• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriétés optomécaniques, vibrationelles et thermiques de membranes de graphène suspendues / Optomechanical, vibrational and thermal properties of suspended graphene membranes

Schwarz, Cornelia 15 January 2016 (has links)
Le but de la Nano- Opto- Mécanique et Electronic à base de graphène est d'utiliser des membranes de graphène en suspension comme blocs de construction pour aborder le couplage entre l'optique, la mécanique et l'électronique dans ce nouveau matériau. Avec un module d'Young similaire à celui du diamant (1 TPA), le graphène est une membrane extrêmement rigide, légère et mince (epaaisseur de seulement un atome) qui peut supporter son propre poids sans effondrement ou la rupture lorsqu'il est suspendu. Ces membranes, intégrées dans des dispositifs mécaniques, peuvent être actionnés à partir de DC jusqu'à des fréquences de vibration mécaniques très élevées (GHz). En outre, le graphène est un gaz d'électrons 2D exposé pour lequel une porte électrostatique tunes considérablement la densité de porteurs de charge et ses propriétés optiques. Last but not least, il offre une architecture unique pour effectuer la fonctionnalisation physico-chimiques et obtenir des matériaux hybrides combinant les propriétés particulières des espèces chimisorbées avec ceux du graphène. / The aim of the Graphene Nano- Opto- Mechanics and Electronics is to use suspended graphene membranes as building blocks to address the coupling of optics, mechanics and electronics in this novel material. With a Young modulus similar to that of diamond (1 TPa), graphene is an extremely stiff, light and atomically thin membrane that can withstand its own weight without collapsing or breaking when suspended. Such membranes, integrated as mechanical devices, can be actuated from DC up to very high mechanical vibration frequencies (GHz). Moreover, graphene is an exposed 2D electron gas for which an electrostatic gate dramatically tunes the charge carrier density and its optical properties. Last but not least, it provides a unique architecture to perform physico-chemical functionalization and obtain hybrid materials combining the peculiar properties of adsorbed and chemisorbed species with the graphene ones.
2

Quantum waveguide theory

Midgley, Stuart January 2003 (has links)
The study of nano-electronic devices is fundamental to the advancement of the semiconductor industry. As electronic devices become increasingly smaller, they will eventually move into a regime where the classical nature of the electrons no longer applies. As the quantum nature of the electrons becomes increasingly important, classical or semiclassical theories and methods will no longer serve their purpose. For example, the simplest non-classical effect that will occur is the tunnelling of electrons through the potential barriers that form wires and transistors. This results in an increase in noise and a reduction in the device?s ability to function correctly. Other quantum effects include coulomb blockade, resonant tunnelling, interference and diffraction, coulomb drag, resonant blockade and the list goes on. This thesis develops both a theoretical model and computational method to allow nanoelectronic devices to be studied in detail. Through the use of computer code and an appropriate model description, potential problems and new novel devices may be identified and studied. The model is as accurate to the physical realisation of the devices as possible to allow direct comparison with experimental outcomes. Using simple geometric shapes of varying potential heights, simple devices are readily accessible: quantum wires; quantum transistors; resonant cavities; and coupled quantum wires. Such devices will form the building blocks of future complex devices and thus need to be fully understood. Results obtained studying the connection of a quantum wire with its surroundings demonstrate non-intuitive behaviour and the importance of device geometry to electrical characteristics. The application of magnetic fields to various nano-devices produced a range of interesting phenomenon with promising novel applications. The magnetic field can be used to alter the phase of the electron, modifying the interaction between the electronic potential and the transport electrons. This thesis studies in detail the Aharonov-Bohm oscillation and impurity characterisation in quantum wires. By studying various devices considerable information can be added to the knowledge base of nano-electronic devices and provide a basis to further research. The computational algorithms developed in this thesis are highly accurate, numerically efficient and unconditionally stable, which can also be used to study many other physical phenomena in the quantum world. As an example, the computational algorithms were applied to positron-hydrogen scattering with the results indicating positronium formation.
3

Fabrication and optical simulation of periodic nanostructures and their applications / Fabrication et simulation optique de nanostructures périodiques et leurs applications

