• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 13
  • 10
  • 9
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 27
  • 23
  • 21
  • 19
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Advancing electronic structure characterization of semiconducting oxide nano-heterostructures for gas sensing

Miller, Derek 07 September 2017 (has links)
No description available.
72

Processing and Properties of Nanocomposite Thin Films for Microfabricated Solid Oxide Fuel Cells

Rottmayer, Michael A. 15 June 2017 (has links)
No description available.
73

Characterization of Carbon Nanomaterial Formation and Manganese Oxide Reactivity

Shumlas, Samantha Lyn January 2016 (has links)
Characterization of a material’s surface, structural and physical properties is essential to understand its chemical reactivity. Control over these properties helps tailor a material to a particular application of interest. The research presented in this dissertation focuses on characterizing a synthetic method for carbon nanomaterials and the determination of structural properties of manganese oxides that contribute to its reactivity for environmental chemistry. In particular, one research effort was focused on the tuning of synthetic parameters towards the formation of carbon nanomaterials from gaseous methane and gaseous mixtures containing various mixtures of methane, argon and hydrogen. In a second research effort, photochemical and water oxidation chemistry were performed on the manganese oxide, birnessite, to aid in the remediation of arsenic from the environment and provide more options for alternative energy catalysts, respectively. With regard to the synthesis of novel carbonaceous materials, the irradiation of gaseous methane with ultrashort pulse laser irradiation showed the production of carbon nanospheres. Products were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultraviolet (UV) Raman spectroscopy, and infrared spectroscopy. Increasing the pressure of methane from 6.7 to 133.3 kPa showed an increase in the median diameter of the spheres from ~500 nm to 85 nm. Particles with non-spherical morphologies were observed by TEM at pressures of 101.3 kPa and higher. UV Raman spectroscopy revealed that the nanospheres were composed of sp2 and sp3 hybridized carbon atoms, based on the presence of the carbon D and T peaks. A 30% hydrogen content was determined from the red shift of the G peak and the presence of a high fluorescence background. Upon extending this work to mixtures of methane, argon, and hydrogen it was found that carbon nanomaterials with varying composition and morphology could be obtained. Upon mixing methane with other gases, the yield significantly dropped, causing flow conditions to be investigated as a method to increase product yield. Raman spectra of the product resulting from the irradiation of methane and argon indicated that increasing the argon content above 97% produced nanomaterial composed of hydrogenated amorphous carbon. In a second research effort, the effect of simulated solar radiation on the oxidation of arsenite [As(III)] to arsenate [As(V)] on the layered manganese oxide, birnessite, was investigated. Experiments were conducted where birnessite suspensions, under both anoxic and oxic conditions, were irradiated with simulated solar radiation in the presence of As(III) at pH 5, 7, and 9. The oxidation of As(III) in the presence of birnessite under simulated solar light irradiation occurred at a rate that was faster than in the absence of light at pH 5. At pH 7 and 9, As(V) production was significantly less than at pH 5 and the amount of As(V) production for a given reaction time was the same under dark and light conditions. The first order rate constant (kobs) for As(III) oxidation in the presence of light and in the dark at pH 5 were determined to be 0.07 and 0.04 h−1 , respectively. The As(V) product was released into solution along with Mn(II), with the latter product resulting from the reduction of Mn(IV) and/or Mn(III) during the As(III) oxidation process. Experimental results also showed no evidence that reactive oxygen species played a role in the As(III) oxidation process. Further research on the triclinic form of birnessite focused on its activation for water oxidation. Experiments were performed by converting triclinic birnessite to hexagonal birnessite in pH 3, 5, and 7 DI water with stirring for 18 hrs. Once the conversion was complete, the solid samples were characterized with TEM and x-ray photoelectron spectroscopy (XPS). The resulting hexagonal birnessites from experiment at pH 3, 5, and 7 possessed the same particle morphology and average surface oxidation states within 1% of each other. This observation supported the claim that upon transformation, Mn(III) within the sheet of triclinic birnessite migrated into the interlayer region of the resulting hexagonal birnessite. Furthermore, the migration of Mn(III) into the interlayer and formation of the hexagonal birnessite led to an increased chemical reactivity for water oxidation compared to the bulk. Electrochemical studies showed that the overpotential for water oxidation associated with the pH 3, 5, and 7 samples was 490, 510, and 570 mV, respectively. In another set of experiments, ceric ammonium nitrate was used to test birnessite for water oxidation reactivity. These experiments showed that the pH 3 birnessite produced the most O2 of all the samples, 8.5 mmol O2/mol Mn, which was ~6 times more than hexagonal birnessite which did not undergo post-synthesis exposure to low pH conditions. / Chemistry
74

