• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 17
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 79
  • 32
  • 13
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Optical Studies of Cellulose-Based Materials for Spectral Design of Camouflage and Passive Cooling Applications

Grönlund Falk, Olivia, Valentin, Felix January 2022 (has links)
In the past few years, studies regarding new bio-based materials have led to an increased attention in the nanoscale product of cellulose, called nanocellulose. This biodegradable and renewable material has interesting physical, optical and thermal properties. The optical properties could be affected by tuning the nanostructure of the material, which makes it interesting for further investigation. The promising properties of nanocellulose can be useful in many different applications. The aim of this work was therefore to study the optical properties of nanocellulose, and to examine if the material is suitable for spectral design of camouflage or in passive cooling applications. The optical properties of a nanocellulose, specifically cellulose nanofiber (CNF), have been studied. Freestanding CNF films and CNF films deposited on glass substrates were made and characterized by spectroscopy, ellipsometry, BRDF measurements, and optical microscopy. The freestanding samples were examined with different CNF concentrations of 0.52% and 1.0%, and different thicknesses. The samples on glass substrates all had a concentration of 1.0% CNF, but with different amount deposited solution which was either drop or spin coated. The freestanding CNF samples show high transmission in the visual region and relatively high emissivity in the atmospheric windows. This implies that it can be used as an effective material for passive radiative cooling. A thicker sample could also be used to increase the emissivity in the atmospheric windows and improve the ability for passive cooling. The low reflectance, and high emissivity in the atmospheric windows can be promising for use in camouflage applications, according to earlier studies. However, the suitable properties are very dependent on the spectral response of the background. Additional measurements need to be performed and more specified scenarios are necessary to draw any further conclusions.
72

INVESTIGATION OF NANOCELLULOSE MECHANICAL PROPERTIES AND INTERACTIONS IN SALT AND SURFACTANT SOLUTIONS MEASURED BY ATOMIC FORCE MICROSCOPY / NANOCELLULOSE PROPERTIES MEASURED BY ATOMIC FORCE MICROSCOPY

Marway, Heera January 2017 (has links)
This understanding of nanocellulose can be directly applied in future formulation design to use nanocellulose in polymer nanocomposites, foams, emulsions, latexes, gels and biomedical materials. / In this study, the potential of nanocellulose as a reinforcing agent in composite materials was investigated using atomic force microscopy (AFM). AFM was used to probe the mechanical properties of nanocelluloses and to investigate their interactions and adhesion in liquid media. Amplitude modulated-frequency modulated AFM was used to map the mechanical properties of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Results showed Young’s moduli of 90 GPa and 120 GPa for CNCs and CNFs, respectively, which are comparable to literature values determined using other methods. Additionally, colloid probe AFM was implemented to observe the interactions (attractive, repulsive, steric, adhesive) between cellulose and silica colloid probes with anionic CNCs (containing either a Na+ or H+ counterion) and cationic CNCs. Colloid probe AFM measurements were carried out in five different liquid media: two salt solutions (NaCl and CaCl2) and three surfactant solutions (cationic cetyltrimethylammonium bromide, CTAB; anionic sodium dodecyl sulfate, SDS; and nonionic Triton X100). It was found that low salt concentrations resulted in electrostatic repulsion and high adhesion, whereas the reverse was observed at high salt concentrations. On the contrary, an increased surfactant concentration and increased number of surfactant aggregates (micelles, bilayers, etc.) resulted in increased adhesion. Surprisingly, the interactions were strongly dependent on the CNC counterion as surfactant adsorption seemed to be primarily driven by electrostatic interactions; CTAB adsorbed more to anionic CNCs, SDS adsorbed more to cationic CNCs and Triton X100 adsorbed minimally to all CNCs. Electrophoretic mobility and particle size data showed complementary results to colloid probe AFM, indicating that interactions between surfactants and CNC films and CNCs in suspension are closely related. This research suggests that CNCs have potential as reinforcing agents due to their high strength and the tunability of their interactions through the simple addition of salts or surfactants. This understanding can be directly applied in future formulation design to use nanocellulose in polymer nanocomposites, foams, emulsions, latexes, gels and biomedical materials. / Thesis / Master of Applied Science (MASc) / Nanocellulose is a sustainable nanomaterial most commonly extracted from plants and trees. In recent research, nanocellulose has been shown to have potential as a reinforcing agent for materials such as plastics, foams, paints and adhesives. In this study, the potential of nanocellulose was investigated using atomic force microscopy (AFM). As predicted, AFM measurements indicated that nanocellulose has a high stiffness, supporting the substitution of this biobased material in the place of metals and synthetic fibres. AFM was also used to examine particle interactions in salt and soap-like (surfactant) solutions; changes in nanocellulose size and charge were used to support the findings. Negatively charged nanocellulose interacted more with positively charged surfactants and vice versa. Low salt and high surfactant concentrations led to high adhesion and better material compatibility, which is preferred. This understanding can help us design better nanocellulose materials for future applications.
73

