• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 27
  • 19
  • 11
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 139
  • 53
  • 49
  • 37
  • 36
  • 33
  • 32
  • 30
  • 26
  • 23
  • 23
  • 22
  • 21
  • 20
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Systém napájení domácnosti z obnovitelných zdrojů energie / Power Supply System for Housis Using Renewable Resources

Gálus, Matej January 2011 (has links)
The aim of this thesis is to describe the advantages of simultaneous utilization of photovoltaic and wind electricity in an autonomous system, supplying the household with electricity without connection to the electrical grid. The most used methods of connecting photovoltaic modules and wind generators to chemical batteries are discussed. Several maximum power point tracking methods and their properties are described. A block schematic diagram of an autonomous off-grid system utilizing chemical accumulators is proposed. The system also contains an inverter producing standard mains voltage 230 VAC to supply common household appliances. A Quasi-Square Wave converter topology was chosen for all three power converters. An experimental 180 W output power QSW converter with one controllable switch was designed, simulated with Pspice, manufactured and tested to verify the efficiency of the topology. Excellent agreement was found between predicted and measured efficiency at full output power. Efficiency for reliable operation varies between 89% and 92,2% at full power and depends mainly power inductor and MOSFET used. After successful evaluation of QSW topology, the power converters for the main system were designed. Because of higher power, the converters were designed as four-phase, whereas each phase contains two controllable switches to boost efficiency mainly in low-power area. The most critical and difficult part of the project was to design the mixed-signal control sections for the converters to ensure proper switching of two controllable MOSFETs in each phase. For user interactivity, main control board with graphic LC display, Ethernet module and SD memory card slot was also manufactured.
132

Experimental Assessment of Photovoltaic Irrigation System

Raza, Khalil 15 December 2014 (has links)
No description available.
133

Ανάπτυξη δυναμικού μοντέλου και έλεγχος ανεμογεννήτριας συνδεδεμένης στο δίκτυο και σε αυτόνομη λειτουργία εφοδιασμένη με διάταξη αποθήκευσης ενέργειας

