• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

TIME-DEPENDENCE OF DISTAL-TO-PROXIMAL HIPPOCAMPAL NEURODEGENERATION PRODUCED BY N-METHYL-D-ASPARTATE RECEPTOR ACTIVATION

Berry, Jennifer Nicole 01 January 2010 (has links)
Excitotoxicity is the overexcitation of neurons due to the excessive activation of excitatory amino acid receptors and is thought to be involved in many neurodegenerative states. The manner in which the neuron breaks down during excitotoxicity is still unclear. The current study used the organotypic hippocampal slice culture model to examine the time-dependent loss of the synaptic vesicular protein synaptophysin and the loss of N-methyl-D-aspartate (NMDA) receptor NR1 subunit availability following an excitotoxic insult (20 μM NMDA) to provide a better understanding of the topographical nature of neuronal death following NMDA receptor activation. Significant NMDA-induced cytotoxicity in the CA1 region of the hippocampus (as measured by propidium iodide uptake) was evident early (15 minutes after exposure) while significant loss of the NR1 subunit and synaptophysin was found at later timepoints (72 and 24 hours, respectively), suggesting delayed downregulation or degradation in axons and dendrites as compared to the soma. The addition of the competitive NMDA receptor antagonist 2-amino-7-phosphonovaleric acid (APV) significantly attenuated all NMDA-induced effects. These results suggest that NR1 and synaptophysin levels as measured by immunoreactivity are not reliable indicators of early cell death.
22

La théanine et ses dérivés : synthèse stéréosélective et évaluation biologique sur la synapse glutamatergique. / Theanine and its derivatives : stereoselective synthesis and biological evaluation in glutamatergic synapse.

Sebih, Fatiha 26 October 2014 (has links)
La L-Théanine (L-5-N-éthylglutamine) est un acide aminé présent dans le thé vert et qui a une structure similaire à celle de l'acide glutamique, le neurotransmetteur majoritaire du système nerveux central, SNC. La L-théanine possède la capacité de traverser la barrière hémato-encéphalique en plus de ses nombreuses activités physiologiques et pharmacologiques, anxiolytique et relaxante. La théanine et ses dérivés sont donc considérés comme des outils indispensables pour la compréhension de la synapse glutamatergique plus précisément. Nous avons synthétisé la théanine énantiomériquement pure (L et D). Nous avons développé deux nouvelles méthodes de synthèse de la théanine optiquement pure. Ensuite, nous avons décrit la préparation des dérivés 5-N-alkylés de la théanine et les dipeptides -glutamique en tant qu'analogues 5-N-substitués de la théanine. Dans le but d'élargir l'éventail d'applications de la Théanine ayant un intérêt biologique, nous avons synthétisé des dipeptides contenant la Théanine. Nous présentons également un accès aux dérivés 4-arylés de la théanine, via une alkylation régio et stéréosélective de l'acide pyroglutamique jamais décrit dans la littérature. L'analyse rigoureuse des intermédiaires réactionnels et des produits finaux par les RX, la RMN 1H à 600 MHZ et l'HRMS a prouvé l'obtention d'un seul diastéréoisomère (2S, 4R)-4-aryle théanineLes résultats des tests biologiques, utilisant la technique de l'imagerie calcique, montrent que les deux énantiomères L et D de la théanine possède un effet agoniste vis-à-vis les récepteurs NMDA et que cet effet est beaucoup plus important dans le cas de l'énantiomère (D). Parmi les analogues 5-N-alkylés de la théanine ayant un effet agoniste spécifique des récepteurs NMDA, la 5-N-Propyl-Gln (L et D) montre une activité en tant qu'agoniste beaucoup plus importante que la théanine même (naturelle ou synthétique) et aucun effet n'a été observé sur les récepteurs AMPA et métabotropiques. La L-théanine et ses dérivés pourraient donc être des structures intéressantes pour développer de nouveaux outils pharmacologiques nécessaires à l'étude des récepteurs glutamatergiques (métabotropiques et/ ou ionotropiques). / L-Theanine (5-N-L-ethylglutamine) which is an amino acid found in green tea, it has a structure similar to that of glutamic acid. L-theanine has the ability to cross the blood-brain barrier in addition to its physiological and pharmacological activities.Given the importance of this molecule as essential for the investigation of physiological roles of CNS tools, we synthesized the enantiomerically pure theanine (L and D). A serie of 5-N-substituted theanine were also synthesized. In order to broaden the range of applications of theanine, we synthesized dipeptides containing Theanine for the purpose of obtaining products that have biological significance. The regio and stereoselectively synthesized analogs of L-theanine in the 4-position substituted with an aryl group has been developed to be tested at the level of glutamate receptors.The results of biological tests, using calcium imaging technique, show that theanine with its two enantiomers (D and L) has an agonistic effect vis-à-vis the NMDA receptors and that this effect was much greater with the enantiomer (D). Among the 5-N-alkylated analogs of theanine which they had only an agonistic effect on the NMDA receptor, 5-N-Propyl-Gln (L and D) has activity as an agonist much larger than the theanine and no effects were scored on AMPA receptors and metabotropic. L-theanine and its derivatives could be interesting structures to develop new pharmacological tools to study glutamate receptors (metabotropic and / or ionotropic).
23