Transparent paper: Evaluation of chemical modification routes to achieve self-fibrillating fibres / Transparent papper: Utvärdering av kemiska metoder för att tillverka självfibrillerande fibrer

Sandberg Birgersson, Paulina January 2020 (has links)
Transparenta papper tillverkade av cellulosa nanofibriller (CNF), visar stor potential att kunna ersätta petroleumbaserade plaster inom många användningsområden, till exempel för mat- och varuförpackningar. CNF, även känt som nanocellulosa, kombinerar viktiga cellulosaegenskaper, med unika egenskaper hos nanomaterial. Denna kombination av egenskaper möjliggör tillverkning av ett pappers-liknande material som uppvisar både utmärkta mekaniska egenskaper och hög transparens. Användningen av nanocellulosa är dock förknippad med diverse utmaningar, för att materialet ska kunna bli kommersiellt slagkraftigt. En av de främsta utmaningarna är nanocellulosas höga affinitet för vatten och dess höga specifika yta som försvårar hanteringen av materialet. Avvattningen av nanocellulosadispersioner, för att tillverka transparenta papper, kan ta upp till flera timmar. För att övervinna detta hinder, har avdelningen för Fiberteknologi vid KTH tillsammans med BillerudKorsnäs AB, nyligen utvecklat en metodik för att skapa så kallade själv-fibrillerande fibrer (SFFer). Dessa fibrer möjliggör en snabbavvattnad papperstillverkningsprocess med makroskopiska vedbaserade fibrer, som efter tillverkning av pappret omvandlas till ett nanocellulosapapper, det vill säga ett nanopapper. För att erhålla SFFer krävs det att höga koncentrationer av karboxyl- och aldehydgrupper introduceras i cellulosafibrerna. Införandet av dessa funktionella grupper, möjliggör självfibrilleringen då SFFerna utsätts för moderata alkali-koncentrationer. I den ursprungliga studien som utfördes av Gorur m.fl., introducerades de funktionella grupperna med hjälp av sekventiell TEMPO- och periodatoxidation. I detta examensarbete, har alternativa kemiska metoder för att introducera samma kemiska funktionalitet som TEMPO-periodatsystemet undersökts. Huvudsyftet med arbetet är att besvara frågan: Hur påverkar olika kemiska behandlingar vid SFF tillverkningen, de kemiska och fysikaliska egenskaperna hos de modifierade fibrerna, samt de slutgiltiga pappersegenskaperna? För att besvara frågan, preparerades fibrer med liknande karboxyl- och aldehydinnehåll med hjälp av följande tre kemiska metoder: 1) TEMPO- följd av periodatoxidation (detta kommer att användas som referenssystem); 2) periodat- följd av kloritoxidation; 3) karboxymetylering följd av periodatoxidation. Egenskaperna hos fibrerna undersöktes med avseende på aldehyd- och karboxylinnehåll, avvattningspotential och förmåga att självfibrillera. Papper tillverkades med hjälp av en vakuumfiltreringsuppställning och följande egenskaper undersöktes hos pappret: mekaniska egenskaper (dragstyrka, brottsyrka och Young’s modul); optiska (transparens och ytreflektion); samt syrgaspermeabilitet. De erhållna fibrerna från samtliga tre kemiska modifieringar visade på självfibrillerande egenskaper i alkaliska lösningar. Detta beteende styrker hypotesen att ett strategiskt införande av ett högt karboxyl- och aldehydinnehåll leder till självfibrillerande fibrer. Transparenta papper tillverkade av fibrer som utsatts för TEMPO-periodatoxidation samt klorit-periodatoxidation, visade på utmärkta mekaniska egenskaper, hög transparens och bra barriäregenskaper - jämförbara med vad som vanligen kan noteras hos papper tillverkat av nanocellulosa. Samtliga egenskaper förbättrades ytterligare efter fibrillering av fibrerna i papperen. De karboxymetylerade-periodatoxiderade materialet, å andra sidan, uppvisade andra egenskaper jämfört med de två, tidigare nämnda, metoderna. TEMPO-periodat- och periodat-klorit-pappersmassan var halvgenomskinlig och geléliknande, medan den karboxymetylerade-periodatoxiderade massan var mer lik det omodifierade materialet. Detsamma gällde det tillverkade pappret som liknade ett konventionellt papper. Det var inte heller möjligt att åstadkomma en fibrillering av det karboxymetylerade-periodatoxiderade-pappret som utsattes för behandling med alkaliska lösningar. Avvattningstiden vid papperstillverkningen varierad mellan 4 och 60 sekunder, och karboxymetylering-periodat oxidation visade på snabbast avvattningstid. Den förlängda avvattningstiden i jämförelse med studien utförd av Gorur m.fl., tros främst bero på att ett filtreringsmembran med mindre porer användes på vakuumfiltreringsuppställningen, istället för en avvattningsvira som tidigare använts. Sammanfattningsvis så har det visat sig möjligt att tillverka självfibrillerande fibrer med hjälp av samtliga tre undersökta kemiska modifieringar. SFFer