• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 31
  • 17
  • 10
  • 6
  • 6
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 226
  • 105
  • 71
  • 49
  • 48
  • 34
  • 31
  • 29
  • 28
  • 28
  • 27
  • 26
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Finite element methods for multiscale/multiphysics problems

Söderlund, Robert January 2011 (has links)
In this thesis we focus on multiscale and multiphysics problems. We derive a posteriori error estimates for a one way coupled multiphysics problem, using the dual weighted residual method. Such estimates can be used to drive local mesh refinement in adaptive algorithms, in order to efficiently obtain good accuracy in a desired goal quantity, which we demonstrate numerically. Furthermore we prove existence and uniqueness of finite element solutions for a two way coupled multiphysics problem. The possibility of deriving dual weighted a posteriori error estimates for two way coupled problems is also addressed. For a two way coupled linear problem, we show numerically that unless the coupling of the equations is to strong the propagation of errors between the solvers goes to zero. We also apply a variational multiscale method to both an elliptic and a hyperbolic problem that exhibits multiscale features. The method is based on numerical solutions of decoupled local fine scale problems on patches. For the elliptic problem we derive an a posteriori error estimate and use an adaptive algorithm to automatically tune the resolution and patch size of the local problems. For the hyperbolic problem we demonstrate the importance of how to construct the patches of the local problems, by numerically comparing the results obtained for symmetric and directed patches.
112

Etude du perçage et du soudage laser : dynamique du capillaire

Mostafa, Massaud 15 December 2011 (has links) (PDF)
L'objectif de ce travail est d'étudier expérimentalement la formation du capillaire durant le perçage et le soudage par faisceau laser, et de développer une simulation numérique permettant de reproduire la dynamique de formation et d'évolution du capillaire. Nous avons fait le choix d'utiliser comme matériau test le Zinc, en raison de ses propriétés thermodynamiques. Afin de simplifier le problème, nous avons étudié dans un premier temps le mécanisme de perçage. Deux méthodes expérimentales ont été utilisées pour caractériser l'évolution de la géométrie du capillaire : La méthode DODO (Direct Observation of Drilled hOle ) permet de visualiser le capillaire après perçage pour différentes durées et la méthode Zn-Quartz permet d'observer directement son évolution temporelle par camera rapide à travers une lame de quartz. Puis nous avons utilisé cette évolution pour mettre au point une simulation du mécanisme de perçage. Après avoir étudié le dépôt de puissance à l'intérieur d'un capillaire en tenant compte des réflexions multiples et estimé l'importance de la perte d'énergie et de matière lors du processus, nous avons développé une simulation en utilisant le logiciel Comsol Multiphysics couplant l'équation thermique, l'équation de Navier Stokes et prenant en compte le déplacement du métal fondu sous l'action de la pression de recul. Dans ce cas, on observe la formation d'un bourrelet important au bord du trou et une augmentation de la profondeur du capillaire. Ensuite nous avons étudié la formation du capillaire durant le soudage laser, c'est-à-dire avec déplacement de la source. A partir des techniques mises en œuvre pour l'étude du perçage nous avons obtenu l'évolution de la forme du capillaire dans le cas du soudage Zn/Quartz. Nous avons réalisé une simulation relativement simple en supposant la géométrie et la température du capillaire connues a priori. Nous avons constaté qu'un modèle simple, modélisant uniquement les transferts thermiques par conduction, permet de bien simuler la forme de la zone fondue pour les couples Zn/Zn et Zn-quartz.
113

Matrice de nanofils piézoélectriques interconnectés pour des applications capteur haute résolution : défis et solutions technologiques / Interconnected piezoelectric nanowire matrix for high resolution sensor applications : technological challenges and solutions