Δημητρακάκης, Στέφανος 18 June 2014 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται τη μελέτη και τη μοντελοποίηση ενός αιολικού συστήματος παραγωγής ηλεκτρικής ενέργειας βασισμένο σε σύγχρονη γεννήτρια μόνιμου μαγνήτη (PMSG). Ειδικότερα, παρουσιάζονται και αναλύονται όλα τα τμήματα που αποτελούν το αιολικό σύστημα καθώς και οι λογικές ελέγχου που ακολουθήθηκαν για την αποτελεσματική λειτουργία του. Επιπλέον, μελετάται και μοντελοποιείται μια διάταξη αποθήκευσης ενέργειας από την οποία πλαισιώνεται το αιολικό σύστημα κατά την αυτόνομη λειτουργία του. Τέλος, παρουσιάζονται και σχολιάζονται τα αποτελέσματα της προσομοίωσης της λειτουργίας του συστήματος, σε σύνδεση με το δίκτυο και κατά την αυτόνομη λειτουργία του. Για την ανάπτυξη του μοντέλου και την προσομοίωση χρησιμοποιήθηκε το πρόγραμμα Simulink/Matlab. Στο Κεφάλαιο 1 γίνεται αναφορά στο ενεργειακό πρόβλημα και μια γενική εισαγωγή στις ανανεώσιμες πηγές ενέργειας. Επιπλέον, δίνονται διάφορες πληροφορίες γύρω από την αιολική ενέργεια και αναλύονται τα πλεονεκτήματα και μειονεκτήματα της χρήσης ανεμογεννητριών. Επίσης, παρουσιάζεται η δομή μιας ανεμογεννήτριας και παραθέτονται διάφοροι τύποι ανεμογεννητριών, ενώ δίνονται και οι βασικές σχέσεις μετατροπής της αιολικής ενέργειας σε ηλεκτρική. Στο Κεφάλαιο 2 γίνεται ανάλυση κάθε τμήματος της ανεμογεννήτριας (πτερωτή, σύστημα μετάδοσης κίνησης, γεννήτρια) και παρατίθενται οι εξισώσεις που περιγράφουν τη λειτουργία τους. Επιπρόσθετα, παρουσιάζεται ο τρόπος μοντελοποίησης του κάθε τμήματος στο περιβάλλον του Simulink. Ιδιαίτερη έμφαση δόθηκε στη μελέτη της σύγχρονης γεννήτριας μόνιμου μαγνήτη καθώς παρουσιάζεται με λεπτομέρεια η δομή της καθώς και οι αρχές που διέπουν τη λειτουργία της. Τέλος, δίνονται όλα τα χαρακτηριστικά μεγέθη της ανεμογεννήτρια που χρησιμοποιήθηκε στην παρούσα εργασία. Στο Κεφάλαιο 3 αρχικά, γίνεται μια γενική παρουσίαση των στοιχείων που αποτελούν τους μετατροπείς, ενώ στη συνέχεια παρουσιάζονται οι βασικές κατηγορίες μετατροπέων που υπάρχουν και αναφέρονται μερικοί βασικοί τύποι μετατροπέων που βρίσκουν εφαρμογή σε αιολικά συστήματα γενικότερα. Έπειτα, το κεφάλαιο επικεντρώνεται στους μετατροπείς που χρησιμοποιήθηκαν στο αιολικό σύστημα της παρούσας εργασίας καθώς εξηγείται ο τρόπος λειτουργίας τους και παρουσιάζεται ο τρόπος μοντελοποίησης τους στο Simulink. Έμφαση δόθηκε στον dc/dc μετατροπέα ανύψωσης τάσης που χρησιμοποιήθηκε, όπου γίνεται διαστασιολόγηση και παρουσιάζεται μια μικρή προσομοίωση της λειτουργίας του. Τέλος, παρουσιάζεται, επίσης, το φίλτρο που τοποθετείται στην έξοδο του αντιστροφέα. Στο Κεφάλαιο 4 περιγράφονται αναλυτικά η τεχνική διαμόρφωσης εύρους παλμών (PWM) και η τεχνική της ημιτονοειδούς διαμόρφωσης εύρους παλμών (SPWM), οι οποίες και εφαρμόστηκαν για την παλμοδότηση των μετατροπέων. Στη συνέχεια, περιγράφονται αναλυτικά οι μηχανισμοί ελέγχου που εφαρμόστηκαν με τη βοήθεια PI ελεγκτών, τόσο στην πλευρά της μηχανής (dc/dc μετατροπέας ανύψωσης τάσης) όσο και στον αντιστροφέα του αιολικού συστήματος. Στο Κεφάλαιο 5 παρουσιάζονται και σχολιάζονται τα αποτελέσματα της προσομοίωσης του αιολικού συστήματος σε σύνδεση με το δίκτυο. Το σύστημα προσομοιώνεται για δύο περιπτώσεις, σε πρώτη φάση γίνεται προσομοίωση του συστήματος υπό σταθερή ταχύτητα ανέμου ίση με 12 m/s και σε δεύτερη φάση προσομοιώνεται η λειτουργία του συστήματος για βηματικές μεταβολές της ταχύτητας του ανέμου. Στο Κεφάλαιο 6 μελετάται η αυτόνομη λειτουργία του αιολικού συστήματος το οποίο, πλέον, πλαισιώνεται με μια διάταξη αποθήκευσης ενέργειας. Αρχικά, παρουσιάζεται το σύστημα αποθήκευσης ενέργειας που χρησιμοποιήθηκε. Συγκεκριμένα η συστοιχία μπαταριών της οποίας δίνονται τα χαρακτηριστικά μεγέθη, καθώς