möjliggör tillverkning av snabbavvattnade transparenta nanocellulosapapper och visar på så vis på hög potential att kunna ersätta olje-baserade plaster till många förpackningsapplikationer. / Transparent papers made from cellulose nanofibrils (CNF), derived from e.g. wood, show great potential to replace petroleum-based plastics in many application areas, such as packaging for foods and goods. CNF, also known as nanocellulose, combine important cellulose properties with the unique features of nanoscale materials, gaining paper-like materials with outstanding mechanical properties and high transparency. However, nanocellulose faces various challenges in order to make the products commercially competitive. One of the main challenges is accompanied with nanocelluloses’ high affinity for water, which makes processing difficult. Dewatering of a nanocellulose dispersion in order to produce transparent paper may take up to several hours. To overcome this obstacle, the Fibre technology division at KTH Royal Institute of technology and BillerudKorsnäs AB have recently developed a new concept of self-fibrillating fibres (SFFs). This material enables fast-dewatering papermaking using fibres of native dimensions and conversion into nanocellulose after the paper has been prepared. In order to obtain SFFs, proper amounts of charged groups and aldehyde groups need to be introduced into the cellulose backbone. When SFFs are exposed to high alkali concentration, i.e. > pH=10, the fibres self-fibrillates into CNFs. In the original study, the functional groups were introduced through sequential TEMPO oxidation and periodate oxidation. In this work, alternative chemical routes have been examined to prepare SFFs with the same functional groups as introduced with the TEMPO-periodate system. The aim of the thesis has been to answer: how does different chemical routes to prepare transparent nanopaper made from SFFs affect the chemical and physical properties of the modified fibres, as well as the final physical properties of the transparent papers? To answer the question, fibres with similar carboxyl and aldehyde contents were prepared using three chemical routes: 1) TEMPO oxidation followed by periodate oxidation (which was used as reference system); 2) periodate oxidation followed by chlorite oxidation; 3) carboxymethylation followed by periodate oxidation. The properties of the fibres were examined regarding aldehyde and carboxyl content, dewatering potential and self-fibrillating ability. Papers were produced using a vacuum filtration set-up and the properties investigated were the mechanical; tensile strength, strain at failure and Young’s modulus, the optical properties; transparency and haze, as well as the oxygen permeability. In order to investigate the impact of the fibrillation of the papers, the properties were measured for both unfibrillated and fibrillated samples. Furthermore, the gravimetric yield after each chemical modification procedure was examined, as well as the dewatering time during sheet making. Fibres obtained from all three chemistries demonstrated self-fibrillating properties in alkaline solutions. This strengthens the hypothesis that the strategical introduction of aldehydes and carboxyl groups is the main feature responsible for the self-fibrillating ability of the fibres. Transparent papers made from fibres treated through TEMPO-periodate oxidation and periodate-chlorite oxidation showed excellent mechanical, optical and barrier properties, comparable to those seen in nanocellulose papers. The properties were further increased after fibrillation. The carboxymethylated-periodate oxidized fibres, on the other hand, behaved differently from the others. While the TEMPO-periodate and periodate-chlorite pulp was semi-translucent and gel-like, the carboxymethylated-periodate oxidized fibres resembled more the unmodified material. Likewise, the properties of those papers resembled conventional paper and no fibrillationwas experienced after immersing the papers in alkaline solution, according to the same protocol developed for the other two chemistries. The dewatering time during sheet making ranged from 4–60 seconds (carboxymethylation-periodate oxidation showing the fastest dewatering rates). The increased dewatering time compared to earlier studies is believed to mainly be due to the use of a filtration membrane on the vacuum filtration set-up, instead of a metallic wire with larger pores. Overall, SFFs was successfully produced using three different chemical routes. SFFs enables production of fast-dewatering transparent nanocellulose papers that shows the potential to replace oil-based plastics in many packaging applications.
74