Leon Perez, Edgar 04 March 2016 (has links)
Ce projet de thèse aborde la question de l’intégration hétérogène de nanofils interconnectés sur des puces microélectroniques à destination de dispositifs de type MEMS et NEMS. Ces dispositifs visent à adresser la problématique globale qu’est le « More than Moore », c’est-à-dire la transformation des filières CMOS classiques pour permettre le développement de nouveaux micro et nano-composants intégrés.En particulier, ces dernières années, une variété de dispositifs à base de nanomatériaux ont vu le jour, conférant à des dispositifs de type micro-actionneurs et micro-capteurs de nouvelles fonctionnalités et/ou des performances accrues, e.g. en termes de résolution, sensibilité, sélectivité. Nous nous intéresserons ici à un certain type de nanostructures, les nanofils d’oxyde de zinc (ZnO), qui ont surtout été utilisés pour concevoir des dispositifs dont le principe de fonctionnement exploite l’effet piézoélectrique, souvent astucieusement combiné avec leurs propriétés semiconductrices. En effet, sous l’effet d’une contrainte mécanique ou d’un déplacement, les nanofils piézoélectriques génèrent un potentiel électrique (piézopotentiel). Si, en outre, les nanofils sont semiconducteurs, le piézopotentiel peut être utilisé pour contrôler un courant externe en fonction de la contrainte mécanique imposée au nanofil (effet piézotronique). L’avantage d’utiliser des nanostructures unidimensionnelles réside dans la modularité de leurs propriétés mécaniques et piézoélectriques en comparaison avec le matériau massif. Par ailleurs, leur intégration est aujourd’hui possible par des voies de croissance compatibles avec les procédés microélectroniques (CMOS/MEMS). Toutes ces considérations rendent possibles la conception de dispositifs très haute performance combinant la faible dimension des éléments fonctionnels (et donc une forte densité d’intégration synonyme de haute résolution spatiale) et leur sensibilité à des phénomènes d’échelle nanoscopique.Dans ce projet de thèse, on adoptera une vision très technologique de la conception de capteurs matriciels à base de nanofils piézoélectriques verticaux en ZnO. S’appuyant sur la prédiction des performances théoriques et la levée des verrous technologiques associés à la conception et la fabrication du capteur, cette étude s’attache à fournir des prototypes faisant la preuve de concept de ces dispositifs haute performance. Dans un premier temps, la réflexion s’articule autour de modèles multi-physiques par éléments finis (FEM) de la réponse piézoélectrique d’un seul nanofil en flexion, modèle que nous avons fait évoluer vers des pixels complets représentatifs d’un nanofil interconnecté dans une matrice. Sur la base de ces considérations, nous avons imaginé des moyens de caractérisation de la réponse piézoélectrique d’un fil, puis d’un pixel. Le banc de caractérisation mis en place a mis en évidence la complexité d’une mesure piézoélectrique systématique, calibrée et décorrélée des éléments environnants du pixel. Des solutions technologiques adéquates ont pu être imaginées et mises en œuvre à travers la réalisation de pixels élémentaires caractérisables et dont la réponse piézoélectrique peut être prédite théoriquement.Cette réalisation a fait appel à un développement en plusieurs étapes, incluant la croissance par voie chimique des nanofils en ZnO, puis la conception de la matrice d’électrodes contactant individuellement les nanofils. La première se découpe en deux étapes : d’abord le choix d’une couche de germination favorisant la croissance sur puce silicium et compatible avec les procédés de salle blanche ; ensuite le développement d’un procédé de croissance permettant la localisation des nanofils au sein d’une matrice d’électrodes. La seconde moitié du travail de fabrication a consisté à définir et