και το μοντέλο της στο Simulink. Επίσης, παρουσιάζεται και μοντελοποιείται ο dc/dc μετατροπέας δύο κατευθύνσεων ο οποίος συνδέει τη συστοιχία με το υπόλοιπο σύστημα. Στη συνέχεια, περιγράφεται αναλυτικά ο μηχανισμός ελέγχου που εφαρμόζεται στη διάταξη αποθήκευσης ενέργειας για τον έλεγχο της φόρτισης/εκφόρτισης. Στο τέλος του κεφαλαίου παρουσιάζονται τα αποτελέσματα της προσομοίωσης του αυτόνομου αιολικού συστήματος για σταθερή ταχύτητα ανέμου-μεταβαλλόμενο φορτίο και για μεταβαλλόμενο άνεμο-σταθερό φορτίο. / In this thesis, a wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG) was studied and simulated. All parts of the WECS are presented and discussed in detail. Furthermore, control strategies for the generator-side converter and the voltage source inverter are developed. The WECS is simulated both in grid connected and stand-alone mode. In the stand-alone mode, the WECS is supplied with an energy storage system for which a bi-directional buck/boost converter and control strategy was designed. Finally, simulation results are presented and performance of the system in various modes of operation is evaluated. Simulink/Matlab is used for modeling and simulating the WECS. At the beginning of Chapter 1, a discussion of energy crisis and renewable energy sources is held. Furthermore, information about wind energy has been reviewed and its benefits and drawbacks are examined. In addition, the structure of a wind turbine and the principles of converting wind energy into electricity are presented. In Chapter 2 all parts of the wind turbine are studied and its characteristics are specified. Even more, the model of every part in Simulink is presented. Theoretical background, structure and operation principles of PMSG are presented in detail. In Chapter 3, firstly a general presentation of converters components takes place. Then the major existing categories of converter are presented and some basic types of converters, which are generally used in WECS, are mentioned. Moreover, the chapter focuses on the converters that are used in this thesis, explaining the way they operate. After all, their models in Simulink are shown. Emphasis was given to the dc/dc boost converter whose parameters are calculated and its operation is simulated. Finally, there is a presentation of the filter which was placed at the output of the inverter. In Chapter 4, Pulse-width Modulation (PWM) and Sinusoidal Pulse-width Modulation (SPWM) techniques that are used in this thesis are described. Moreover, the control strategy for the generator-side converter with maximum power extraction is presented. The control strategy of the voltage sourced inverter is shown as well. In Chapter 5 simulation results of the grid connected WECS are presented and evaluated. On the first part of the presentation, the WECS is simulated for constant wind speed (12m/s), and in the second part for step-changed wind speed. In Chapter 6 the stand-alone operation of the WECS is studied and supplied with an energy storage system. Initially, there is an analysis of the energy storage system, which was used, and in particular the battery bank, whose characteristics are given. Moreover, a Bi-directional dc/dc Buck-Boost converter which is used to interconnect the battery bank to the dc-link is presented and modeled. Afterwards, there is a detailed description of the control strategy used in order to control charging / discharging of the battery bank. At the end of this chapter, simulation results of two different stand-alone operation modes are presented, one with constant wind speed and variable load and the other one with step-changing wind speed and constant load.
134