Envolvimento do sistema GABAérgico nas alterações comportamentais eletrencefalográficas e neuroquímicas induzidas pela injeção de metilmalonato no ventrículo de ratos

Malfatti, Carlos Ricardo Maneck January 2007 (has links)
O ácido metilmalônico (MMA) é um agente convulsivante endógeno que se acumula na acidemia metilmalônica, um erro inato no metabolismo caracterizado por disfunções neurológicas severas, predispondo ao aparecimento de convulsão. O mecanismo responsável pelas convulsões induzidas pelo MMA envolve a ativação do receptor NMDA. O envolvimento GABAérgico nas convulsões induzidas pelo MMA ainda não foi demonstrado. Desta forma, no presente estudo objetivou investigar o envolvimento de macanismos GABAérgicos nas convulsões induzidas pelo MMA. Ratos adultos foram injetados (i.c.v.) com muscimol (46 pmol/1 ml), baclofen (0.03, 0.1 and 0.3 mmol/1 ml), MK- 801 (6 nmol/1 ml), piridoxine (2 mmol/ 4 ml) ou salina (0.15 mmol/1 ml). Após trinta minutos, MMA (0.3, 0.1 and 3 mmol/1 ml) ou NaCl (6 mmol/1 ml, i.c.v.) eram injetados. Após estas injeções, os animais eram transferidos imediatamente para um campo aberto, sendo observado o aparecimento de convulsões. Após a avaliação comportamental, foi dosada a atividade glutamato descarboxilase (GAD) em homogeneizado de córtex cerebral, mensurando a quantidade de 14CO2 liberado do L-[14C]-glutamato. As convulsões foram confirmadas pelo estudo eletrencefalográfico. O MMA induziu convulsões do tipo crônicas de forma dose-dependente e reduziu a atividade da GAD no córtex cerebral ex vivo. A atividade da GAD correlacionou-se negativamente com a duração das convulsões (r=- 0.873, P<0.01), mas somente o MK-801 e a piridoxina reverteram à inibição da GAD pelo MMA. Estes resultados sugerem o envolvimento de mecanismos GABAérgicos nas convulsões induzidas pelo MMA, e que a inibição da GAD depende da ativação de receptores NMDA ou da proteção da enzima pela piridoxina. Por fim, o presente estudo propôs, de forma inovadora, o envolvimento do sistema GABAérgico nas convulsões induzidas pelo MMA e o envolvimento dos receptores NMDA na falha da transmissão GABAérgica. / Methylmalonic acid (MMA) is an endogenous convulsing compound that accumulates in methylmalonic acidemia, an inborn error of the metabolism characterized by severe neurological dysfunction, including seizures. The mechanisms by which MMA causes seizures involves the activation of the NMDA receptors, but whether GABAergic mechanisms are involved in the convulsions induced by MMA is not known. Therefore, in the current study we investigated the involvement of GABAergic mechanisms in the convulsions induced by MMA. Adult rats were injected (i.c.v.) with muscimol (46 pmol/1 ml), baclofen (0.03, 0.1 and 0.3 mmol/1 ml), MK-801 (6 nmol/1 ml), pyridoxine (2 mmol/ 4 ml) or physiological saline (0.15 mmol/1 ml). After thirty minutes, MMA (0.3, 0.1 and 3 mmol/1 ml) or NaCl (6 mmol/1 ml, i.c.v.) was injected. The animals were immediately transferred to an open field and observed for the appearance of convulsions. After behavioral evaluation, glutamate decarboxylase (GAD) activity was determined in cerebral cortex homogenates by measuring the 14CO2 released from L-[14C]-glutamic acid. Convulsions were confirmed by electroencephalographic recording in a subset of animals. MMA caused the appearance of clonic convulsions in a dose-dependent manner and decreased GAD activity in the cerebral cortex ex vivo. GAD activity negatively correlated with duration of MMA-induced convulsions (r=-0.873, P<0.01), in an individual basis. Muscimol, baclofen, MK-801 and pyridoxine prevented MMA-induced convulsions, but only MK-801 and pyridoxine prevented MMA-induced GAD inhibition. These data suggest GABAergic mechanisms are involved in the convulsive action of MMA, and that GAD inhibition by MMA depends on the activation of NMDA receptors or enzyme protection by pyridoxine. While in this study we present novel data about the role of the GABAergic system in MMAinduced convulsions, the central role of NMDA receptors in the neurochemical actions of MMA is further reinforced since they seem to trigger GABAergic failure.
24