à optimiser l’empilement technologique respectant toutes les considérations abordées jusqu’alors, et à définir les procédés technologiques aboutissant à la fabrication de la matrice finale. / This thesis project deals with the question of heterogeneous integration of interconnected nanowires on microelectronics chips in a view to MEMS and NEMS type devices. These devices aim to address the global problematic of “More than Moore”, that is the transformation of classical CMOS microelectronics processes to enable the development of new integrated micro and nanocomponents.In particular, over the past few years, a variety of nanomaterial-based devices have arisen, revealing micro-actuators and micro-sensors with new functionalities and/or improved performances, e.g. in terms of resolution, sensitivity, selectivity. Here we will focus on a certain type of nanostructures, Zinc Oxide (ZnO) nanowires, which have mostly been used so far to design devices whose working principle exploits the piezoelectric effect, often judiciously combined with their semiconducting properties. Indeed, when submitted to a mechanical constraint or displacement, piezoelectric nanowires generate an electrical potential (piezopotential). If, in addition to this, nanowires are also semiconducting, the piezopotential can be exploited to control an external current as a function of the mechanical constraint imposed to the nanowire (piezotronic effect). The advantage of using one-dimensional nanostructures lies into the modularity of both their mechanical and piezoelectric properties, in comparison with the bulk material. Moreover, their integration is now possible thanks to growth processes compatible with microelectronic processes (CMOS/MEMS). All these considerations make it possible to design very high performance devices combining the very small dimension of their functional unit elements (hence a high integration density which implies a high spatial resolution) and their sensitivity to nanoscale phenomena.In this project, we will adopt a very technology-oriented vision of the design of vertically-aligned ZnO-piezoelectric-nanowire matrix-type sensors. Relying on theoretical performance predictions and technological choices to solve device design and fabrication issues, this study aims to produce proof-of-concept prototypes of these high performance devices. First of all, the design process is elaborated based on finite element multiphysics models (FEM) of the piezoelectric response of a single bent nanowire, which we upgraded towards complete pixels, representative of an interconnected nanowire within a matrix. Following these considerations, we have imagined means of characterization of the piezoelectric response of a wire, then of a pixel. The implemented characterization experiment highlighted the complexity of carrying out a systematic, calibrated piezoelectric measurement, decorrelated from the environment of the pixel. Adequate technological solutions could then be implemented through the fabrication of elementary pixels suitable for characterization and whose piezoelectric response could be predictively modeled.This technological part of the work encompassed several development stages, including the chemical growth of ZnO nanowires and the design of the electrode matrix contacting the nanowires individually. The former splits into two steps: first choosing a clean-room compatible seed layer which will favor growth on a Silicon chip; secondly developing a selective growth process enabling the localization of nanowires within a predefined matrix of electrodes. The second part of the fabrication work focused on defining and optimizing the technological stack with respect to all the above mentioned considerations, and implementing the technological processes yielding the final targeted matrix.
114

