Spelling suggestions: "subject:"multiphysics"" "subject:"multiphysics""
81 |
Shock Boundary Layer Interactions - A Multiphysics ApproachBhide, Kalyani R. January 2018 (has links)
No description available.
|
82 |
Magnetitinblandad gjutasfalt : Uppvärmning och avsvalningBerg, Ludvig, Wanselius, Johannes January 2021 (has links)
Uppvärmningen av gjutasfalt har traditionellt sett skett med fossila bränslen. Projektet SMMART undersöker möjligheterna att med inblandning av magnetit i asfaltsmassan kunna nyttja mikrovågsteknik för uppvärmning. Detta examensarbete är uppdelat i två delar. Första delen behandlar uppvärmningen av magnetitinblandad asfaltsmassa och andra delen avsvalningsförloppet vid utläggning. Del 1 Numeriska tredimensionella simuleringar med simuleringsverktyget COMSOL Multiphysics har utförts för att undersöka hur uppvärmningen påverkar temperaturskillnaden mellan den inblandade magnetiten och resterande asfaltsmassa. Detta görs för att höga temperaturskillnader kan orsaka koksning. Simuleringarna utförs som ett värmeöverföringsproblem där tillförseln av mikrovågsenergi simuleras som att magnetitkornen avger en viss effekt. Resultatet visar på att temperaturskillnaden i hög grad beror på avståndet mellan magnetitkornen. Där framförallt höga vikt-% magnetit och små kornstorlekar på magnetiten påverkar avståndet och ger små temperaturskillnader. Detta resulterar i att den magnetitinblandade asfalten kan betraktas som ett kontinuum för höga vikt-% magnetit och mindre kornstorlekar på magnetiten. Vidare undersöks om det finns någon optimal vikt-% magnetit vid uppvärmning av asfaltsmassan. Resultatet visar att det ur en värmeöverföringssynpunkt inte finns några begränsningar för hur mycket magnetit som kan blandas in. Del 2 Ett fältförsök utfördes i Kungälv där både magnetitinblandad gjutasfalt och traditionell gjutasfalt lades ut. Båda asfaltstyperna tillverkades och värmdes upp i ett traditionellt gjutasfaltverk och utläggning skedde på Nordreälvsbron i Kungälv. Temperaturen mättes genom att temperaturgivare göts in i asfalten varefter mätvärden registrerades på olika höjdnivåer. Resultatet visade i stort på att den magnetitinblandade gjutasfalten avsvalnade långsammare än den traditionella, även om osäkerheter förekommer. Till exempel vad gäller nederbörd som påverkade asfaltstyperna olika. Numeriska endimensionella simuleringar med simuleringsverktyget COMSOL Multiphysics har utförts för att jämföra med uppmätta värden från fältförsöket. Här konstateras att temperaturerna i den simulerade modellen avtar snabbare än vad som uppmätts i fältförsöket. Precis som vid fältförsöket noterades att den magnetitinblandade gjutasfalten svalnade av långsammare än den traditionella gjutasfalten. Osäkerheter vid modelleringen rör framförallt modellparametrarna.
|
83 |
Preparation of Gold Nanoparticles with Scanning Electrochemical MicroscopyHan, Changhong 12 May 2012 (has links)
Scanning electrochemical microscopy (SECM) is used to deposit gold nanoparticles on a glassy carbon electrode (GCE). Deposition conditions, including the tip-substrate distance, current density, substrate potential, and addition of Ag ions in the electrolyte are changed to study the effects on gold spot size and particle morphology. Atomic force microscopy (AFM) is used to analyze the gold nanoparticles. The size and shape of the nanoparticle can be controlled by different SECM experimental conditions. OMSOL Multiphysics software is used to simulate the results of SECM deposition. By comparing the simulation results and experimental results, the deposition process can be understood better. Heterogeneous irreversible reaction rate constant of the reaction happened on GCE can be estimated.
|
84 |
Experimental and Computational Modeling of Ultrasound Correlation TechniquesGeorge, Brian Patrick 19 May 2010 (has links)
No description available.