Envolvimento do sistema GABAérgico nas alterações comportamentais eletrencefalográficas e neuroquímicas induzidas pela injeção de metilmalonato no ventrículo de ratos

Malfatti, Carlos Ricardo Maneck January 2007 (has links)
O ácido metilmalônico (MMA) é um agente convulsivante endógeno que se acumula na acidemia metilmalônica, um erro inato no metabolismo caracterizado por disfunções neurológicas severas, predispondo ao aparecimento de convulsão. O mecanismo responsável pelas convulsões induzidas pelo MMA envolve a ativação do receptor NMDA. O envolvimento GABAérgico nas convulsões induzidas pelo MMA ainda não foi demonstrado. Desta forma, no presente estudo objetivou investigar o envolvimento de macanismos GABAérgicos nas convulsões induzidas pelo MMA. Ratos adultos foram injetados (i.c.v.) com muscimol (46 pmol/1 ml), baclofen (0.03, 0.1 and 0.3 mmol/1 ml), MK- 801 (6 nmol/1 ml), piridoxine (2 mmol/ 4 ml) ou salina (0.15 mmol/1 ml). Após trinta minutos, MMA (0.3, 0.1 and 3 mmol/1 ml) ou NaCl (6 mmol/1 ml, i.c.v.) eram injetados. Após estas injeções, os animais eram transferidos imediatamente para um campo aberto, sendo observado o aparecimento de convulsões. Após a avaliação comportamental, foi dosada a atividade glutamato descarboxilase (GAD) em homogeneizado de córtex cerebral, mensurando a quantidade de 14CO2 liberado do L-[14C]-glutamato. As convulsões foram confirmadas pelo estudo eletrencefalográfico. O MMA induziu convulsões do tipo crônicas de forma dose-dependente e reduziu a atividade da GAD no córtex cerebral ex vivo. A atividade da GAD correlacionou-se negativamente com a duração das convulsões (r=- 0.873, P<0.01), mas somente o MK-801 e a piridoxina reverteram à inibição da GAD pelo MMA. Estes resultados sugerem o envolvimento de mecanismos GABAérgicos nas convulsões induzidas pelo MMA, e que a inibição da GAD depende da ativação de receptores NMDA ou da proteção da enzima pela piridoxina. Por fim, o presente estudo propôs, de forma inovadora, o envolvimento do sistema GABAérgico nas convulsões induzidas pelo MMA e o envolvimento dos receptores NMDA na falha da transmissão GABAérgica. / Methylmalonic acid (MMA) is an endogenous convulsing compound that accumulates in methylmalonic acidemia, an inborn error of the metabolism characterized by severe neurological dysfunction, including seizures. The mechanisms by which MMA causes seizures involves the activation of the NMDA receptors, but whether GABAergic mechanisms are involved in the convulsions induced by MMA is not known. Therefore, in the current study we investigated the involvement of GABAergic mechanisms in the convulsions induced by MMA. Adult rats were injected (i.c.v.) with muscimol (46 pmol/1 ml), baclofen (0.03, 0.1 and 0.3 mmol/1 ml), MK-801 (6 nmol/1 ml), pyridoxine (2 mmol/ 4 ml) or physiological saline (0.15 mmol/1 ml). After thirty minutes, MMA (0.3, 0.1 and 3 mmol/1 ml) or NaCl (6 mmol/1 ml, i.c.v.) was injected. The animals were immediately transferred to an open field and observed for the appearance of convulsions. After behavioral evaluation, glutamate decarboxylase (GAD) activity was determined in cerebral cortex homogenates by measuring the 14CO2 released from L-[14C]-glutamic acid. Convulsions were confirmed by electroencephalographic recording in a subset of animals. MMA caused the appearance of clonic convulsions in a dose-dependent manner and decreased GAD activity in the cerebral cortex ex vivo. GAD activity negatively correlated with duration of MMA-induced convulsions (r=-0.873, P<0.01), in an individual basis. Muscimol, baclofen, MK-801 and pyridoxine prevented MMA-induced convulsions, but only MK-801 and pyridoxine prevented MMA-induced GAD inhibition. These data suggest GABAergic mechanisms are involved in the convulsive action of MMA, and that GAD inhibition by MMA depends on the activation of NMDA receptors or enzyme protection by pyridoxine. While in this study we present novel data about the role of the GABAergic system in MMAinduced convulsions, the central role of NMDA receptors in the neurochemical actions of MMA is further reinforced since they seem to trigger GABAergic failure.
25

