• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 11
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 46
  • 29
  • 24
  • 22
  • 21
  • 20
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling, Control and Design of Modular Multilevel Converters for High Power Applications

January 2020 (has links)
abstract: Modular multilevel converters (MMCs) have become an attractive technology for high power applications. One of the main challenges associated with control and operation of the MMC-based systems is to smoothly precharge submodule (SM) capacitors to the nominal voltage during the startup process. The existing closed-loop methods require additional effort to analyze the small-signal model of MMC and tune control parameters. The existing open-loop methods require auxiliary voltage sources to charge SM capacitors, which add to the system complexity and cost. A generalized precharging strategy is proposed in this thesis. For large-scale MMC-embedded power systems, it is required to investigate dynamic performance, fault characteristics, and stability. Modeling of the MMC is one of the challenges associated with the study of large-scale MMC-based power systems. The existing models of MMC did not consider the various configurations of SMs and different operating conditions. An improved equivalent circuit model is proposed in this thesis. The solid state transformer (SST) has been investigated for the distribution systems to reduce the volume and weight of power transformer. Recently, the MMC is employed into the SST due to its salient features. For design and control of the MMC-based SST, its operational principles are comprehensively analyzed. Based on the analysis, its mathematical model is developed for evaluating steady-state performances. For optimal design of the MMC-based SST, the mathematical model is modified by considering circuit parameters. One of the challenges of the MMC-based SST is the balancing of capacitor voltages. The performances of various voltage balancing algorithms and different modulation methods have not been comprehensively evaluated. In this thesis, the performances of different voltage-balancing algorithms and modulation methods are analyzed and evaluated. Based on the analysis, two improved voltage-balancing algorithms are proposed in this thesis. For design of the MMC-based SST, existing references only focus on optimal design of medium-frequency transformer (MFT). In this thesis, an optimal design procedure is developed for the MMC under medium-frequency operation based on the mathematical model of the MMC-based SST. The design performance of MMC is comprehensively evaluated based on free system parameters. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
2

Embedded Multilevel Converter Design of a Slotless Tubular Linear Generator for Direct Renewable Energy Extraction

Chen, Chiao-Ru 15 August 2012 (has links)
The objective of this thesis is to design a multilevel converter circuit for driving slotless tubular linear generators (STLG) on retrieving renewable energy application. With the changing speeds and reciprocating directions of the movers, the electric energy generated from the STLG will exhibit large fluctuations and is hard to be used directly. Based on machine modeling and mover reference frame projection, a converter circuit and a data acquisition (DAQ)-based drive control scheme have been developed. From the experimental results, the control scheme implemented on the converter circuit can provide acceptable multilevel dc outputs at various operating modes.
3

A NOVEL CASCADED MULTILEVEL CONVERTER

Rangarajan, Rajmohan 19 August 2008 (has links)
No description available.
4

High-Frequency Design Consideration and EMI Mitigation in SiC-based Multilevel Converters