Novel nanoscopic FeF 3 –based materials

Guo, Ying 25 July 2013 (has links)
Das Hauptaugenmerk dieser Arbeit liegt auf einer Pilotstudie zur Darstellung von Eisen(III)fluorid (FeF3) unter Verwendung von Sol-Gel-Syntheserouten. Eine modifizierte fluorolytische Sol-Gel-Synthese wurde entwickelt um bi-acide auf FeF3 basierende Materialien zu erhalten. Die Synthese erzeugt Hydroxygruppen, die potentiellen Brønsted-sauren Zentren, auf der Oberfläche der klassischen Lewissäure FeF3. Im Anschluss wurde Magnesiumfluorid (MgF2) als Matrix eingesetzt. Verglichen mit FeF3 zeigen ternäre FeF3-MgF2 bemerkenswert hohe Oberflächen und verbesserte Porosität. Das Wichtigste jedoch ist, das hauptsächlich starke Lewis- und mittelstarke Brønsted-saure Zentren auf der FeF3-MgF2 vorhanden sind. Des Weiteren wurden, unter Verwendung anderer Erdalkalimetallfluoride (CaF2 oder SrF2) und Zinkfluorid (ZnF2) als Matrix, Serien ternärer Fluoridmaterialien synthetisiert und systematisch untersucht. Durch Charakterisierung der FeF3-MF2-Oberflächen konnten systematische Veränderungen hinsichtlich Größe der Oberfläche, Porosität und Azidität festgestellt werden. Mit abnehmender Atomnummer (von Sr zu Mg) erhöht sich die Stärke der sauren Zentren, während die mittlere Porengröße dramatisch abnimmt. Darüber hinaus führt ein größeres M-zu-Fe-Verhältnis generell zu kleineren Porengrößen und höheren Oberflächen. Diese Ergebnisse implizieren, dass die Eigenschaften ternärer FeF3-MF2 durch Veränderung der MF2-Matrix oder des M-zu-Fe-Verhältnisses einstellbar sind. Schlussendlich konnte anhand einer Modellreaktion, der Isomerisierung von Citronellal zu Isopulegolen, die katalytische Aktivität der bi-aziden Zentren der auf FeF3 basierenden Materialien nachgewiesen werden. Zusätzlich wurde in dieser Arbeit diskutiert wie Oberfläche, Porosität und Azidität gemeinsam die katalytische Aktivität von FeF3-MgF2 bestimmen. Diese Arbeit beweist damit die Realisierbarkeit der Synthese neuer nanoskopischer Metallfluoride mit gewünschten Oberflächeneigenschaften. / This work serves as a pilot study on the development of iron(III) fluoride (FeF3) based materials with surface bi-acidity. A modified fluorolytic sol-gel route was established to prepare the bi-acidic FeF3-based materials. The synthesis procedure introduced hydroxyls, the potential Brønsted acid sites, on the surface of a classic Lewis acid, FeF3. Subsequently, magnesium fluoride (MgF2) was used as matrix. Comparing with FeF3, the ternary FeF3-MgF2 showed remarkable high surface area and enhanced porosity. Most importantly, strong Lewis and medium strong Brønsted acid sites were found predominant on the FeF3-MgF2 surface. Next a series of ternary fluoride materials were synthesised and studied systematically, using other alkaline earth metal fluorides (CaF2 or SrF2) as well as zinc fluoride (ZnF2) as matrices. Surface characterisation of FeF3-MF2 revealed systematic changes in their surface area, porosity, and surface acidity. With decreasing atom numbers (from Sr to Mg), strengths of surface acidic sites and surface area increased, while the average pore size decreased drastically. Moreover, higher M-to-Fe ratio generally resulted in smaller pore size and larger surface area. These findings imply that the properties of ternary FeF3-MF2 are tunable by changing the MF2 matrix or the M-to-Fe ratio or both. Last but not least, in the model reaction, isomerisation of citronellal to isopulegols, FeF3-based materials were highly active due to their bi-acidity. Finally this work discussed how surface area, porosity, and surface acidity jointly determined the catalytic activity of FeF3-MF2. In conclusion, this work demonstrates the feasibility to synthesise novel nanoscopic metal fluorides with desirable surface properties.
75

Interaction of Nanosecond and Femtosecond Laser Pulses with Carbon: Deposition of Carbon Films having Novel Compositions