|
85 |
MECHANICS IN ORGANIC MIXED IONIC-ELECTRONIC CONDUCTORSXiaokang Wang (15181663) 05 April 2023 (has links)
<p>This Dissertation aims at establishing an integrated framework of multimodal experiments and multiphysics theory to extend the understanding of the mechanics in electrochemically active materials using organic mixed ionic-electronic conductors (OMIECs) as a model system. </p>
<p>OMIECs allow the transport of both ions and electrons, which is accompanied by the (electronic, micro-) structural reorganization. The electronic structural change in OMIECs induces transforms in the electrical conductivity and optical absorbance. The change in molecular packing invites the size change and evolution of mechanical properties. The multiphysics processes render OMIECs a fascinating platform for understanding the multi-physics coupling and advancing organic electrochemical devices. </p>
<p>Despite significant progress, there are urgent needs in the experimental techniques and the subsequent mechanical characterization, theoretical understanding of the multiphysics processes, and mechanics-informed design principles for high-performance devices. Specifically, (i) an accurate and straightforward experimental method is in need to better understand the mechanical behaviors and kinetics such as swelling and softening of OMIECs upon electrochemical redox reactions; (ii) a theoretical framework is missing that describes the rich coupled multiphysics processes such as large deformation, charge and mass transport, electrostatics, and phase evolution in OMIECs; (iii) the rational design of the materials and structures based on mechanics principles are required for mechanically reliable, high-performance organic electrochemical devices.</p>
<p>In this Dissertation, the mechanics of OMIECs are studied systematically. The basics of OMIECs, knowledge gaps, and the outline are introduced in Chapter 1. The in-situ environmental nanoindentation apparatus and the associating characterization techniques are presented in Chapter 2. In Chapter 3, a theoretical mechanics model is presented that elucidates the interfacial mechanical degradation of thin-film electrodes and outlines the design principles for mechanically reliable electrodes. In Chapter 4, the electrochemical doping kinetics and its stress dependency on conductive polymers are studied via a designed moving front device. Chapter 5 presents a thermodynamically consistent continuum theory of two-phase OMIECs undergoing large deformation, charge and mass transport, electrostatics, and phase separation, which forms the theoretical foundation for such conductive polymer systems. The conclusion and perspectives on future work are presented in Chapter 6. </p>
|
86 |
Fundamental Study Of Mechanical And Chemical Degradation Mechanisms Of Pem Fuel Cell MembranesYoon, Wonseok 01 January 2010 (has links)
One of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit voltage (OCV) with bi-layer configuration of the membrane electrode assemblies (MEAs) and the other is a modified gas phase Fenton's test. Accelerated degradation tests for polymer electrolyte membrane (PEM) fuel cells are frequently conducted under open circuit voltage (OCV) conditions at low relative humidity (RH) and high temperature. With the bi-layer MEA technique, it was found that membrane degradation is highly localized across thickness direction of the membrane and qualitatively correlated with location of platinum (Pt) band through mechanical testing, Infrared (IR) spectroscopy, fluoride emission, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) measurement. One of the critical experimental observations is that mechanical behavior of membranes subjected to degradation via Fenton's reaction exhibit completely different behavior with that of membranes from the OCV testing. This result led us to believe that other critical factors such as mechanical stress may affect on membrane degradation and therefore, a modified gas phase Fenton's test setup was developed to test the hypothesis. Interestingly, the results showed that mechanical stress directly accelerates the degradation rate of ionomer membranes, implying that the rate constant for the degradation reaction is a function of mechanical stress in addition to commonly known factors such as temperature and humidity. Membrane degradation induced by mechanical stress necessitates the prediction of the stress distribution in the membrane under various conditions. One of research focuses was on the developing micromechanism-inspired continuum model for ionomer membranes. The model is the basis for stress analysis, and is based on a hyperelastic model with reptation-inspired viscous flow rule and multiplicative decomposition of viscoelastic and plastic deformation gradient. Finally, evaluation of the membrane degradation requires a fuel cell model since the degradation occurs under fuel cell operating conditions. The fuel cell model included structural mechanics models and multiphysics models which represents other phenomena such as gas and water transport, charge conservation, electrochemical reactions, and energy conservation. The combined model was developed to investigate the compression effect on fuel cell performance and membrane stress distribution.