Envolvimento do sistema GABAérgico nas alterações comportamentais eletrencefalográficas e neuroquímicas induzidas pela injeção de metilmalonato no ventrículo de ratos

Malfatti, Carlos Ricardo Maneck January 2007 (has links)
O ácido metilmalônico (MMA) é um agente convulsivante endógeno que se acumula na acidemia metilmalônica, um erro inato no metabolismo caracterizado por disfunções neurológicas severas, predispondo ao aparecimento de convulsão. O mecanismo responsável pelas convulsões induzidas pelo MMA envolve a ativação do receptor NMDA. O envolvimento GABAérgico nas convulsões induzidas pelo MMA ainda não foi demonstrado. Desta forma, no presente estudo objetivou investigar o envolvimento de macanismos GABAérgicos nas convulsões induzidas pelo MMA. Ratos adultos foram injetados (i.c.v.) com muscimol (46 pmol/1 ml), baclofen (0.03, 0.1 and 0.3 mmol/1 ml), MK- 801 (6 nmol/1 ml), piridoxine (2 mmol/ 4 ml) ou salina (0.15 mmol/1 ml). Após trinta minutos, MMA (0.3, 0.1 and 3 mmol/1 ml) ou NaCl (6 mmol/1 ml, i.c.v.) eram injetados. Após estas injeções, os animais eram transferidos imediatamente para um campo aberto, sendo observado o aparecimento de convulsões. Após a avaliação comportamental, foi dosada a atividade glutamato descarboxilase (GAD) em homogeneizado de córtex cerebral, mensurando a quantidade de 14CO2 liberado do L-[14C]-glutamato. As convulsões foram confirmadas pelo estudo eletrencefalográfico. O MMA induziu convulsões do tipo crônicas de forma dose-dependente e reduziu a atividade da GAD no córtex cerebral ex vivo. A atividade da GAD correlacionou-se negativamente com a duração das convulsões (r=- 0.873, P<0.01), mas somente o MK-801 e a piridoxina reverteram à inibição da GAD pelo MMA. Estes resultados sugerem o envolvimento de mecanismos GABAérgicos nas convulsões induzidas pelo MMA, e que a inibição da GAD depende da ativação de receptores NMDA ou da proteção da enzima pela piridoxina. Por fim, o presente estudo propôs, de forma inovadora, o envolvimento do sistema GABAérgico nas convulsões induzidas pelo MMA e o envolvimento dos receptores NMDA na falha da transmissão GABAérgica. / Methylmalonic acid (MMA) is an endogenous convulsing compound that accumulates in methylmalonic acidemia, an inborn error of the metabolism characterized by severe neurological dysfunction, including seizures. The mechanisms by which MMA causes seizures involves the activation of the NMDA receptors, but whether GABAergic mechanisms are involved in the convulsions induced by MMA is not known. Therefore, in the current study we investigated the involvement of GABAergic mechanisms in the convulsions induced by MMA. Adult rats were injected (i.c.v.) with muscimol (46 pmol/1 ml), baclofen (0.03, 0.1 and 0.3 mmol/1 ml), MK-801 (6 nmol/1 ml), pyridoxine (2 mmol/ 4 ml) or physiological saline (0.15 mmol/1 ml). After thirty minutes, MMA (0.3, 0.1 and 3 mmol/1 ml) or NaCl (6 mmol/1 ml, i.c.v.) was injected. The animals were immediately transferred to an open field and observed for the appearance