Etude multi-échelle d'un écoulement fluide/poreux avec réaction hétérogène : application à la dépollution en textile lumineux photocatalytique / Multi-scale analysis of free and porous media flow with heterogeneous reaction : application to depollution within a light photocatalytic textile

Degrave, Robin 15 October 2015 (has links)
La photocatalyse est un procédé d’oxydation avancée et son utilisation est répandue dans le traitement de l’eau. Cette thèse traite de la dépollution d’eau au sein d’un réacteur original mettant en oeuvre un textile lumineux photocatalytique. Le textile est composé de fibres optiques parallèles situées sur une face d’un tissu fibreux. L’unité d’un tel système est assurée par des points de liage répartis périodiquement fixant les fibres optiques au tissu. Un traitement de microtexturation des fibres optiques permet la création d’une multitude de trous sur leur surface latérale. Une émission de lumière macroscopiquement homogène est provoquée lors de la connexion des fibres optiques à une lampe UV. Un dépôt de catalyseur, tel que le dioxyde de titane, sur l’intégralité du textile, conjuguée au rayonnement UV induit une activité photocatalytique. Cette thèse consiste à l’étude des phénomènes agissant dans un dispositif intégrant le textile lumineux photocatalytique. Dans ce réacteur plan modèle, le textile est confiné entre deux plaques et un écoulement unidirectionnel parallèle aux fibres optiques est mis en oeuvre. La dépollution d’un fluide par photocatalyse résulte du couplage de plusieurs mécanismes : écoulement, transport et réaction. Des modèles numériques sont ainsi développéssur un volume élémentaire représentatif du textile (appelé RVE) pour simuler la dépollution d’une eau comportant une molécule test, à l’échelle microscopique. Cette géométrie est choisie en tenant compte des caractéristiques structurelles du textile photocatalytique. La première étape est l’analyse de l’hydrodynamique au sein du textile, qui couple des écoulements fluide et en milieu poreux. Une étude expérimentale préliminaire a permis l’acquisition de données nécessaires à une représentation réaliste de l’écoulement en milieu poreux. Dans un second temps, le transport est caractérisé par une étude de la distribution des temps de séjour (DTS) au sein du réacteur. Des simulations successives utilisant des conditions aux limites pseudo-périodiques sont réalisées pour calculer numériquement la DTS. Elles sont validées par des mesures expérimentales de traçage de colorant. Enfin, la dégradation d’une molécule test est analysée expérimentalement et numériquement. L’étude numérique présente des approches macroscopique et microscopique. L’étude à l’échelle macroscopique permet de quantifier globalement les performances du réacteur et de fournir des valeurs de constantes cinétiques nécessaires aux simulations àl’échelle microscopique. Une analyse fine et précise de la dépollution est ainsi réalisée au sein du RVE. Elle montre les atouts et limitations du réacteur modèle en termes d’efficacité de dépollution et d’homogénéité de fonctionnement. Des propositions d’améliorations sont finalement émises, notamment une configuration de réacteur comportant un empilement de textiles photocatalytiques. / The photocatalysis is known as an advanced oxidation process and its use is common for the water treatment. This thesis deals with the water depollution within an original reactor integrating the UV-light photocatalytic textile. The textile is composed of parallel optical fibres located on a side of a fibrous fabric. The unity of the system is ensured by bonding points periodically distributed fixing the optical fibres to the fabric. A microtexturization treatment is applied to the optical fibres and a multitude of punctual light sources are thus created on their lateral surface. A light emission macroscopically homogeneous is provided by the connection of optical fibres to an UV lamp. The coating of catalyst, such as titanium dioxide, associated with UV irradiation generates photocatalytic activity. This thesis consists in studying phenomena which occurs within a setup containing the UV-light photocatalytic textile. In this model plane reactor, the textile is confined between two plates and a unidirectional flow parallel to optical fibres is applied. The fluid depollution results of the coupling between several mechanisms : fluid flow, transport and reaction. Numerical models are thus developed on a representative volume element of the textile (called RVE) to simulate at the microscopic scale the depollution of water containing a test molecule. This geometry is designed by taking account the structural characteristics of the photocatalytic textile. The first stage is the analysis of the hydrodynamic within the textile that combines free flow regions and porous medium flows. A preliminary experimental study allows the acquisition of data necessary to a realistic representation of the porous medium flow. Secondly, the transport is characterized by a study of the residence time distribution (RTD) within the reactor. Successive simulations using pseudo-periodic boundary conditions are performed to numerically calculate the RTD. They are validated by experimental measurements using dye tracing. Finally, the degradation of a test molecule is analysed experimentally and numerically. The numerical study presents both approaches macroscopic and microscopic. The study at the macroscopic scale allows to globally quantify the reactor performances. On the other hand, kinetic constants necessary to simulations at the microscopic scale are determined by fitting of the macroscopic model with experimental measurements. An accurate analysis is thus realized within the RVE. It points the advantages and limitations of the model reactor in terms of depollution efficiency and functioning homogeneity. Suggestions of structural improvement are proposed and especially a reactor integrating a stack of photocatalytic textiles.
115

Počítačové modelování v programu COMSOL Multiphysics / Computer modelling in programming language COMSOL Multiphysics

MÁCHA, Václav January 2012 (has links)
The thesis deals with a computer modelling by means of the commercial software COMSOL Multiphysics. The thesis is structured into three topical sections. The first part is dedicated to the programme characteristics and its development. In the second part the brief characteristics of working with the programme COMSOL Multiphysics is presented which should make the user´s first steps in working with software easier. The last part of thesis shows the specific demonstration of the created multiple physics task taken from the field of plasma physics. This task is solved by means of continuous simulation of a computer modelling based on the drift-diffusion approximation of low temperature plasma. The proposal of the paper for the proceedings of the conference ,,Technical Computing Prague 2012" is also a part of this thesis.
116