Yu, Jianghui 23 May 2022 (has links)
Medium Voltage (MV) power conversion systems are essential in high power applications to address the increasing demand of energy and the increasing penetration of renewable energy sources. MV power electronics converters are the key elements for power conversion in MV systems and are the focus of this study. Multilevel converter topologies are promising topologies in MV applications because of their reduced voltage stress on devices, excellent output quality, reduced semiconductor losses, lower common mode voltage among other advantages. However, they may suffer from the large number of switching devices and capacitors, as well as the need to regulate capacitor voltages. SiC MOSFETs can achieve higher switching speeds, higher switching frequencies, higher voltage ratings, higher operation temperatures compared to traditional Si devices. They have shown promise to increase the efficiency and power density of the converters, but may suffer from higher voltage overshoots, increased Electromagnetic Interference (EMI) emission and so on. In SiC-based multilevel converters, the features of multilevel topologies, and the features of SiC MOSFETs are coupled together. The benefits, challenges, and solutions of using SiC MOSFETs in multilevel converters are studied explicitly in this work. With the high switching speeds and high switching frequencies of SiC MOSFETs, and the large number of switches and capacitors in multilevel topologies, SiC-based multilevel converters need to be studied while considering high-frequency voltage and current behaviors and the interactions among them at different locations. Firstly, the use of SiC-based multilevel converter in the high-speed motor drive application is explored. A three-phase inverter is designed and built employing five-level Stacked Multicell Converter topology and SiC MOSFETs. The benefits and challenges of using multilevel converter topology and using SiC MOSFETs for this application are explored. A fitting topology is selected, and a prototype is designed, both with attentions paid to deal with the high switching speeds of SiC MOSFETs. The inverter is verified through experiments to meet all specifications with a high efficiency. Then a unique type of converter, converters with Integrated Capacitor Blocked Transistor (ICBT) cells are studied. Unlike the traditional methods, there are no fast-developing voltage unbalances, or high cell capacitor voltage ripples in ICBT-based converters. The ideal operation principle is analyzed and verified by the simulation results. Then the impacts of non-idealities on the operation are analyzed, and a control method is proposed for this type of converter. The operation and control of ICBT-based converters are verified by experimental results to achieve low cell capacitor voltage ripples and excellent voltage balance in Medium Voltage high power applications. Lastly, the conducted EMI emission in SiC-based multilevel converters are studied. Four SiC-based multilevel converters are studied, with the focus on the power circuit in one converter and the auxiliary circuits in the other three converters. The complexity of noise generation and propagation in multilevel converters is presented. The conducted EMI disturbances are experimentally evaluated, analyzed, and effectively mitigated in all four cases. / Doctor of Philosophy / Medium Voltage (MV) power conversion systems are essential in high power applications to address the increasing demand of energy and the increasing penetration of renewable energy sources. MV power electronics converters are the key elements for power conversion in MV systems and are the focus of this study. Multilevel converter topologies are promising topologies in MV applications because of their reduced voltage stress on devices, excellent output quality, reduced semiconductor losses, lower common mode voltage among other advantages. However, they may suffer from the large number of switching devices and capacitors, as well as the need to regulate capacitor voltages. SiC MOSFETs can achieve higher switching speeds, higher switching frequencies, higher voltage ratings, higher operation temperatures compared to traditional Si devices. They have shown promise to increase the efficiency and power density of the converters, but may suffer from higher voltage overshoots, increased Electromagnetic Interference (EMI) emission and so on. In SiC-based multilevel converters, the features of multilevel topologies, and the features of SiC MOSFETs are coupled together. The benefits, challenges, and solutions of using SiC MOSFETs in multilevel converters are studied explicitly in this work. With the high switching speeds and high switching frequencies of SiC MOSFETs, and the large number of switches and capacitors in multilevel topologies, SiC-based multilevel converters need to be studied while considering high-frequency voltage and current behaviors and the interactions among them at different locations. Firstly, the use of SiC-based multilevel converter in the high-speed motor drive application is explored. A three-phase inverter is designed and built employing five-level Stacked Multicell Converter topology and SiC MOSFETs. The benefits and challenges of using multilevel converter topology and using SiC MOSFETs for this application are explored. A fitting topology is selected, and a prototype is designed, both with attentions paid to deal with the high switching speeds of SiC MOSFETs. The inverter is verified through experiments to meet all specifications with a high efficiency. Then a unique type of converter, converters with Integrated Capacitor Blocked Transistor (ICBT) cells are studied. Unlike the traditional methods, there are no fast-developing voltage unbalances, or high cell capacitor voltage ripples in ICBT-based converters. The ideal operation principle is analyzed and verified by the simulation results. Then the impacts of non-idealities on the operation are analyzed, and a control method is proposed for this type of converter. The operation and control of ICBT-based converters are verified by experimental results to achieve low cell capacitor voltage ripples and excellent voltage balance in Medium Voltage high power applications. Lastly, the conducted EMI emission in SiC-based multilevel converters are studied. Four SiC-based multilevel converters are studied, with the focus on the power circuit in one converter and the auxiliary circuits in the other three converters. The complexity of noise generation and propagation in multilevel converters is presented. The conducted EMI disturbances are experimentally evaluated, analyzed, and effectively mitigated in all four cases.
5

