, the morphology of the polymer was changed from granular to tubular with reducing polymerization temperature. Viscometry and static light scattering showed that polyaniline has a flexible random coil conformation when dissolved in N-methyl-2-pyrrolidinone which proved to be a good solvent for this polymer. Dynamic light scattering indicated that the polymer solution is a polyelectrolyte with high hydrodynamic radius at low polymer concentrations.
All mechanical features except Young' / s modulus of polyaniline-filled low density polyethylene composites became poorer as polyaniline content increased. Moreover, a sudden increase in the electrical conductivity with increasing polyaniline contents was also observed.
The conductivity of the tubular composites of multi wall nanotubes (MWNTs)-filled polyaniline increased with increasing MWNTs loading, and became weakly temperature dependent. The morphological analysis indicated that the MWNTs were well dispersed and isolated, and the tubes became crowded proportionally to MWNTs weight percent used in the composites.
|
203 |
Use Of Calcium-alginate As A Coagulant For Low Turbidity WatersYuksel, Mete Avni 01 January 2005 (has links) (PDF)
This study aims to investigate the possibility of using calcium-alginate as a coagulant in low turbidity waters. Jar tests were initially performed with synthetically prepared turbid waters to investigate the effect of alginate and calcium concentrations, alginate&rsquo / s molecular weight, rapid mixing time and speed (schedule), initial pH and alkalinity of synthetic water on turbidity removal efficiency of calcium-alginate system step by step. Alum as a coagulant was then used in jar tests conducted with synthetic water to compare with calcium-alginate in terms of its turbidity removal efficiency and produced sludge properties. Finally, raw water acquired from water treatment plant was tested for treatability by using calcium-alginate based on previously determined optimum parameters via jar tests.
Experiments of calcium-alginate system with synthetic water showed that calcium was a key parameter in coagulation and high molecular weight alginate performed better in turbidity removal. Significant improvements in turbidity removal were observed when mixing schedules were rearranged / especially in case of increasing rapid mixing time following calcium dosing. Calcium-alginate system neither was notably affected by pH or alkalinity nor did significantly change the pH or alkalinity of the medium. Alum worked well in turbidity removal with additional adjustments of pH and alkalinity, however / alum produced higher quantities of sludge than calcium-alginate system. &ldquo / Raw water&ldquo / experiments with calcium-alginate did not result in desired level of turbidity removals due to the excessively different characteristics of this water compared to the synthetically prepared turbid water.
|
204 |
Polymeranaloge Carbanilierung von Cellulose / Beiträge zur Methodenentwicklung und Untersuchung von DepolymerisationsprozessenFischer, Martin 24 December 2004 (has links) (PDF)
Characterization of cellulose by its molecular weight distribution is afforded after polymeranalogeous dissolution. Additionally, a molecular dispersion of the polymer is a prerequisite. Common processes are dissolution of cellulose in dimethylacetamide-lithiumchloride, nitration and carbanilation. Degradation of the polysaccharide chains can occur in each of the mentioned processes. It is shown that degradation in pyridine occurs via beta-elimination at carbonyl groups along the cellulose chains. Carbanilierung in DMSO is much more pronounced. It comprises oxidation along the Pfitzner-Moffatt-mechanism and subsequent beta-elimination at the thus formed carbonyl-groups. This was elucidated with model systems and by investigation of the carbanilation in different media. Carbonyl groups of cellulose are masked through reaction with phenylisocyanate. This was shown with model. Therefore, the determination of carbonyl groups in cellulose-tricarbanilates is not possible. The separation of low-molecular weight byproducts was optimised. The influence of pretreatment and preactivation of cellulose-samples on the completeness of the conversion was studied. A standard protocol for the carbanilation of cellulose is provided. / Cellulose wird u.a. durch ihre Molmassenverteilung charakterisiert, deren Ermittlung ein polymeranaloges Verfahren zur molekulardispersen Auflösung des Polymers erfordert. Hierfür sind die Direktlösung, die Nitrierung und die Carbanilierung in Gebrauch. Bei allen Prozessen kann es zum Abbau der Polysaccharidketten kommen, wobei diesen Prozessen wenig Beachtung geschenkt wurde. In der Arbeit wird gezeigt, daß der Abbau bei der Carbanilierung in Pyridin durch Beta-Eliminierung an vorhandenen Carbonylgruppen erfolgt. Die Carbanilierung in DMSO fällt stets stärker aus als bei Einsatz von Pyridin und umfasst die Prozesse Oxidation nach dem Pfitzner-Moffatt-Mechanismus und anschließende Beta-Eliminierung an den neu gebildeten Carbonylgruppen. Dies wird durch Untersuchungen an Modellsystemen und am Polymer herausgearbeitet. Carbonylgruppen an Cellulose werden durch die Umsetzung mit Phenylisocyanat maskiert, was an Modellverbindungen gezeigt wurde (Bildung von Endioldicarbanilaten und carbanilierten Halbacetalen). Ihre Bestimmung in Cellulosecarbanilaten ist daher nicht möglich. Die Abtrennung von niedermolekularen Nebenprodukten der Umsetzung wurde optimiert. Der Einfluss der Vorbehandlung und Voraktivierung von Celluloseproben auf die Vollständigkeit der Umsetzung wurde eingehend untersucht. Es wird ein Standardverfahren zur Carbanilierung von Cellulose angegeben.