of convulsions. After behavioral evaluation, glutamate decarboxylase (GAD) activity was determined in cerebral cortex homogenates by measuring the 14CO2 released from L-[14C]-glutamic acid. Convulsions were confirmed by electroencephalographic recording in a subset of animals. MMA caused the appearance of clonic convulsions in a dose-dependent manner and decreased GAD activity in the cerebral cortex ex vivo. GAD activity negatively correlated with duration of MMA-induced convulsions (r=-0.873, P<0.01), in an individual basis. Muscimol, baclofen, MK-801 and pyridoxine prevented MMA-induced convulsions, but only MK-801 and pyridoxine prevented MMA-induced GAD inhibition. These data suggest GABAergic mechanisms are involved in the convulsive action of MMA, and that GAD inhibition by MMA depends on the activation of NMDA receptors or enzyme protection by pyridoxine. While in this study we present novel data about the role of the GABAergic system in MMAinduced convulsions, the central role of NMDA receptors in the neurochemical actions of MMA is further reinforced since they seem to trigger GABAergic failure.
26

The Role of N-Acetyl-Aspartyl-Glutamate (NAAG) in the Modulation of NMDA Receptors

Khacho, Pamela January 2016 (has links)
Ischemic strokes cause excessive release of glutamate, leading to overactivation of N-methyl-D-aspartate receptors (NMDARs) and excitotoxicity-induced neuronal death. For this reason, inhibition of NMDARs has been a central focus in identifying mechanisms to avert this extensive neuronal damage. N-acetyl-aspartyl-glutamate (NAAG), the most abundant neuropeptide in the brain, is neuroprotective in ischemic conditions in vivo. Despite this evidence, the exact mechanism underlying its neuroprotection, and more specifically its effect on NMDARs, is currently unknown due to conflicting results in the literature. Here, we uncover a pH-dependent and subunit specific action of NAAG on NMDARs. Using whole-cell electrophysiological recordings on acute hippocampal slices from adult mice and on HEK293 cells, we found that NAAG increases synaptic GluN2A-containing NMDAR excitatory postsynaptic currents (EPSCs), while effectively decreasing extrasynaptic GluN2B-containing NMDAR EPSCs in physiological pH. Intriguingly, the results of our study further show that in low pH, which is a physiological occurrence during ischemia, NAAG depresses GluN2A-containing NMDAR EPSCs and amplifies its inhibitory effect on GluN2B-containing NMDAR EPSCs, as well as upregulates the surface expression of the GluN2A subunit. Altogether, our data demonstrate that NAAG has differential effects on NMDAR function based on subunit composition and extracellular pH levels. These findings suggest that the role of NAAG as a neuroprotective agent during an ischemic stroke is likely mediated by its ability to reduce NMDAR excitation. The inhibitory effect of NAAG on NMDARs and its enhanced function in acidic conditions makes NAAG a prime therapeutic agent for the treatment of ischemic events.
27