|
87 |
Fluid Flow Characterization and In Silico Validation in a Rapid Prototyped Abdominal Aortic Aneurysm ModelWampler, Dean Thomas 01 March 2017 (has links) (PDF)
Aortic aneurysms are the 14th leading cause of death in the United States. Annually, abdominal aortic aneurysm (AAA) ruptures are responsible for 4500 deaths. There are another 45,000 repair procedures performed to prevent rupture, and of these approximately 1400 lead to deaths. With proper detection, the aneurysm may be treated using endovascular aneurysm repair (EVAR). Understanding how the flow of the blood within the artery is affected by the aneurysm is important in determining the growth of the aneurysm, as well as how to properly treat the aneurysm. The goal of this project was to develop a physical construct of the AAA, and use this construct to validate a computational model of the same aneurysm through flow visualization. The hypothesis was that the fluid velocities within the physical construct would accurately mimic the fluid velocities used in the computational model. The physical model was created from a CT scan of an AAA using 3D printing and polymer casting. The result was a translucent box containing a region in the shape of the aneurysm. Fluid was pumped through the construct to visualize and quantify the velocity of the fluid within the aneurysm. COMSOL Multiphysics® was used to create a computational model of the same aneurysm, as well as obtain velocity measurements to statistically compare to those from the physical construct. There was no significant difference between the velocity values for the physical construct and the COMSOL Multiphysics® model, confirming the hypothesis. This study used a CT scan to create an anatomically accurate model of an AAA that was used to validate a computational model using a novel technique of flow visualization. As EVAR technologies continue to progress, it will become increasingly important to understand how the blood flow within the aneurysm affects the growth and treatment of AAAs.
|
88 |
Numerical study of a jet impacting a heated object / Numerisk studie av en jet som träffar ett uppvärmt föremålHammoud, Moutaz January 2023 (has links)
Heat transfer brought about by impinging jets is common in several industrialapplications such as the cooling of heated objects. The purpose of this investigationis to create a numerical model of an impacting jet, then to use it in parametricresearch and in the cooling of an electronic device. In this work, COMSOL Multiphysics software has been used to carry out a numericalanalysis of a cooling jet impacting a vertical surface. Water and air are the two fluidscompared to each other, and three different materials were selected for modelling theheated object. The model created can be used in many areas. For example, the caseof the air jet hitting an aluminum object is commonly used in the cooling of electronicdevices while the water jet hitting a brick is used in building and construction. Inother words, the highlight of this project is to create a useful tool that can be easilymodified in order to investigate a specific area. To set an example, the cooling of aninsulated gate bipolar transistor (IGBT) has been investigated in this work. Equations related to the conservation of mass and momentum, coupled to the energyconservation equation, have been solved. Several assumptions were carefully andreasonably considered to simplify the simulation and ensure the accuracy andreliability of the results. The effect of the type of the heated material and the distancebetween the tube nozzle and the heated object have been investigated in the study.The results show that the jet is effective in cooling heated objects and can be used inparametric research. In fact, surface temperature and jet velocity have been displayedand discussed and it has been found that the most optimal combination for efficientheat transfer is a shorter distance between the tube nozzle and the heated object, amaterial with higher thermal conductivity, and water as the jet fluid. The impingingjet device has been tested in the cooling of Insulated Gate Bipolar Transistor (IGBT)and the results showed that the temperature of the IGBT drops by 14.57%. Despite the accuracy of the results, it is important to recognize the limits of thenumerical model such as the discretization of the physical domain, the resolution ofthe mesh, the assumptions, and the simplifications. In addition, this investigation waslimited to three variable factors. Therefore, further studies are recommended tofurther optimize the cooling effect of the jet, such as the study of nozzle shape, jetvelocity, jet mass flow rate and a 3D-simulation. / Värmeöverföring som orsakas av påverkande strålar är vanligt förekommandeinom flera industriella tillämpningar, såsom kylning av uppvärmda objekt. Syftetmed denna undersökning är att skapa en numerisk modell av en påverkande stråleoch sedan använda den i parametrisk forskning och för att kyla en elektroniskenhet. I detta arbete har COMSOL Multiphysics-programvaran använts för att genomföraen numerisk analys av en kylstråle som påverkar en vertikal yta. Vatten och luft ärde två