Hu, Anming 16 May 2008 (has links)
A comparison of the composition and structure of carbon films deposited by ns and fs laser ablation of graphite is the subject of this thesis. In addition, the effect of irradiation on the surface of graphite has been investigated in detail. Laser-induced phase transitions from graphite to sp-bonded carbon and trans-polyacetylene chains as well as the formation of nano-diamond have been observed after irradiation with fs pulses. An optical orientation mechanism involving both electric and magnetic interactions is proposed to understand the formation of nano-stripes and other structures on irradiated graphite surfaces. These phenomena are not observed after nanosecond laser irradiation. Tetrahedral carbon (ta-C) films deposited at cryogenic temperatures using ns laser radiation consist of sub-micron graphitized grains embedded in a matrix of sp3-hybridized bonded carbon. Nano-buckling is evident in ta-C films deposited by fs ablation where the composition is found to consist of mixed sp, sp2, and sp3 – hybridized carbons species. It is found that the concentration of sp-bonded chains is negligible in ns-C films. Surface enhanced Raman spectroscopy has been used to characterize molecular species in ns and fs carbon films. Time of flight mass spectroscopy has been used to study plume species produced by laser ablation. It is also found that polyyne molecules can be formed by fs laser dissociation of small molecules in organic solvents. This process is accompanied by the deposition of hexagonal nano-diamond films on substrates placed near the laser focus during irradiation. This opens a new path in the synthesis of 1D conducting molecules and nano-diamond materials for nano-science applications. Quantum chemical calculations involving density functional theory (Gaussian '03) have been carried out in support of this work and have been used to study Raman and IR vibrational modes of several novel carbon molecules synthesized in ta-C films and in the liquid phase. These studies have been extended to assist in the identification of astronomical spectra.
76

Interaction of Nanosecond and Femtosecond Laser Pulses with Carbon: Deposition of Carbon Films having Novel Compositions

Hu, Anming 16 May 2008 (has links)
A comparison of the composition and structure of carbon films deposited by ns and fs laser ablation of graphite is the subject of this thesis. In addition, the effect of irradiation on the surface of graphite has been investigated in detail. Laser-induced phase transitions from graphite to sp-bonded carbon and trans-polyacetylene chains as well as the formation of nano-diamond have been observed after irradiation with fs pulses. An optical orientation mechanism involving both electric and magnetic interactions is proposed to understand the formation of nano-stripes and other structures on irradiated graphite surfaces. These phenomena are not observed after nanosecond laser irradiation. Tetrahedral carbon (ta-C) films deposited at cryogenic temperatures using ns laser radiation consist of sub-micron graphitized grains embedded in a matrix of sp3-hybridized bonded carbon. Nano-buckling is evident in ta-C films deposited by fs ablation where the composition is found to consist of mixed sp, sp2, and sp3 – hybridized carbons species. It is found that the concentration of sp-bonded chains is negligible in ns-C films. Surface enhanced Raman spectroscopy has been used to characterize molecular species in ns and fs carbon films. Time of flight mass spectroscopy has been used to study plume species produced by laser ablation. It is also found that polyyne molecules can be formed by fs laser dissociation of small molecules in organic solvents. This process is accompanied by the deposition of hexagonal nano-diamond films on substrates placed near the laser focus during irradiation. This opens a new path in the synthesis of 1D conducting molecules and nano-diamond materials for nano-science applications. Quantum chemical calculations involving density functional theory (Gaussian '03) have been carried out in support of this work and have been used to study Raman and IR vibrational modes of several novel carbon molecules synthesized in ta-C films and in the liquid phase. These studies have been extended to assist in the identification of astronomical spectra.
77

Metal Oxide Graphene Nanocomposites for Organic and Heavy Metal Remediation

Alam, Tanvir E 01 January 2012 (has links)
This thesis consists of two research problems in the water decontamination area. In the first work, the main focus is to understand the structure and photocatalytic activity of titanium dioxide with graphene (G-TiO2) which is synthesized by using sol-gel method. The photocatalytic activity of TiO2 is limited by the short electron hole pair recombination time. Graphene, with high specific surface area and unique electronic properties, can be used as a good support for TiO2 to enhance the photocatalytic activity. The obtained G-TiO2 photocatalysts has been characterized by X-Ray Diffraction (XRD), Raman Spectroscopy, Transmission Electron Microscopy (TEM), FTIR Spectroscopy and Ultraviolet visible (UV-vis) Spectroscopy. This prepared G-TiO2 nanocomposite exhibited excellent photocatalysis degradation on methyl orange (MO) under irradiation of simulated sunlight. Such enthralling photocatalyst may find substantial applications in various fields. The primary objective of the second work is to understand the nanocomposite structure of SiO2 coated over graphene (G) nanoplatelets. An attempt has been made to synthesize G-SiO2 nanocomposite using sol-gel technique. The G-SiO2 nanocomposite is characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Raman spectroscopy, FTIR spectroscopy, and Electrochemical and Electrical measurement technique, respectively. In this work, G-SiO2 nanoparticles with the water containing salts of zinc is added, and allowed to settle in water. The ZnCl2 ix concentration displays a whitish color solution which has turned to colorless within one or two hours of treatment with G-SiO2 nanocomposites. The presence of heavy metal is tested using electrochemical cyclic voltammetry (CV) technique. The CV measurement on the water treated with G-SiO2 has been tested for several days to understand the presence of heavy metals in water. Interestingly, the near complete separation has been observed by treating the heavy metal contaminated water sample for one to two days in presence of G-SiO2 nanoparticles. The redox potential observed for the heavy metal has been found to diminish as a function of treatment with respect to time, and no redox peak is observed after the treatment for four to five days. Further test using EDS measurement indicates that the heavy metal ions are observed within the G-SiO2 nanocomposite. The recovery of G-SiO2 nanocomposite is obtained by washing using deionized water. Our experimental finding indicates that the G-SiO2 nanocomposite could be exploited for potential heavy metals cleaning from waste or drinking water.
78