Assessment of Transcranial Direct Current Stimulation (tDCS) on MMN-Indexed Auditory Sensory Processing

Impey, Danielle January 2016 (has links)
Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite or inhibit activity in the brain area of interest via electrodes placed on the scalp, depending on the polarity and strength of the current. Presently, tDCS is being used as a tool to investigate frontal cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. Relatively little research has been conducted with respect to tDCS and the auditory cortex (AC). The primary aim of this thesis was to elucidate the effects of tDCS on auditory sensory discrimination, assessed with the mismatch negativity (MMN) event-related potential (ERP). In the first pilot study, healthy participants were assessed in a randomized, double-blind, sham-controlled design, in which participants received anodal tDCS over the primary AC (2 mA for 20 minutes) in one session and ‘sham’ stimulation (i.e. no stimulation) in the other. Pitch MMN was found to be enhanced after receiving anodal tDCS, with the effects being evidenced in individuals with relatively low (vs. high) baseline amplitudes. No significant effects were seen with sham stimulation. A second study examined the separate and interacting effects of anodal and cathodal tDCS on MMN measures. MMN was assessed pre- and post-tDCS (2 mA, 20 minutes) in 2 separate sessions, one involving sham stimulation, followed by anodal stimulation, and one involving cathodal stimulation, followed by anodal stimulation. Only anodal tDCS over the AC increased pitch MMN in baseline-stratified groups, and while cathodal tDCS decreased MMN, subsequent anodal stimulation did not significantly alter MMNs. As evidence has shown that tDCS lasting effects may be dependent on N-methyl-D-aspartate (NMDA) receptor activity, a pharmacological study investigated the use of dextromethorphan (DMO), an NMDA antagonist, to assess possible modulation of tDCS’ effects on both MMN and working memory (WM) performance. The study involved four test sessions that compared pre- and post-anodal tDCS over the AC and sham stimulation with both DMO (50 mL) and placebo administration. MMN amplitude increases were only seen with anodal tDCS with placebo administration, not with sham stimulation, nor with DMO administration. In the sham condition, DMO decreased MMN amplitudes. Anodal tDCS improved WM performance in the active drug condition. Findings from this study contribute to the understanding of underlying neurobiological mechanisms mediating tDCS-sensory and memory improvements. As cognitive impairment has been proposed to be the core feature of schizophrenia disorder (Sz) and MMN is a putative biomarker of Sz, a pilot study was conducted to assess the effects of pre- and post-tDCS on MMN measures in 12 Sz patients, as well as WM performance. Temporal, frontal and sham tDCS were applied in separate sessions. Results demonstrated a trend for pitch MMNs to increase with anodal temporal tDCS, which was significant in a subgroup of Sz individuals with auditory hallucinations, who had low MMNs at baseline. Anodal frontal tDCS significantly increased WM performance, which was found to positively correlate with MMN-tDCS effects. The findings contribute to our understanding of tDCS effects for MMN-indexed sensory discrimination and WM performance in healthy participants and individuals with Sz disorder and may have implications for treatment of sensory processing deficits in neuropsychiatric illness.
28

Aspect vasculaire de l'interaction tPA / R-NMDA : implications dans le couplage neurovasculaire et dans l'AVC ischémique / Vascular aspects of the tPA / NMDA-R interaction : implications for neurovascular coupling and ischemic stroke