Modeling and Design of Modular Multilevel Converters for Grid Applications

Ilves, Kalle January 2014 (has links)
This thesis aims to bring clarity to the dimensioning aspects and limiting factors of the modular multilevel converter (MMC). Special consideration is given to the dc capacitors in the submodules as they are a driving factor for the size and weight of the converter. It is found that if the capacitor voltages are allowed to increase by 10% the stored energy must be 21 kJ/MW in order to compensate the capacitor voltage ripple. The maximum possible output power can, however, be increased by injecting a second-order harmonic in the circulating current. A great advantage of cascaded converters is the possibility to achieve excellent harmonic performance at low switching frequencies. Therefore, this thesis also considers the relation between switching harmonics, capacitor voltage ripple, and arm quantities. It is shown that despite subharmonics in the capacitor voltages, it is still possible to achieve periodic arm quantities. The balancing of the capacitor voltages is also considered in further detail. It is found that it is possible to balance the capacitor voltages even at fundamental switching frequency although this will lead to a comparably large capacitor voltage ripple. Therefore, in order to limit the peak-to-peak voltage ripple, it is shown that a predictive algorithm can be used in which the resulting switching frequency is approximately 2–3 times the fundamental frequency. This thesis also presents two new submodule concepts. The first submodule simply improves the trade-off between the switching frequency and capacitor voltage balancing. The second submodule includes the possibility to insert negative voltages which allows higher modulation indices compared to half-bridge submodules. A brief comparison of cascaded converters for ac-ac applications is also presented. It is concluded that the MMC appears to be well suited for ac-ac applications where input and output frequencies are close or equal, such as in interconnection of ac grids. In low-frequency applications such as low-speed drives, however, the difficulties with handling the energy variations in the converter arms are much more severe in the MMC compared to the other considered topologies. / <p>QC 20141010</p>
6

A systematic procedure to determine controller parameters for MMC-VSC systems

Sakthivel, Arunprasanth 03 October 2016 (has links)
Modular multilevel converter type voltage source converter (MMC-VSC) is a potential candidate for present and future HVdc projects. The d-q decoupled control system is widely used to control MMC-VSC systems. Selection of PI-controller parameters for MMC-VSC systems is a challenging task as control loops are not completely decoupled. Since there is no widely accepted method to tune these control loops, the industry practice is to use the trial and error approach that requires a great amount of time. Therefore, it is required to develop a systematic procedure to tune PI-controllers considering necessary system dynamics and also to propose guidelines for control system design. This thesis introduces a systematic procedure to determine PI-controller parameters for the d-q decoupled control system. A linearized state-space model of an MMC-VSC system is developed to calculate the frequency-domain attributes. The control tuning problem is formulated as an optimization problem which is general and any meta-heuristic method can be used to solve the problem. In this thesis, the simulated annealing is applied to solve the problem. The efficacy of the tuned parameters is tested on the electromagnetic transient model of the test system on the real-time digital simulators (RTDS). In addition, it is shown that the proposed method is suitable to tune PI-controller parameters for MMC-VSC systems connected to strong as well as weak ac networks. Further, this thesis investigates the effects of d-q decoupled controller parameters, phase-locked loop (PLL) gains, and measuring delays on the stability and performance of the MMC-VSC test system. It is shown that the converter controllers have greater influence on the system stability and the impact of PLL gains is negligible unless very high PLL gains are used. In addition, the negative impact of measuring delays in instantaneous currents and voltages is also analysed by performing eigenvalue and sensitivity analysis. Finally, a set of guidelines for control design of MMC-VSC systems is summarized. In general, the proposed control tuning procedure would be useful for the industry to tune PI-controllers of MMC-VSC systems. Furthermore, the proposed methodology is generic and can be adapted to tune of any dynamic device in power systems. / February 2017
7

Design Paradigm for Modular Multilevel Converter Based Generator Rectifier Systems