Investigation of nanocellulose-based hydrogels as scaffolds for cell-delivery to chonic wounds

Eriksson, Jenny January 2022 (has links)
No description available.
75

Design and fabrication of cellulose nanofibril (CNF) based microcapsules and their applications

Mubarak, Shuaib Ahmed 13 August 2024 (has links) (PDF)
Emulsions, comprising dispersed oil or water droplets stabilized by surfactants, are widely employed across industries. However, conventional surfactants raise environmental concerns, and emulsions may encounter stability challenges during storage. A promising alternative lies in Pickering emulsions, where particles adhere irreversibly at the water-oil interface, providing enhanced stability. Recent research explores the use of natural bio-based particles as interfacial stabilizers for creating Pickering emulsions, offering improved stability and environmental friendliness. This significant change towards particle-stabilized emulsions addresses sustainability and efficacy concerns. This dissertation investigates the application of cellulose nanofibrils (CNFs) in stabilizing Pickering emulsions for the development of functional microcapsules with diverse applications. A novel CNF aerogel with a hierarchical pore structure was developed using n-hexane-CNF oil-in-water (O/W) Pickering emulsions as templates. These hollow microcapsule-based CNF (HM-CNF) aerogels demonstrated high oil absorption capacities of 354 grams per gram for chloroform and 166 grams per gram for n-hexadecane, without requiring hydrophobic modifications, highlighting their potential as environmentally sustainable and high-performance oil absorbents. Further, the research explored the microencapsulation of n-hexadecane, an organic phase change material (PCM), within a hybrid shell of CNFs and chitin nanofibers (ChNFs). This method significantly improved the thermal stability of the encapsulated n-hexadecane, with maximum weight loss temperatures increasing from 184 degrees Celsius to 201 degrees Celsius with ChNF loading. The char yield also increased with ChNF content, indicating enhanced thermal degradation resistance. These emulsions demonstrated stability in various ionic solutions and elevated temperatures, showcasing their potential for applications such as thermal energy storage, cosmetics, food, and pharmaceuticals. Additionally, the dissertation examined stable water-in-oil (W/O) inverse Pickering emulsions using TEMPO-treated cellulose nanofibrils (TCNF). These emulsions, stabilized by TCNF-oleylamine complexes, exhibited droplet sizes ranging from 27 micrometers to 8 micrometers depending on TCNF concentration. They maintained stability under varying pH, ionic strength, and temperature conditions and demonstrated the encapsulation of water-soluble components like phytic acid, highlighting their versatility for diverse encapsulation applications. Overall, the research presents significant advancements in the utilization of CNF-stabilized Pickering emulsions, employing them as templates for fabricating aerogels and microcapsules. This approach enhances oil absorption, thermal stability, and encapsulation capabilities, offering eco-friendly solutions for diverse applications.
76