Anfray, Antoine 12 December 2017 (has links)
L’activateur tissulaire du plasminogène (tPA) est une sérine protéase initialement découverte dans le sang pour sa capacité à convertir le plasminogène en plasmine, une enzyme capable de dégrader les chaînes de fibrine des caillots sanguins. Pour cette fonction pro-fibrinolytique, le tPA est le seul traitement pharmacologique aujourd’hui utilisé dans la phase aiguë de l’accident vasculaire cérébral (AVC) de type ischémique, même s’il présente plusieurs limites. Outre son rôle dans la fibrinolyse, le tPA est aussi capable de moduler différents phénomènes physiologiques et pathologiques au sein du système nerveux central et de l’unité neurovasculaire, tels que la mémoire, l’excitotoxicité ou encore le couplage neurovasculaire comme décrit plus récemment. Plusieurs fonctions du tPA impliquent son interaction avec les récepteurs N-Methyl-D-Aspartate (NMDA), qui permet de potentialiser leur signalisation. Sur le plan structurel, deux formes du tPA ont été identifiées : une forme simple chaîne (sc-tPA) et une forme double chaîne (tc-tPA). Ces deux formes, dont les proportions peuvent varier dans la solution administrée aux patients pour la thrombolyse post-AVC ischémique, partagent certaines fonctions communes mais peuvent aussi avoir des actions différentes. Le premier objectif de nos travaux visait à mieux comprendre l’implication du tPA dans le couplage neurovasculaire, un phénomène essentiel au fonctionnement cérébral permettant aux régions en activité de bénéficier d’un apport accru en sang afin de subvenir à la demande énergétique des neurones. Dans une seconde partie, nous nous sommes intéressés aux effets des formes sc-tPA et tc-tPA utilisées lors de la thrombolyse dans un modèle murin d’AVC ischémique thromboembolique.Premièrement, nos résultats mettent en évidence la capacité du tPA vasculaire à augmenter l’hyperhémie fonctionnelle dans le cadre du couplage neurovasculaire. En effet, nous montrons chez la souris que le tPA vasculaire peut interagir avec les récepteurs NMDA présents à la surface des cellules endothéliales des artères et artérioles, et augmenter leur dilatation lors d’une activité neuronale. D’autre part, dans le cadre de l’ischémie cérébrale, nos résultats indiquent que lorsqu’ils sont utilisés pour la thrombolyse précoce, le sc-tPA et le tc-tPA ont des effets différents et parfois opposés. Le sc-tPA permet de réduire les volumes de lésion et d’améliorer la récupération fonctionnelle, alors que le tc-tPA est moins efficace pour réduire la lésion et ne diminue pas les déficits fonctionnels. De fait, nos données montrent que le tc-tPA aggrave l’altération de l’intégrité de la barrière hématoencéphalique par rapport au sc-tPA. Dans l’ensemble, ces données permettent d’améliorer les connaissances sur les mécanismes d’actions du tPA dans des phénomènes physiologiques et pathologiques importants. Nos travaux soulignent également la nécessité de prendre en compte les différences entre les formes de tPA dans l’amélioration du traitement actuel des AVC et dans l’élaboration de futures stratégies thérapeutiques impliquant cette molécule. / The tissue-type plasminogen activator (tPA) is a serine protease initially discovered in the blood for its ability to convert plasminogen into plasmin, an enzyme capable of degrading fibrin chains of blood clots. tPA is the only pharmacological treatment currently used for the acute phase of ischemic stroke, although it has several limitations. Besides its role in fibrinolysis, tPA also modulates various physiological and pathological phenomena within the central nervous system and neurovascular unit, such as memory, excitotoxicity and neurovascular coupling, which has been described recently. Several functions of tPA involve its interaction with N-Methyl-D-Aspartate (NMDA) receptors, which leads to an increase in NMDA signaling. Structurally, two forms of tPA have been identified: a single chain form (sc-tPA) and a double chain form (tc-tPA). These two forms, whose proportions vary in the solution administered for thrombolysis during ischemic stroke, share some common functions but may also differ in their therapeutic action. The first objective of our work was to better understand the implication of tPA in neurovascular coupling, which is an essential phenomenon for cerebral functioning that allows active brain regions to benefit from increased blood supply in order to meet local energy demands. In the second part of our work, we investigated the effects of sc-tPA and tc-tPA in a murine model of ischemic thromboembolic stroke.Our results establish a role for vascular tPA in increasing functional hyperemia in neurovascular coupling. We show that vascular tPA interacts with NMDA receptors present at the surface of endothelial cells of arteries and arterioles to increase their dilation during neuronal activity. In the context of cerebral ischemia, our results indicate that when administered during early thrombolysis, sc-tPA and tc-tPA have different and sometimes opposite effects. tc-tPA is less effective than sc-tPA in reducing lesion volume and protecting against functional impairment. In fact, our data show that tc-tPA worsens the integrity of the blood-brain barrier compared to sc-tPA. Overall, these data improve our knowledge of the mechanisms of action of tPA in important physiological and pathological phenomena. Our work underlines the need to take into account differences between sc-tPA and tc-tPA when trying to improve the current treatment for stroke and in the development of future therapeutic strategies involving this molecule.
29

Studium působení pregnanolon sulfátu a jeho derivátů na NMDA receptorech. / Characterization of the effect of pregnanolone sulfate and its derivatives on NMDA receptors.