Finite Element Analysis of PZT-based Air Flow Sensor

Chuanliang, Xie January 2017 (has links)
This thesis proposes a novel air flow sensor based on PZT material which is used to measure air velocity in an experimental tunnel or indoor ventilation. The work focuses on designing and verifying the sensor model through finite element analysis (FEA) simulation using COMSOL Multiphysics software. This thesis is devoted to developing a sensor model with a focus on a low-velocity range up to 2 m/s and high sensitivity. The design of the sensor should be robust and reliable for different flow patterns, temperature, and atmospheric pressure variation. The sensor model consists of a fixed cylinder which connects with a bilayer cantilever made of PZT and PDMS material. The laminar flow from the sensor inlet is transformed into the turbulent flow when passing by the fixed cylinder. This structure of bilayer cantilever is designed to generate self-induced oscillation on PZT to overcome the charge leakage over the sensor impedance. Resonance optimization of the sensor structure is investigated to obtain better SNR and performance by adjusting the dimension of the cantilever. From the conducted simulation results, the relationship between the dominant frequency of output voltage generated by PZT and air velocity can be described linearly. In conclusion, it is shown that proposed sensor has a sensitivity of 0.1 m/s and a range of 0.2 to 2 m/s.
117

Approche énergétique pour la représentation, la structuration et la synthèse des Systèmes d’Assistance à Opérateur : application aux chaînes de commande de vol d’hélicoptère / Energetic framework for representation, structuration and synthesis of operator assisting systems : case of helicopters’ flight control

Touron, Matthieu 23 March 2016 (has links)
Un aéronef à voilure tournante est un système physique dynamique complexe. Le développement de ce type de système nécessite méthodes d’analyse (structurelle et comportementale) et de commande afin de maîtriser ses comportements. L’approche énergétique (bond graph et formalisme hamiltonien à port) permet une représentation multi-physique non linéaire, modulaire (acausale) et à différents niveaux de granularité. Parmi ses organes, les commandes de vol de l’aéronef permettent la transmission du pilotage aux rotors : canaliser la puissance motrice (2 MW) à partir d’une commande manuelle est impossible sans organes actifs d’assistance. Afin de représenter les cheminements et traitements des informations nécessaires aux organes actifs, la représentation multi-physique est complétée par une représentation informationnelle causale (schéma bloc).Les travaux exposés dans ce mémoire visent à ajouter le niveau de granularité intermédiaire et nécessaire entre la représentation multi-physique pure et une représentation combinée physique et informationnelle. Basée sur la démarche du PMBC (Physical Model Based Control), ils proposent une méthode originale permettant de représenter les organes d’assistance et leur commande par un modèle physique équivalent. La méthode est ici enrichie dans une démarche de conception des Systèmes d’Assistance à Opérateur : nous déterminons où doivent agir les organes actifs, selon quelles mesures et suivant quelles lois de commande. La méthode est illustrée sur un cas d’étude industriel : nous obtenons deux représentations de l’espace des solutions (les représentations physico-informationnelle détaillée et globale de son comportement) incluant la solution industrielle actuelle. / A rotorcraft is a complex dynamic physical system. The development of this kind of systems requires methods to analyze its structure and its behavior and to control this latter. The energetic framework (bond graph and Hamiltonian formulation) allows a multiphysical nonlinear representation, modular and with several levels of granularity. Among its components, flight controls transmit the orders from the pilot to rotors. Leading the motive power (about 2MW) directly from a handling control is almost impossible without active devices for assistance. In order to represent the flow of the control information and its processing, a cyberphysical representation combines a multiphysical representation with an informational representation (bloc diagram).This thesis work aims at proposing an intermediate granularity level between purely multiphysical representations and cyberphysical representations. Based on PMBC (Physical Model Based Control) approach, a new method to represent the assistance parts is proposed, by means of a physical equivalent model. The method is then enriched by a genuine design procedure of an Operator Assisting System: we determine where actuators must operate, according to which control laws and from which measurements. The method is applied to an industrial case: two representations of the possible design solutions set are obtained, a detailed cyberphysical representation and a global representation of its behavior. The actual industrial solution belongs to the defined set of possible solutions.
118

Caractérisation in operando de l’endommagement par électromigration des interconnexions 3D : Vers un modèle éléments finis prédictif / In Operando Characterization of Electromigration-Induced Damage in 3D Interconnects : Toward a predictive finite elements model