Microfibrillated cellulose: Energy-efficient preparation techniques and applications in paper

Ankerfors, Mikael January 2015 (has links)
This work describes three alternative processes for producing microfibrillated cellulose (MFC; also referred to as cellulose nanofibrils, CNF) in which bleached pulp fibres are first pretreated and then homogenized using a high-pressure homogenizer. In one process, fibre cell wall delamination was facilitated by a combined enzymatic and mechanical pretreatment. In the two other processes, cell wall delamination was facilitated by pretreatments that introduced anionically charged groups into the fibre wall, by means of either a carboxymethylation reaction or irreversibly attaching carboxymethylcellulose (CMC) to the fibres. All three processes are industrially feasible and enable energy-efficient production of MFC. Using these processes, MFC can be produced with an energy consumption of 500–2300 kWh/tonne. These materials have been characterized in various ways and it has been demonstrated that the produced MFCs are approximately 5–30 nm wide and up to several microns long. The MFCs were also evaluated in a number of applications in paper. The carboxymethylated MFC was used to prepare strong free-standing barrier films and to coat wood-containing papers to improve the surface strength and reduce the linting propensity of the papers. MFC, produced with an enzymatic pretreatment, was also produced at pilot scale and was studied in a pilot-scale paper making trial as a strength agent added at the wet-end for highly filled papers. / <p>QC 20150126</p>
77

Development of ESD paperboard laminate : A material study with focus on coating and design