Contribution for integrating urban wind turbine into electrical microgrid : modeling and control / Contribution à l'intégration des éoliennes urbaines dans un micro réseau électrique : modélisation et contrôle

Liu, Hongliang 27 January 2017 (has links)
L’intégration de l’énergie éolienne, qui est une ressource renouvelable très utilisée, n’est pas toujours facile pour le micro-réseau urbain. Dans cette thèse, une éolienne urbaine basée sur une machine synchrone à aimants permanents (MSAP) est étudiée pour être intégrée dans un micro-réseau urbain à courant continu. Un état de l'art concernant les énergies renouvelables, les micro-réseaux à courant continu et les stratégies de contrôle de la production d'énergie éolienne, est réalisée. Basé sur un modèle d’éolienne urbaine répondant à la demande du système électrique, qui se compose d’un émulateur de vent et de pales, un MSAP et un convertisseur DC/DC, cette thèse propose des méthodes de poursuite du point de puissance maximale satisfaisant à l’obligation de produire de l’énergie dans la mesure du possible. Une stratégie de contrôle à puissance limitée répond correctement. De simples à complexes, quatre algorithmes MPPT, P&O à pas fixe, P&O à pas variable avec la méthode Newton-Raphson améliorée, P&O à pas variable à base de logique floue et une méthode indirecte de type lookup table, sont étudiés et implémentés pour être comparés à l’aide de trois profils de vitesse du vent. Par expérimentation, les algorithmes MPPT et PLC sont comparés, analysés et discutés. Résumant tous les résultats expérimentaux, la méthode lookup table peut gérer toutes les exigences du mode de fonctionnement MPPT en présentant la meilleure performance, mais, dans le mode de fonctionnement PLC, la P&O à base de logique floue présente les meilleures performances. / The integration of the wind power, which is one mostly used renewable resource, is always one challenger for urban microgrid. In this thesis, one urban wind turbine based on a permanent magnet synchronous machine (PMSM) is studied in order to be integrated into a DC urban microgrid. A state of the art concerning the renewable energies, DC microgrid, and control strategies of wind power generation is done. Based on a model of urban wind turbine fitting the demand of urban electric system, which consists of an emulator of wind speed and blades, a PMSM and a DC/DC converter, this thesis proposes the maximum power point tracking (MPPT) methods satisfying the requirement of producing energy as much as possible, and power limited control (PLC) strategies answering the demand of flexible energy production. From simple to complex, four MPPT algorithms including Perturbation and Observation (P&O) fixed step-size method, P&O with improved Newton-Raphson method, P&O with fuzzy logic method and lookup table method are studied and implemented to be compared with each other using three wind velocity profiles. According to the experience about MPPT subject, four PLC algorithms are introduced and implemented to be analyzed and compared with each other with one power demand profile calculated randomly. Summarizing all experimental results, the lookup table method can handle all requirement of MPPT operating mode supplying the best performance, however, in the condition of more flexible power demand operating mode, the combination of P&O and fuzzy logic method presents the best performance and potential which can be achieved in future works.
135

Modeling, Optimization And Design Of A Solar Thermal Energy Transport System For Hybrid Cooking Application