Functional Magnetic Nanoparticles

Gass, James 01 January 2012 (has links)
Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.
79

An integrated experimental and finite element study to understand the mechanical behavior of carbon reinforced polymer nanocomposites

Bhuiyan, Md Atiqur Rahman 27 August 2014 (has links)
The exceptional properties of carbon nanomaterials make them ideal reinforcements for polymers. However, the main challenges in utilizing their unique properties are their tendency to form agglomerates, their non-controlled orientation, non-homogeneous distribution and finally the change in their shape/size due to processing. All the above are the result of the nanomaterial/polymer interfacial interactions which dictate the overall performance of the composites including the mechanical properties. The aforementioned uncertainties are the reason for the deviation observed between the experimentally determined properties and the theoretically expected ones. The focus of this study is to understand the reinforcing efficiency of carbon nanomaterials in polymers through finite element modeling that captures the effect of the interfacial interactions on the tensile modulus of polymer nanocomposites (PNCs). The novelty of this work is that the probability distribution functions of nanomaterials dispersion, distribution, orientation and waviness, determined through image analysis by extracting 3-D information from 2-D scanning electron micrographs, are incorporated into the finite element model allowing thus for fundamental understanding of how the nanostructure parameters affect the tensile modulus of the PNCs. The nanocomposites are made using melt mixing followed by either injections molding or melt spinning of fibers. Polypropylene (PP) is used as the polymer and carbon nanotubes (CNT) or exfoliated graphite nanoplatelets (xGnP) are used as nanoreinforcements. The presence of interphase, confirmed and characterized in terms of stiffness and width using atomic force microscopy, is also accounted for in the model. The dispersion and distribution of CNT within the polymer is experimentally altered by using a surfactant and by forcing the molten material to flow through a narrow orifice (melt spinning) that promotes alignment of CNT and even of the polymer chains along the flow/drawing direction. The effect of nanomaterials' geometry on the mechanical behavior of PNCs is also studied by comparing the properties of CNT/PP to those of xGnP/PP composites. Finally the reinforcing efficiency of CNT is determined independently of the viscoelastic behavior of the polymer by conducting tensile testing at temperatures below the glass transition temperature of PP. The finite element model with the incorporated image analysis subroutine has sufficient resolution to distinguish among the different cases (dispersion, distribution, geometry and alignment of nanomaterials) and the predicted tensile modulus is in agreement with the experimentally determined one. In conclusion, this study provides a tool, that integrates finite element modeling and thorough experiments that enables design of polymer nanocomposites with engineered mechanical properties.
80

Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications

Shin, Donghyun 2011 August 1900 (has links)
The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid, or paraffin wax) are typically used for TES. This limits the operating temperature of CSP units to below 400 degrees C. Increasing the operating temperature to 560 degrees C (i.e., the creeping temperature of stainless steel), can enhance the theoretical thermal efficiency from 54 percent to 63 percent. However, very few thermal storage materials are compatible for these high temperatures. Molten salts are thermally stable up to 600 degrees C and beyond. Using the molten salts as the TES materials confers several benefits, which include: (1) Higher operating temperature can significantly increase the overall cycle efficiency and resulting costs of power production. (2) Low cost of the molten salt materials can drastically reduce the cost. (3) The molten salts, which are environmentally safe, can also reduce the potential environmental impact. However, these materials suffer from poor thermo-physical properties. Impregnating these materials with nanoparticles can enhance these properties. Solvents doped with nanoparticles are termed as nanofluids. Nanofluids have been reported in the literature for the anomalous enhancement of their thermo-physical properties. In this study, the poor thermal properties of the molten salts were enhanced dramatically on mixing with nanoparticles. For example the specific heat capacity of these molten salt eutectics was found to be enhanced by as much as ~ 26 percent on mixing with nanoparticles at a mass fraction of ~ 1 percent. The resultant properties of these nanomaterials were found to be highly sensitive to small variations in the synthesis protocols. Computational models were also developed in this study to explore the fundamental transport mechanisms on the molecular scale for elucidating the anomalous enhancements in the thermo-physical properties that were measured in these experiments. This study is applicable for thermal energy storage systems utilized for other energy conversion technologies – such as geothermal energy, nuclear energy and a combination of energy generation technologies.

Page generated in 0.0627 seconds