|
205 |
Characterization of chemical pulp fiber surfaces with an emphasis on the hemicellulosesSjöberg, John January 2003 (has links)
No description available.
|
206 |
Microdialysis Sampling of Macro Molecules : Fluid Characteristics, Extraction Efficiency and Enhanced PerformanceChu, Jiangtao January 2015 (has links)
In this thesis, fluid characteristics and sampling efficiency of high molecular weight cut-off microdialysis are presented, with the aim of improving the understanding of microdialysis sampling mechanisms and its performance regarding extraction efficiency of biological fluid and biomarkers. Microdialysis is a well-established clinical sampling tool for monitoring small biomarkers such as lactate and glucose. In recent years, interest has raised in using high molecular weight cut-off microdialysis to sample macro molecules such as neuropeptides, cytokines and proteins. However, with the increase of the membrane pore size, high molecular weight cut-off microdialysis exhibits drawbacks such like unstable catheter performance, imbalanced fluid recovery, low and unstable molecule extraction efficiency, etc. But still, the fluid characteristics of high molecular weight cut-off microdialysis is rarely studied, and the clinical or in vitro molecule sampling efficiency from recent studies vary from each other and are difficult to compare. Therefore, in this thesis three aspects of high molecular weight cut-off microdialysis have been explored. The first, the fluid characteristics of large pore microdialysis has been investigated, theoretically and experimentally. The results suggest that the experimental fluid recovery is in consistency with its theoretical formula. The second, the macromolecule transport behaviour has been visualized and semi-quantified, using an in vitro test system and fluorescence imaging. The third, two in vitro tests have been done to mimic in vivo cerebrospinal fluid sampling under pressurization, using native and differently surface modified catheters. As results, individual protein/peptide extraction efficiencies were achieved, using targeted mass spectrometry analysis. In summary, a theory system of the fluid characteristics of high molecular weight cut-off microdialysis has been built and testified; Macromolecular transport of microdialysis catheter has been visualized; In vivo biomolecules sampling has been simulated by well-defined in vitro studies; Individual biomolecular extraction efficiency has been shown; Different surface modifications of microdialysis catheter have been investigated. It was found that, improved sampling performance can be achieved, in terms of balanced fluid recovery and controlled protein extraction efficiency.
|
207 |
Belastungsuntersuchungen von arthroskopischen und offenen Knotentypen unter Verwendung von hochfestem, polyfilem Nahtmaterial / Mechanical testing of different knot types using high-performance suture materialSachs, Christian 16 December 2013 (has links)
No description available.