Prasanna, U R 07 1900 (has links) (PDF)
Cooking is an integral part of each and every human being as food is one of the basic necessities for living. Commonly used sources of energy for cooking are firewood, crop residue, cow dung, kerosene, electricity, liquefied petroleum gas(LPG), biogas etc. Half of the world’s population is exposed to indoor air pollution, mainly the result of burning solid fuels for cooking and heating. Wood cut for cooking purpose contributes tothe16 million hectares(above4% of total area of India) of forest destroyed annually. The World Health Organization(WHO) reports that in 23 countries 10% of deaths are due to just two environmental risk factors: unsafe water, including poor sanitation and hygiene; and indoor air pollution due to solid fuel usage for cooking. In under-developed countries, women have to walk 2kms on average and spend significant amount of time for collecting the firewood for cooking. The cooking energy demand in rural areas of developing countries is largely met with bio-fuels such as fuel wood, charcoal, agricultural residues and dung cakes, whereas LPG or electricity is predominantly used in urban areas. India has abandon amount of solar energy in most of the regions making it most ideal place for harvesting solar energy. With almost 300 sunny days each year, one can confidently relay on this source of energy. India’s geographical location is in such a way that theoretically it receives 5x1015 kWh/ year of solar energy. Solar cooking is the simplest, safest, environmental friendly and most convenient way to cook. It is a blessing for those who cook using firewood or cow dung, who walk for miles to collect wood, who suffer from indoor air pollution. Hence solar cooking is going to play major role in solving future energy problem. Solar based cooking has never been a strong contender in the commercial market or even close to being a preferred method of cooking. They have been relegated to demonstration appliances to show case the solar based concepts. In this mode, cooking is no longer a time independent activity that can be performed at any time of day. One is forced to cook only at certain times when there is sufficient insolation. The geography of the cooking activity also shifts away from the kitchen. The kitchen is no longer the hearth of the home as the actual cooking activity shifts to the roof tops or high insolation platforms. This further adds to the inconvenience apart from being unable to cook at night or during cloudy conditions or during most of the winter days. Another issue of significant inconvenience is the general social structure in most families of the developing countries wherein the cooking activity is carried out by the senior ladies of the home. They are generally not athletic enough to be moving to and from the kitchen and the roof top to carry out the cooking exercise. As the solar cookers are enclosed spaces, interactive cooking is not possible let alone having any control on the rate of cooking. These are some of the more significant issues in the social psyche that has abundantly impeded the acceptance of solar thermal based cooking appliances. These issues and problems are in fact the motivating factors for this thesis. Based on these motivating factors, this thesis aims to propose solutions keeping the following points as the major constraints. cooking should be performed in the kitchen. one should be able to perform the cooking activity independent of the time of day or insolation. the cooking activity should be interactive the time taken for cooking should be comparable with the conventional methods in vogue. there should be a reduction in the use of conventional energy. Using the constraints and the motivating factors discussed above as the central theme, this thesis proposes a method to transfer solar thermal energy to the kitchen and act as a supplement to the conventional source of energy like the LPG or other sources that are traditionally being used in the households. The method proposed is in fact a hybrid scenario wherein the solar thermal is used to supplement the traditional source. Solar photovoltaic cells are also used to power the electronics and apparatus proposed in this thesis. This thesis addresses in detail the issues in analysis, modeling, designing and fabrication of the proposed hybrid solar cooking topology. The main goal of the proposed system is to transfer heat from sun to the cooking load that is located in the kitchen. The topology includes an additional feature for storing the energy in a buffer. The heat is first transferred from the solar thermal collector to a heat storage tank(that acts as the buffer) by circulating the heat transfer fluid at a specific flow rate that is controlled by a pump. The stored heat energy that is collected in the buffer is directed into the kitchen by circulating the heat transfer fluid into the heat exchanger, located in the kitchen. This is accomplished by controlling the flow rate using another pump. The solar thermal collector raises the temperature of the thermic fluid. The collector can be of a concentrating type in order to attain high temperatures for cooking. Concentrating collector like linear parabolic collector or parabolic dish collector is used to convert solar energy into heat energy. Absorption of energy from the incident solar insolation is optimized by varying the flow rate of circulating thermic fluid using a pump. This pump is energized from a set of photovoltaic panels(PV cell) which convert solar energy into