Larsson, Rebecka January 2021 (has links)
Due to the rapid development of technology, electrical products are being shipped all over the world. The electronic components have gotten greater in capacity but are smaller in size, making them sensitive to electrostatic discharge (ESD). ESD packaging protects sensitive components from electrostatic discharge and electrical fields. There are different types of packaging solutions depending on the sensitivity of the product. Rigid packaging of insulating paperboard, impregnated with a thin, conductive carbon layer was used in this study. The conductive material is supposed to lead the static electricity away from the product, to the packaging which is insulated, where it safely can discharge. The inside of the packaging, normally dressed in a foam to protect the device inside, is supposed to be replaced with paperboard. The purpose of this master thesis is to investigate whether or not an ESD-packaging can be created by coating a paperboard with a dispersion containing nanographite and nanocellulose. Solid Bleached Board is a paperboard made by the mill Iggesund Paperboard, used for graphical products and packaging of high quality. Paperboard is made from cellulose, an environmentally sustainable raw material from the forest. Classifications of materials used in ESD packaging-solutions are divided into how quickly electricity moves through the material. Carbon is normally within the range of 10^2 to 10^6 Ω for sheet- and volume resistance. Maximal charge and maximal electrical discharge of the packaging are by standard not supposed to exceed 100 V and 50 nJ. Two different nanographite dispersions with different binders (polyvinyl alcohol and cellulose nanofibres) have been made. These have been coated onto the paperboard using a bench-coater. Measurements of ESD- and paperboard-properties have been performed onto the paperboard. The measured values were within the range of what was considered acceptable to be able to create an ESD packaging. The prototype was designed materially with solid bleached board, coated with a dispersion made of 220g nanographite, 22g cellulose nanofibres and 3791g water with a solid content of 8,2%. The design has been developed with the company's existing packaging in mind together with information about the already existing ESD packages. The results from the measurements show that it is fully possible to create and produce ESD-packaging, but needs further testing after this thesis. Societal, ethical and environmental aspects have been considered during the entire study. / På grund av den snabba tekniska utvecklingen transporteras elektriska produkter över hela världen. Elektroniska komponenter har fått större kapacitet men är mindre i storleken vilket gör dem känsliga för elektrostatisk urladdning (ESD). ESD-förpackningar skyddar känsliga komponenter från elektrostatisk urladdning och elektriska fält. Det finns olika typer av förpackningslösningar beroende på produktens känslighet. Styva förpackningar av isolerande kartong, impregnerade med ett tunt, elektriskt ledande kolskikt användes i denna studie. Det ledande materialet leder den statiska elektriciteten bort från produkten, till förpackningen som är isolerad, där den säkert kan urladdas. Förpackningens insida, som normalt är klädd med ett skum för att skydda produkten inuti, är tänkt att ersättas med kartong. Syftet med examensarbetet är att undersöka om en ESD-förpackning kan skapas genom att bestryka ett kartongark med en dispersion innehållande nanografit och nanocellulosa. Homogen helblekt kartong (Solid Bleached Board, SBB) är en kartong tillverkad av pappersbruket Iggesund Paperboard, som används för grafiska produkter och förpackningar av hög kvalitet. Kartong är tillverkad av cellulosa, ett miljövänligt och hållbart material från skogen. Klassificeringar av material som används i ESD-förpackningar är indelade i hur snabbt elektricitet rör sig genom materialet. Kol ligger normalt inom intervallet 10^2 till 10^6 Ω för yt- och volymresistans. Maximal uppladdning och maximal elektrisk urladdning av förpackningen ska inte överstiga 100 V och 50 nJ. Två olika dispersioner med olika bindemedel (polyvinylalkohol och cellulosa nanofibrer) har tillverkats. Dessa har bestrukits på kartongen med en bänkbestrykare. Mätningar av ESD- och kartong-egenskaper har utförts på kartongen. Mätdata låg inom det intervall som ansågs vara acceptabelt för att kunna skapa en ESD-kartong. Prototypen, sample B, är designad materiellt med homogen helblekt kartong, bestruken med en dispersion gjord av 220g nanografit, 22g cellulosa nanofibrer och 3791g vatten med en torrhalt på 8,2%. Designen har utvecklats med företagets befintliga förpackningar i åtanke tillsammans med information om de redan existerande ESD-förpackningarna. Resultaten från mätningarna visar att det är fullt möjligt att skapa och producera ESD-kartong, men det kräver ytterligare tester efter denna studie. Samhälleliga-, etiska- och miljöaspekter kommer att beaktas under hela studien.
78

Microfibrillated cellulose : Energy-efficient preparation techniques and key properties

Ankerfors, Mikael January 2012 (has links)
This work describes three alternative processes for producing microfibrillated cellulose (MFC) in which pulp fibres are first pre-treated and then homogenized using a high-pressure homogenizer. In one process, fibre cell wall delamination was facilitated with a combined enzymatic and mechanical pre-treatment. In the two other processes, cell wall delamination was facilitated by pre-treatments that introduced anionically charged groups into the fibre wall, by means of either a carboxymethylation reaction or irreversibly attaching carboxymethyl cellulose (CMC) onto the fibres. All three processes are industrially feasible and enable production with low energy consumption. Using these methods, MFC can be produced with an energy consumption of 500–2300 kWh/tonne, which corresponds to a 91–98% reduction in energy consumption from that presented in earlier studies. These materials have been characterized in various ways and it has been demonstrated that the produced MFCs are approximately 5–30 nm wide and up to several microns long. / <p>QC 20120928</p>
79