Gousseau, Simon 26 January 2015 (has links)
L'intégration 3D, mode de conception par empilement des puces, vise à la fois la densification des systèmes et la diversification des fonctions. La réduction des dimensions des interconnexions 3D et l'augmentation de la densité de courant accroissent les risques liés à l'électromigration. Une connaissance précise de ce phénomène est requise pour développer un modèle numérique prédictif de la défaillance et ainsi anticiper les difficultés dès le stade de la conception des technologies. Une méthode inédite d'observation in operando dans un MEB de l'endommagement par électromigration des interconnexions 3D est conçue. La structure d'étude avec des vias traversant le silicium (TSV) « haute densité » est testée à 350 °C avec une densité de courant injectée de l'ordre de 1 MA/cm², et simultanément caractérisée. La réalisation régulière de micrographies informe sur la nucléation des cavités, forcée dans la ligne de cuivre au-dessus des TSV, et sur le scénario de leur évolution. La formation d'ilots et la guérison des cavités sont également observées au cours des essais (quelques dizaines à centaines d'heures). Une relation claire est établie entre l'évolution des cavités et celle de la résistance électrique du dispositif. Les différents essais, complétés par des analyses post-mortem (FIB-SEM, EBSD, MET) démontrent l'impact de la microstructure sur le mécanisme de déplétion. Les joints de grains sont des lieux préférentiels de nucléation et influencent l'évolution des cavités. Un effet probable de la taille des grains et de leur orientation cristalline est également révélé. Enfin, l'étude se consacre à l'implémentation d'un modèle multiphysique dans un code éléments finis de la phase de nucléation des cavités. Ce modèle est constitué des principaux termes de gestion de la migration. / 3D integration, conception mode of chips stacking, aims at both systems densification and functions diversification. The downsizing of 3D interconnects dimensions and the increase of current density rise the hazard related to electromigration. An accurate knowledge of the phenomenon is required to develop a predictive modeling of the failure in order to anticipate the difficulties as soon as the stage of technologies conception. Thus, a hitherto unseen SEM in operando observation method is devised. The test structure with “high density” through silicon vias (TSV) is tested at 350 °C with an injected current density of about 1 MA/cm², and simultaneously characterized. Regular shots of micrographs inform about the voids nucleation, forced in copper lines above the TSV, and about the scenario of their evolution. Islets formation and voids curing are also observed during the tens to hundreds hours of tests. A clear relation is established between voids evolution and the one of the electrical resistance. The different tests, completed by post-mortem analyses (FIB-SEM, EBSD, TEM), demonstrate the impact of microstructure on the depletion mechanism. Grains boundaries are preferential voids nucleation sites and influence the voids evolution. A probable effect of grains size and crystallographic orientation is revealed. Finally, the study focuses on the implementation of a multiphysics modeling in a finite elements code of the voids nucleation phase. This modeling is constituted of the main terms of the migration management.
119

Novas formulações de elementos finitos e simulações multifísicas / New formulations of finite element and multiphysics simulation