Raj Sahu (7022165) 15 August 2019 (has links)
Modular Multilevel Converters (MMC) are being widely considered for medium to high voltage DC generation systems. Integrated system design optimization of the generator-MMC system through multi-objective optimization is of interest, because such an approach allows the trade-off between competing objectives (for example, mass and loss) to be explicitly and quantitatively identified. In this work, such an optimization based design paradigm for MMC based generator rectifier systems is developed. To formulate the design problem as a multi-objective optimization problem, it is required that the system waveforms can be obtained to facilitate the imposition of constraints and the estimation of power losses. Similarly, it is also desired to include detailed electric machine magnetic and electrical analysis in design optimization, as well as aspects such as the inductor and heat sink design. Such development typically requires detailed component design and simulation models for the electric machine and converter which are computationally expensive. As an alternative, the proposed work utilizes an electric machine metamodel, heat sink metamodel, and high-speed steady-state simulation model for the MMC to facilitate multi-objective optimization minimizing system metrics of interest while satisfying system constraints. Using the developed component simulation and design models, a multi-objective optimization based design of an MMC based generator-rectifier system is conducted.
8

Gultekin, Burhan 01 September 2012 (has links) (PDF)
This research and development work deals with the design methodology for Cascaded Multilevel Converter (CMC) based Transmission STATCOM (TSTATCOM) and development of a &plusmn / 12MVAR, 12kV line-to-line wye-connected, 11-level CMC. This CMC module constitutes the basic building block of TSTATCOM systems. Sizing of the CMC module, number of H-Bridges in each phase of the CMC, AC voltage rating of the CMC, the number of paralleled CMC modules in the T-STATCOM system, optimum value of series filter reactors and determination of busbar in the power grid to which the T-STATCOM system is going to be connected are also discussed in the thesis in view of IEEE Std.519-1992, current status of HV IGBT technology and the required reactive power variation range for the T-STATCOM application. In the field prototype of the CMC module, the AC voltages are approximated to sinusoidal waves by Selective Harmonic Elimination Method (SHEM) and by the use of an optimized series input filter reactor. The use of n number of HBs in each phase provides us n number of freedom in the application of SHEM. One of them is allocated to the fundamental component while n-1 is for the elimination of low order harmonics. Since n is chosen to five in the prototype system, 5th, 7th,11th and 13th harmonic components are successfully eliminated in the AC voltage waveforms of the CMC module. The equalization of DC link capacitor voltages is achieved according to Modified Selective Swapping (MSS) algorithm. MSS is applied every 400&mu / s period if needed to obtain a perfect equalization of DC link capacitor voltages at the expense of higher switching frequency and hence switching losses. In this research work, an L-shaped laminated bus has been designed and the HV IGBT driver circuit has been modified for optimum switching performance of HV IGBT modules in each HB circuit. The performances of the HB circuit and the resulting 11-level CMC module have been obtained not only in the laboratory but also in the field. Design works for HB and the CMC are based on MATLAB and PSCAD simulations. The laboratory and field performance of the HB circuit and CMC module is found to be satisfactory and quite consistent with the theoretical results and design objectives. In addition to these, 154 kV, &plusmn / 50MVAr T-STATCOM prototype has been designed, implemented and installed at Sincan Transformer Substation-Ankara primarily for the purposes of reactive power compensation and terminal voltage regulation. The T-STATCOM prototype is composed of five parallel operated CMC modules developed within the scope of this PhD thesis research work. The T-STATCOM configuration permits the operation of any number of CMC modules in the range from one to five for experimental purposes. The performance of this T-STATCOM system is also presented in this PhD thesis as a sample application.
9