A cost estimation of an industrial scale production of nanocellulose filaments utilizing PBCM and TRL : A case study at RISE Research Institutes of Sweden AB / Kostnadsestimering av produktionen för nanocellulosafilament på industriell skala genom användningen av PBCM och TRL : Fallstudie på RISE Research Institutes of Sweden AB

Zhang, Rui Liang, Rask, Lukas January 2019 (has links)
Producing the strongest bio-based material called nanocellulose, in the form of filaments, has shown to be technically feasible at lab-scale, but the production costs remain unknown. The research has focused on technical feasibility and less on costs, which is a common phenomenon when developing new technologies. Constructing a Process-Based Cost Model (PBCM) can link the technical aspects of a technology to its costs of production. However, the accuracy of such a model might be dependent on the data availability of the technology. In this study, the technology of producing nanocellulose filaments has been evaluated along the scale of Technology Readiness Level (TRL) to understand the maturity of the technology and a PBCM has been constructed to show the economic prerequisites for the production of nanocellulose filaments. The main results indicate that at TRL 4, with parts of TRL 5 fulfilled, parameters such as Capital Expenditures cannot be allocated to unit production cost, only Operational Expenditures. Therefore, the relevant cost elements become material and energy as these constitute the currently available data. The PBCM can thus be used to estimate the production costs of different scenarios while highlighting the areas of future research. In the empirical context of nanocellulose filament production, utilizing deionized water in the production is a more promising option compared to utilizing solvents as the cost of recovering the solvent becomes high. Furthermore, using deionized water also becomes more promising due to the fact that other scenarios have not yet been evaluated experimentally. However, as the technology matures and more data becomes available, the model accuracy will increase as more parameters can be included in the model and the basis increases for decisionmaking regarding techno-economic concerns of the technology. / Produktionen av världens starkaste biobaserade material, nanocellulosa i filamentform, har visat sig vara tekniskt möjligt på labbskala, men produktionskostnaderna är idag okända. Forskning som fokuserar mer på den tekniska genomförbarheten och mindre på produktionskostnader är ett vanligt förekommande fenomen i utveckling av ny teknologi. Genom att konstruera en processbaserad kostnadsmodell (PBCM) kan en teknologis tekniska aspekt länkas till dess produktionskostnader. Dock påverkas en sådan modells noggrannhet av datatillgängligheten för teknologin. I denna studie har teknologin för produktionen av nanocellulosa filament utvärderats längs med Technology Readiness Level (TRL) skalan för att förstå teknologins mognadsgrad. Därefter har en PBCM konstruerats för att visa de ekonomiska förutsättningarna för en produktion av nanocellulosafilamenten på industriell skala. Huvudresultaten indikerar att på TRL 4, med delar av TRL 5 uppfyllda, kan somliga parametrar såsom investeringskostnader inte allokeras till enhetsproduktionskostnaden, utan bara löpande kostnader. De relevanta kostnadselementen blir därför material och energi då dessa utgör den aktuellt tillgängliga datan. PBCM kan därför användas för att beräkna produktionskostnader av olika scenarion och lyfta fram områden för framtida forskning. I den empiriska kontexten av produktionen av nanocellulosafilament är användningen av avjoniserat vatten ett mer lovande alternativ jämfört med användningen av lösningsmedel då kostnaden för återvinningen av lösningsmedlet blir högt. Dessutom är användningen av avjoniserat vatten mer lovande eftersom övriga scenarion inte har testats experimentellt än. Allteftersom teknologin mognar och mer data blir tillgänglig, så kommer modellens noggrannhet öka då fler parametrar kan inkluderas i modellen och därmed kan underlaget öka för beslutsfattning gällande teknoekonomiska frågor om teknologin.

Page generated in 0.0172 seconds