vätskor som jämförs med varandra, och tre olika material valdes för attmodellera det uppvärmda objektet. Den skapade modellen kan användas inommånga områden. Till exempel används fallet med luftstrålen som träffar ettaluminiumobjekt vanligtvis vid kylning av elektroniska enheter, medanvattenstrålen som träffar en tegelsten används inom bygg- ochkonstruktionsbranschen. Med andra ord är höjdpunkten i detta projekt att skapa ettanvändbart verktyg som lätt kan modifieras för att undersöka ett specifikt område.Som ett exempel har kylningen av en isolerad gatebipolär transistor (IGBT) undersökts i detta arbete. Ekvationer relaterade till mass- och rörelsebevarande, kopplade tillenergibevarelsesekvationen, har lösts. Flera antaganden beaktades noggrant ochrimligtvis för att förenkla simuleringen och säkerställa noggrannheten ochtillförlitligheten hos resultaten. Effekten av uppvärmt materials typ och avståndetmellan tubmunstycket och det uppvärmda objektet har undersökts i studien.Resultaten visar att strålen är effektiv för att kyla uppvärmda objekt och kananvändas inom parametrisk forskning. Faktum är att yttemperaturen och strålenshastighet har visats och diskuterats, och det har konstaterats att den mest optimalakombinationen för effektiv värmeöverföring är ett kortare avstånd mellantubmunstycket och det uppvärmda objektet, ett material med högre termiskledningsförmåga och vatten som strålens fluid. Den påverkande strålenheten hartestats för att kyla en isolerad gatebipolär transistor (IGBT) och resultaten visadeatt temperaturen på IGBT sjunker med 14,57%. Trots resultatens noggrannhet är det viktigt att erkänna begränsningarna hos dennumeriska modellen, såsom diskretiseringen av det fysiska området, upplösningenpå nätet, antaganden och förenklingar. Dessutom var denna undersökningbegränsad till tre variabla faktorer. Därför rekommenderas ytterligare studier för attytterligare optimera strålens kylningseffekt, såsom studiet av munstyckets form,strålens hastighet, strålens massflödesintensitet och en 3D-simulering.
|
89 |
Numerical study of advanced solar receiver tubes based on a coupled thermo-mechanical analysis for concentrated solar power tower plantHatcher, Shawn Michael 09 December 2022 (has links)
The search for more sustainable energy to match the growing energy demand begins with finding more dispatchable resources such as solar energy. As one of the promising solar technologies, concentrated solar power (CSP) has a full capacity to store thermal energy for extended operation. Nevertheless, some key components in CSP systems usually face extreme environment, such as uneven solar flux, cyclic thermal expansion, structural degradation on the solar absorber tubes in a Concentrated Solar Power Tower (CSPT) Plant. In this study, we applied Multiphysics simulation to explore the benefits of introducing optimized fins for heat transfer enhancement and uniform temperature distribution, the goal is to improve the thermal efficiency of such advanced solar absorber tubes. The results of this study can supply design guidance for the manufacturing process of absorber tubes, and eventually can benefit the solar energy community for the next generation of molten salt based CSP system.
|
90 |
Integrated Computational and Experimental Approach to Control Physical Texture During Laser Machining of Structural CeramicsVora, Hitesh D. 12 1900 (has links)
The high energy lasers are emerging as an innovative material processing tool to effectively fabricate complex shapes on the hard and brittle structural ceramics, which previously had been near impossible to be machined effectively using various conventional machining techniques. In addition, the in-situ measurement of the thermo-physical properties in the severe laser machining conditions (high temperature, short time duration, and small interaction volume) is an extremely difficult task. As a consequence, it is extremely challenging to investigate the evolution of surface topography through experimental analyses. To address this issue, an integrated experimental and computational (multistep and multiphysics based finite-element modeling) approach was employed to understand the influence of laser processing parameters to effectively control the various thermo-physical effects (recoil pressure, Marangoni convection, and surface tension) during transient physical processes (melting, vaporization) for controlled surface topography (surface finish). The results indicated that the material lost due to evaporation causes an increase in crater depth of machined cavity, whereas liquid expulsion created by the recoil pressure increases the material pileup height around the lip of machined cavity, the major attributes of surface topography (roughness). Also, it was found that the surface roughness increased with increase in laser energy density and pulse rate (from 10 to 50Hz), and with the decrease in distance between two pulses (from 0.6 to 0.1mm) or the increase in lateral and transverse overlap (0, 17, 33, 50, 67, and 83%). The results of the computational model are also validated by experimental observations with reasonably close agreement.
|
Page generated in 0.031 seconds