High-Power Modular Multilevel Converters With SiC JFETs

Peftitsis, Dimosthenis, Tolstoy, Georg, Antonopoulos, Antonios, Rabkowski, Jacek, Lim, Jang-Kwon, Bakowski, Mietek, Ängquist, Lennart, Nee, Hans-Peter January 2012 (has links)
This paper studies the possibility of building a modular multilevel converter (M2C) using silicon carbide (SiC) switches. The main focus is on a theoretical investigation of the conduction losses of such a converter and a comparison to a corresponding converter with silicon-insulated gate bipolar transistors. Both SiC BJTs and JFETs are considered and compared in order to choose the most suitable technology. One of the submodules of a down-scaled 3 kVA prototype M2C is replaced with a submodule with SiC JFETs without antiparallel diodes. It is shown that the diode-less operation is possible with the JFETs conducting in the negative direction, leaving the possibility to use the body diode during the switching transients. Experimental waveforms for the SiC submodule verify the feasibility during normal steady-state operation. The loss estimation shows that a 300 MW M2C for high-voltage direct current transmission would potentially have an efficiency of approximately 99.8% if equipped with future 3.3 kV 1.2 kA SiC JFETs. / © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.QC 20111220
10

A novel pulsewidth modulation for the comprehensive neutral-point voltage control in the three-level three-phase neutral-point-clamped dc-ac converte

Busquets Monge, Sergio 08 February 2006 (has links)
Las topologías de convertidores multinivel han recibido una atención especial durante las dos últimas décadas debido a sus notables ventajas en aplicaciones de alta potencia y media/alta tensión. En estas topologías, y comparadas con el convertidor tradicional de dos niveles, el voltaje que soporta cada dispositivo semiconductor es menor, evitando los problemas asociados con la interconexión serie de dispositivos. La distorsión armónica en la tensión de salida es también menor y la eficiencia mayor. Pero incorporan un número superior de dispositivos semiconductores y la estrategia de modulación resultante es, por tanto, más compleja.Entre estas topologías, el convertidor cc-ca de tres niveles trifásico con conexión al punto neutro del bus de cc es probablemente el más popular. La aplicación a este convertidor de técnicas de modulación convencionales causa una oscilación de la tensión del punto neutro de baja frecuencia (tres veces la frecuencia fundamental de la tensión de salida). Esta oscilación, a su vez, supone un incremento del estrés de tensión de los dispositivos y provoca la aparición de armónicos de baja frecuencia en la tensión de salida.Esta tesis presenta una nueva técnica de modulación del pulso de conducción de los dispositivos semiconductores para convertidores de tres niveles trifásicos con conexión a punto neutro, capaz de conseguir un control completo de la tensión del punto neutro con una distorsión armónica reducida en la tensión de salida alrededor de la frecuencia de conmutación. Esta nueva técnica de modulación, basada en la definición de unos vectores espaciales virtuales, garantiza el equilibrado de la tensión del punto neutro con cualquier carga (lineal o no, cualquier factor de potencia) y para todo el rango de tensión de salida, con el único requisito de que la suma de corrientes de fase sea nula.Las características de la técnica de modulación propuesta y sus beneficios con respecto a otras modulaciones se han verificado a través de simulaciones y experimentos tanto en lazo abierto como en lazo cerrado. / Multilevel converter topologies have received special attention during the last two decades due to their significant advantages in high-power medium- and high-voltage applications. In these topologies, and compared to the previous two-level case, the voltage across each semiconductor is reduced, avoiding the problems of the series interconnection of devices. The harmonic distortion of the output voltage is also diminished and the converter efficiency increases. But a larger number of semiconductors is needed and the modulation strategy to control them becomes more complex.Among these topologies, the three-level three-phase neutral-point-clamped voltage source inverter is probably the most popular. The application of traditional modulation techniques to this converter causes a low frequency (three times the fundamental frequency of the output voltage) oscillation of the neutral-point voltage. This, in turn, increases the voltage stress on the devices and generates low-order harmonics in the output voltage.This thesis presents a novel pulsewidth modulation for the three-level three-phase neutral-point-clamped converter, able to achieve a complete control of the neutral-point voltage while also having a low output voltage distortion at around the switching frequency. The new modulation, based on a virtual space vector concept, guarantees the balancing of the neutral-point voltage for any load (linear or nonlinear, any load power factor) over the full range of converter output voltage, the only requirement being that the addition of the output three-phase currents equals zero.The performance of this modulation approach and its benefits over other previously proposed solutions are verified through simulation and experiments in both open- and closed-loop converter configurations.

Page generated in 0.064 seconds