Švehla, Pavel January 2015 (has links)
N-methyl-D-aspartate (NMDA) receptors are a subtype of receptors for major excitatory neurotransmitter glutamate in the central nervous system. Their activity is regulated by variety of allosteric modulators, including endogenous neurosteroids and their synthetic analogues. NMDAreceptor dysfunction is implicated in various forms of neurodegeneration and inhibitory neurosteroids have unique therapeutic potential to act as neuroprotective agens. The aim of this work is to investigate relationship between structure and function of neurosteroids with modifications in the D-ring region, using whole-cell patch clamp recording at recombinant GluN1/GluN2B receptors. In this work, we characterised inhibition effect of 19 neurosteroid analogues on NMDA receptor activity and found several of them to be potent NMDA receptor inhibitors. According to our results, there is a linear relationship of IC50 and lipophilicity of a neurosteroid compound, suggesting the plasma membrane plays an important role in neurosteroid access to NMDA receptor. Indeed, using capacitance recording configuration in combination with amphipathic molecule gamma-cyclodextrin, we were able to separate the kinetic of neurosteroid membrane binding from receptor binding. Moreover, these experiments showed that neurosteroid accumulation in the...
30

Spinophilin-Dependent Regulation of the Phosphorylation, Protein Interactions, and Function of the GluN2B Subunit of the NMDAR and its Implications in Neuronal Cell Death

Beiraghi Salek, Asma 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Excitotoxicity, a major hallmark of neurodegeneration associated with cerebral ischemia, is a result of accumulation of extracellular glutamate. This excess glutamate leads to hyperactivation of glutamate receptors such as the N-methyl-D-asparate (NMDA) receptors (NMDARs) following the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPARs). Excessive activation of NMDARs causes an influx of calcium, which can eventually activate apoptotic pathways and lead to death of neurons. Regulation of NMDAR subunit composition, localization, surface expression, and activity can balance cell survival via activation of either pro-death or pro-survival pathways after a course of an ischemic insult. Specifically, phosphorylation of different NMDAR subunits defines their activity and downstream signaling pathways. NMDARs are phosphorylated by multiple kinases and dephosphorylated by different phosphatases. Besides phosphatases and kinases, per se, phosphorylation of synaptic proteins that regulate kinase or phosphatase targeting and activity also mediate NMDAR phosphorylation. Spinophilin, a major synaptic scaffolding and protein phosphatase 1 (PP1) targeting protein, mediates substrate phosphorylation via its ability to bind PP1. Our studies focus on delineating the role of spinophilin in the regulation of phosphorylation and function of the GluN2B subunit of the NMDA receptor as well as the role of spinophilin in modulating glutamate-induced neurotoxicity. Interestingly, our data demonstrate that spinophilin sequesters PP1 away from GluN2B thereby enhancing phosphorylation of GluN2B at Ser-1284. These changes impact GluN2B protein interactions, subcellular localization, and surface expression, leading to alterations in the amount of calcium entering the neuron via GluN2B-containing NMDARs. Our data show that spinophilin biphasically regulates GluN2B function. Specifically, Ser-1284 phosphorylation enhances calcium influx through GluN2B containing NMDA receptors, but spinophilin leads to dramatic decreases in the surface expression of the receptor independent of Ser-1284 phosphorylation. Moreover, in spinophilin knockout mice, we observe less PP1 binding to GluN2B and less phosphorylation of Ser-1284, but more surface expression of GluN2B and greater levels of caspase activity. Together, these observations suggest a potential neuroprotective role for spinophilin by decreasing GluN2B-containing NMDA receptor-dependent surface expression and thereby decreasing intracellular calcium and neuronal cell death.

Page generated in 0.0468 seconds