Farias, Agnaldo Monteiro, 1977- 12 May 2014 (has links)
Orientador: Philippe Remy Bernard Devloo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T08:30:23Z (GMT). No. of bitstreams: 1 Farias_AgnaldoMonteiro_D.pdf: 4236142 bytes, checksum: 173a1f60f06933f3f12600b1c0be3c9b (MD5) Previous issue date: 2014 / Resumo: Os assuntos de interesse nesta tese dizem respeito a formulações não clássicas do método dos elementos finitos (MEF). Neste sentido, o foco principal está no desenvolvimento de ferramentas computacionais para o MEF visando simulações de problemas multifísicos. Este tipo de problema ocorre, frequentemente, nas aplicações de Engenharia modeladas pelo acoplamento de diversos fenômenos físicos, os quais podem ser resolvidos numa única simulação numérica. A esta modelagem dá-se o nome de simulação multifísica. Neste contexto, para se obter uma simulação otimizada, é conveniente dar um tratamento diferenciado para cada fenômeno físico envolvido. No MEF, por exemplo, tal abordagem multifísica pode ser realizada pela escolha de diferentes subespaços de aproximação, em conformidade com os fenômenos considerados. Para efeito de verificação do código desenvolvido, resolvem-se dois problemas no contexto de simulação multifísica. Um problema de acoplamento fluido-estrutura em poroelasticidade linear e um problema de escoamento em meios porosos com injeção de traçador. Utilizam-se subespaços de aproximação H1-conformes para o deslocamento da matriz porosa, Hdiv-conformes para o fluxo de fluido e funções descontínuas para a aproximação da pressão do fluido e da saturação. Outro desenvolvimento diz respeito a formulações combinadas de Galerkin contínuo-descontínuo para problemas de elasticidade linear. Na abordagem proposta, os espaços de elementos finitos são formados por funções contínuas ou descontínuas, em diferentes regiões do domínio. Estuda-se também o esquema de Petrov-Galerkin com funções teste otimizadas via simetrização. Aplica-se uma nova abordagem para este método através de duas aproximações pelo método de Galerkin contínuo. A implementação e avaliação do desempenho de todas as formulações propostas são feitas no ambiente de programação orientada a objetos chamado NeoPZ / Abstract: The issues of interest in this thesis are related to non classical formulations of the finite element method (FEM). In this sense, the main focus is on developing computational tools for the FEM targeting the simulation of multiphysics problems. This type of problem often occurs in engineering applications modeled by coupling several physical phenomena, which can be resolved in a single numerical simulation. This kind of modeling is called multiphysics simulation. In this context, to obtain an optimized simulation, it is convenient to give a different treatment for each physical phenomenon involved. For instance, in the FEM context, such multiphysics approach can be accomplished by choosing different approximation subspaces in accordance with the phenomena considered. For the verification of the developed code, a problem of fluid-structure interaction in linear poroelasticity and a problem of flow in porous media with tracer injection are solved in the context of multiphysics simulation. H1-conforming approximation is used for the displacement of the porous matrix, Hdiv-conforming for the fluid flow and discontinuous functions for the approximation of fluid pressure and saturation. In another development, the discontinuos-continuous Galerkin formulation is considered for problems of linear elasticity. In such formulation, the spaces finite elements are formed by continuous or discontinuous functions in different regions of the domain. Another study refers to the Petrov-Galerkin scheme with test functions optimized by symmetrization. A new approach to the method by means of two approximations by continuous Galerkin method is proposed. The implementation and verification of all considered formulations are made on the object-oriented programming environment called NeoPZ / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
120

Multifunctional Testing Artifacts for Evaluation of 3D Printed Components by Fused Deposition Modeling

Pooladvand, Koohyar 08 December 2019 (has links)
The need for reliable and cost-effective testing procedures for Additive Manufacturing (AM) is growing. In this Dissertation, the development of a new computational-experimental method based on the realization of specific testing artifacts to address this need is presented. This research is focused on one of the widely utilized AM technologies, Fused Deposition Modeling (FDM), and can be extended to other AM technologies as well. In this method, testing artifacts are designed with simplified boundary conditions and computational domains that minimize uncertainties in the analyses. Testing artifacts are a combination of thin and thick cantilever structures, which allow measurement of natural frequencies, mode shapes, and dimensions as well as distortions and deformations. We apply Optical Non-Destructive Testing (ONDT) together with computational methods on the testing artifacts to predict their natural frequencies, thermal flow, mechanical properties, and distortions as a function of 3D printing parameters. The complementary application of experiments and simulations on 3D printed testing artifacts allows us to systematically investigate the density, porosity, moduli of elasticity, and Poisson’s ratios for both isotropic and orthotropic material properties to better understand relationships between these characteristics and the selected printing parameters. The method can also be adapted for distortions and residual stresses analyses. We optimally collect data using a design of experiments technique that is based on regression models, which yields statistically significant data with a reduced number of iterations. Analyses of variance of these data highlight the complexity and multifaceted effects of different process parameters and their influences on 3D printed part performance. We learned that the layer thickness is the most significant parameter that drives both density and elastic moduli. We also observed and defined the interactions among density, elastic moduli, and Poisson’s ratios with printing speed, extruder temperature, fan speed, bed temperature, and layer thickness quantitatively. This Dissertation also shows that by effectively combining ONDT and computational methods, it is possible to achieve greater understanding of the multiphysics that governs FDM. Such understanding can be used to estimate the physical and mechanical properties of 3D printed components, deliver part with improved quality, and minimize distortions and/or residual stresses to help realize functional components.

Page generated in 0.338 seconds