electrical energy. The energy absorbed from the solar thermal collector is stored in a buffer tank which is thermally insulated. Whenever cooking has to be carried out, the high temperature fluid from the buffer tank is circulated through a heat exchanger that is located in the kitchen. The rate of cooking can be varied by controlling both the flow rate of fluid from the buffer tank to heat exchanger and also by controlling the amount of energy drawn from the auxiliary source. If the available stored energy is not sufficient, the auxiliary source of energy is used for cooking in order to ensure that cooking is in-dependent of time and solar insolation. In the proposed hybrid solar cooking system, the thesis addresses the issues involved in optimization of energy extracted from sun to storage tank and its subsequent transfer from the storage tank to the load. The flow rate at which maximum energy is extracted from sun depends on many parameters. Solar insolation is one of the predominant parameters that affect the optimum flow rate. Insolation at any location varies with time on a daily basis (diurnal variations) and also with day on a yearly basis(seasonal variation). This implies that the flow rate of the fluid has to be varied appropriately to maximize the energy absorbed from sun. In the proposed system, flow rate control plays a very significant role in maximizing the energy transfer from the collector to the load. The flow rate of the thermic fluid in the proposed system is very small on the order of 0.02kg/s. It is very difficult to sense such low flows without disrupting the operating point of the system. Though there are many techniques to measure very low flow rates, they invariably disrupt the system in which flow rate has to be measured. Further, the low flow sensors are far too expensive to be included in the system. A reliable, accurate and inexpensive flow measuring technique has been proposed in this thesis which is non-disruptive and uses a null-deflection technique. The proposed measuring method compensates the pressure drop across the flow meter using a compensating pump. The analysis, modeling, design and fabrication of this novel flow meter are addressed. The design and implementation of different subsystems that involves the selection and design of solar concentrating collector and tracking are explained. Finally, it is essential to know the economic viability of the proposed system that is designed and implemented. To understand the economics, the life cycle cost analysis of the proposed system is presented in this thesis. The major contributions of this thesis are: Energy transport: Major challenge in energy transport is to bring heat energy obtained from the sun to the kitchen for cooking. Energy transferred from solar insolation to the cooking load has to be optimized to maximize the overall efficiency. This can be split in to two parts,(a) optimizing efficiency of energy transferred from the collect or to the energy buffer tank,(b) optimizing efficiency of energy transferred from the buffer tank to the load. The optimization is performed by means of a maximum power point tracking(MPPT) algorithm for a specific performance index. Modeling of the cooking system: There are several domains that exist in the solar cooking system such as electrical domain, thermal domain, and hydraulic domain. The analysis of power/energy flow across all these domains presents a challenging task in developing a model of the hybrid cooking system. A bond graph modeling approach is used for developing the mathematical model of the proposed hybrid cooking system. The power/energy flow across different domains can be seamlessly integrated using the bond graph modeling approach. In this approach, the various physical variables in the multi-domain environment are uniformly de-fined as generalized power variables such as effort and flow. The fundamental principle of conservation of power/energy issued in describing the flow of power/energy across different domains and thus constructing the dynamic model of the cooking system. This model is validated through experimentation and simulation. Flow measurement: A novel method of low fluid mass flow measurement by compensating the pressure drop across the ends of measuring unit using a compensating pump has been proposed. The pressure drop due to flow is balanced by feedback control loop. This is a null-deflection type of measurement. As insertion of such a measuring unit does not affect the functioning of the systems, this is also a non-disruptive flow measurement method. This allows the measurement of very low flow rate at very low resolution. Implementation and design of such a unit are discussed. The system is modeled using bond graph technique and then simulated. The flow meter is fabricated and the model is experimentally validated. Design Toolbox: Design of hybrid cooking system involves design of multi domain systems. The design becomes much more complex if the energy source to operate the system is hybrid solar based. The energy budget has to be evaluated considering the worst case conditions for the availability of the solar energy. The design toolbox helps in assessing the user requirement and help designing the cooking system to fulfill the user requirement. A detailed toolbox is proposed to be developed that can be used in designing/selecting sub-systems like collector, concentrator, tracking system, buffer tank, heat exchanger, PV panel, batteries etc. The toolbox can also be used for performing life cycle costing.
136