|
208 |
Stochastic representation and analysis of rough surface topography by random fields and integral geometry - Application to the UHMWPE cup involved in total hip arthroplastyAhmad, Ola 23 September 2013 (has links) (PDF)
Surface topography is, generally, composed of many length scales starting from its physical geometry, to its microscopic or atomic scales known by roughness. The spatial and geometrical evolution of the roughness topography of engineering surfaces avail comprehensive understanding, and interpretation of many physical and engineering problems such as friction, and wear mechanisms during the mechanical contact between adjoined surfaces. Obviously, the topography of rough surfaces is of random nature. It is composed of irregular hills/valleys being spatially correlated. The relation between their densities and their geometric properties are the fundamental topics that have been developed, in this research study, using the theory of random fields and the integral geometry.An appropriate random field model of a rough surface has been defined by the most significant parameters, whose changes influence the geometry of its excursion. The excursion sets were quantified by functions known as intrinsic volumes. These functions have many physical interpretations, in practice. It is possible by deriving their analytical formula to estimate the parameters of the random field model being applied on the surface, and for statistical analysis investigation of its excursion sets. These subjects have been essentially considered in this thesis. Firstly, the intrinsic volumes of the excursion sets of a class of mixture models defined by the linear combination of Gaussian and t random fields, then for the skew-t random fields are derived analytically. They have been compared and tested on surfaces generated by simulations. In the second stage, these random fields have been applied to real surfaces measured from the UHMWPE component, involved in application of total hip implant, before and after wear simulation process. The primary results showed that the skew-t random field is more adequate, and flexible for modelling the topographic roughness. Following these arguments, a statistical analysis approach, based on the skew-t random field, is then proposed. It aims at estimating, hierarchically, the significant levels including the real hills/valleys among the uncertain measurements. The evolution of the mean area of the hills/valleys and their levels enabled describing the functional behaviour of the UHMWPE surface over wear time, and indicating the predominant wear mechanisms.
|
209 |
Molecular-level dissolved organic matter dynamics in lakes : Constraints on reactivity and persistenceKellerman, Anne Marie January 2015 (has links)
Dissolved organic matter (DOM) is a central component of the global carbon cycle. Thus, small changes to the amount of DOM imported, processed and produced within lakes can have a large effect on regional carbon budgets. In addition to being a vital energy source at the base of the aquatic food web, DOM is physico-chemically reactive. However, identifying and understanding the controls of DOM processing has remained challenging due to the complex composition of DOM. DOM comprises a mixture of decomposition by-products of terrestrial origin as well as newly synthesized material from in situ production. DOM compounds form gradients of reactivity to biogeochemical processes, such as photodegradation, biodegradation, and flocculation, and they perform a suite of functions in aquatic systems. The overarching goal of this thesis was to investigate controls of DOM processing in Swedish lakes. We do this in two ways: 1) by characterizing the molecular-level composition of DOM in lakes, and 2) by investigating interactions between very labile and relatively recalcitrant DOM. The first three chapters utilize ultrahigh resolution mass spectrometry to show that the detailed chemical composition of DOM varies along a hydrology gradient, and secondarily along a temperature gradient that co-varies with agriculture and nutrients. Next, we illustrate the coherence between molecular-level characteristics and bulk optical characteristics. Together, these studies suggest that protein-like fluorescence, aliphatic compounds, and N-containing compounds are either resistant to degradation or tightly cycled in the system, and thus persist at long water residence times. The most oxidized compounds, such as vascular plant-derived polyphenolic compounds, are abundant in areas with high precipitation and are lost with increasing water residence time. Vascular plant-derived polyphenolic compounds were most strongly related to DOM with high apparent molecular weight, suggesting that hydrophobic interactions drive aggregate formation. Furthermore, the association of high molecular weight DOM with polyphenolic compounds suggests that aggregates are hotspots of reactivity in aquatic systems. Finally, we find no indication that the addition of labile organic matter enhances the biodegradation of less reactive DOM. Thus, we suggest that in freshwaters, intrinsic molecular properties, such as the basic structural features of compounds, dominate over extrinsic factors.
|
210 |
Molecular Weight Limit Identified for the Synthesis of Externally Initiated Poly(3-hexylthiophenes) and Further Macrocyclic ConstructionsWong, Michael 19 March 2013 (has links)
Externally initiated o-tolyl initiated poly(3-hexylthiophene) (P3HT) was synthesized according to Grignard metathesis polymerization at varying chain length to compare number average molecular weights (Mn) obtained by gel permeation chromatography (GPC) and 1H NMR end group analysis. The extent of overestimation by GPC (1.3) was determined to be lower than previously reported for low Mn polymers. However, an apparent GPC quantification limit was observed as NMR Mn correlated well to predicted results. Static light scattering studies on high Mn polymers provided evidence that the true molecular weight was more similar to GPC-derived Mn. Despite nearly 100% external initiation efficiency, at a certain Mn limit new uninitiated chains may be synthesized. It is suggested that the synthesis of externally initiated P3HT should be limited to Mn below 40 kDa to ensure fully externally initiated chains. A proposal for the synthesis of externally initiated macrocyclic P3HT will also be discussed.
|
Page generated in 0.0605 seconds