Racionalizace konceptu připojení fotovoltaické elektrárny / Rationalization of the concept of photovoltaic power station connection

Svozil, Marek January 2015 (has links)
This masters thesis addresses the racionalization of the concept of photovoltaic power station connection. A way of compensation valuable components involvement standar- tizovaným inverter controlled by a microcontroller. Also includes the measurement of voltage and current using a microcontroller. The output voltage of the DC/DC con- verter is controlled by the variable duty cycle of the PWM signal generated by the microcontroller ATmega32.
137

Controle chaveado de sistemas com incertezas utilizando otimizadores não derivativos /

Silva, Paulo Henrique Gonçalves Leonel da. January 2020 (has links)
Orientador: Marcelo Carvalho Minhoto Teixeira / Resumo: Nesta tese, utiliza-se um otimizador analógico não derivativo proposto por Teixeira & Żak em 1999 como principal ferramenta para os sistemas de controle dos projetos desenvolvidos. Tal otimizador é composto por blocos não lineares e pode ser classificado como um sistema neural artificial. Sistemas chaveados têm grande aplicação prática na otimização de sistemas e são caracterizados por possuírem subsistemas e uma lei de chaveamento que seleciona cada subsistema a cada momento. Deve-se definir condições para que seja possível projetar uma lei de chaveamento que atenda requisitos de projeto. O estudo de técnicas de controle extremal na solução de problemas de busca pelo rastreamento do máximo ponto de potência (do inglês: Maximum Power Point Tracking - MPPT), vem apresentando resultados interessantes na literatura e um tipo de sistema à qual essa técnica pode ser aplicada, é na geração fotovoltaica. Aplica-se o otimizador analógico citado na busca do MPPT de uma célula fotovoltaica, com o objetivo de observar o controle extremal atuando em um processo de otimização, estendendo o controle para quando existem variações de irradiação solar (cenário de uma possível passagem de nuvens). Também observa-se o comportamento do sistema quanto a manter seu correto funcionamento e estabilidade ultimate bounded. A contribuição principal desta tese foi uma nova proposta de utilização conjunta do otimizador de Teixeira & Żak no projeto de controladores ˙ chaveados baseados na minimização da d... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: On this thesis, a non-derivative analog optimizer, proposed by Teixeira & Żak in 1999, was used as the main tool for the proposed control system. Such optimizer is structured by nonlinear blocks and can be classified as an artificial neural system. Switched systems have great theoretical and practical application in systems optimization and are characterized by having subsystems, and a switching law that selects each subsystem at each moment. It is necessary to define conditions so that it is possible to design a switching law for the desired performance of the controlled system. The study of Extremum Seeking Control techniques in the solution of problems of Maximum Power Point Tracking has presented interesting results, and one type of system which this technique can be applied is in the photovoltaic generation. The analog optimizer is applied in the Maximum Power Point Tracking of a photovoltaic cell, with the objective of observing the actuation of the extremal seeking control in an optimization process, extending the control when there are solar irradiation variations (a possible clouds passage scenario). And also observe the behavior of the system and how to maintain its correct functioning and ultimate bounded stability. The main contribution of this thesis was a new procedure for using the mentioned analog optimizer in the design of switched controllers based on the minimization of the derivative of a Lyapunov function. This method allows the relaxed design of controll... (Complete abstract click electronic access below) / Doutor
138

Design and Experimentation of Darrieus Vertical Axis Wind Turbines

Gonzalez Campos, Jose Alberto 07 September 2020 (has links)
No description available.
139

PV Based Converter with Integrated Battery Charger for DC Micro-Grid Applications

Salve, Rima January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis presents a converter topology for photovoltaic panels. This topology minimizes the number of switching devices used, thereby reducing power losses that arise from high frequency switching operations. The control strategy is implemented using a simple micro-controller that implements the proportional plus integral control. All the control loops are closed feedback loops hence minimizing error instantaneously and adjusting efficiently to system variations. The energy management between three components, namely, the photovoltaic panel, a battery and a DC link for a microgrid, is shown distributed over three modes. These modes are dependent on the irradiance from the sunlight. All three modes are simulated. The maximum power point tracking of the system plays a crucial role in this configuration, as it is one of the main challenges tackled by the control system. Various methods of MPPT are discussed, and the Perturb and Observe method is employed and is described in detail. Experimental results are shown for the maximum power point tracking of this system with a scaled down version of the panel's actual capability.

Page generated in 0.0604 seconds