Liu, Jia 31 March 2016 (has links)
Les nanostructures périodiques jouent un rôle important dans le domaine des nanotechnologies, en particulier dans le contrôle des photons. Bien qu'il existe de nombreuses techniques d'usage général pour la fabrication et la simulation optique, nous avons développé une technique de fabrication sur mesure et une méthode de simulation optiques pour les structures périodiques pour accélérer le prototypage à l’échelle du laboratoire et la conception optique. Dans la première partie de cette thèse, nous décrivons une technique lithographique nommée « Laser Interference Lithography » (LIL) à faible coût pour la fabrication de nanostructures périodiques. La technique LIL est combinée avec gravure sèche, gravure humide et technique de gravure électrochimique pour réaliser, respectivement, des trous cylindriques, des pyramides inversées et des réseaux taux de pores bi-périodiques à facteur d’aspect élevé sur le substrat à base de silicium. Les modèles unidimensionnels sur des substrats en verre sont également utilisés comme nanofiltres dans la réalisation de la puce de pré-concentration à faible coût. Dans la deuxième partie, nous décrivons d'abord une méthode de calcul électromagnétique rigoureuse Rigorous Coupled-Wave Analysis (RCWA) conçu pour les structures périodiques. Une description détaillée est donnée pour expliquer la méthode numérique. Ensuite, nous combinons la méthode RCWA et une nouvelle approche proposée de la conception des modèles pseudo-désordonnée pour améliorer le piégeage des photons. A titre d'exemple, nous démontrons que, en ajoutant des structures désordonnées à petite échelle sur des arrangements périodiques à grande échelle, la performance quant à l’absorption des couches minces de silicium peut être grandement améliorée. / Periodic nanostructures play an important role in the domain of nanotechnology, especially in photon control. While there exist many general purpose techniques for fabrication and optical simulation, we show tailored fabrication and optical simulation methods for periodic structures to accelerate lab-scale prototyping and optical design. In the first part of this dissertation, we describe a low-cost lithographic technique named Laser Interference Lithography (LIL) for fabricating periodic nanostructures. LIL technique is combined with dry-etching, wet-etching and electrochemical etching technique to realize, respectively, cylindrical holes, inverted pyramids and high aspect ratio pore arrays on silicon based substrate. The one-dimensional patterns on glass substrates are also used as nanofilters in realizing low-cost preconcentration chip. In the second part, we first describe Rigorous Coupled-Wave Analysis (RCWA), a rigorous electromagnetic calculation method designed for periodic structures. A detailed derivation is given to explain the numerical method. Then, we combine the RCWA method and a new proposed pseudo-disordered patterns design approach to investigate photon control. As an example, we demonstrate that by adding ‘appropriate’ engineered fine stripes to each long period the absorption performance of thin silicon slab can be largely enhanced.
4

Pattern-integrated interference lithography: single-exposure formation of photonic-crystal lattices with integrated functional elements

Burrow, Guy Matthew 15 June 2012 (has links)
A new type of photolithography, Pattern-Integrated Interference Lithography (PIIL), was demonstrated. PIIL is the first-ever integration of pattern imaging with interference lithography in a single-exposure step. The result is an optical-intensity distribution composed of a subwavelength periodic lattice with integrated functional circuit elements. To demonstrate the PIIL method, a Pattern-Integrated Interference Exposure System (PIIES) was developed that incorporates a projection imaging capability in a novel three-beam interference configuration. The purpose of this system was to fabricate, in a single-exposure step, representative photonic-crystal structures. Initial experimental results have confirmed the PIIL concept, demonstrating the potential application of PIIL in nano-electronics, photonic crystals, biomedical structures, optical trapping, metamaterials, and in numerous subwavelength structures. In the design of the PIIES configuration, accurate motif geometry models were developed for the 2D plane-group symmetries possible via linearly-polarized three-beam interference, optimized for maximum absolute contrast and primitive-lattice-vector direction equal contrast. Next, a straightforward methodology was presented to facilitate a thorough analysis of effects of parametric constraints on interference-pattern symmetries, motif geometries, and their absolute contrasts. With this information, the design of the basic PIIES configuration was presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane. Appropriate performance metrics were defined in order to quantify the characteristics of the resulting photonic-crystal structure.
5

Development of carbon nanotube-based gas and vapour sensors and supramolecular chemistry of carbon nano-materials

Hubble, Lee John January 2009 (has links)
[Truncated abstract] The scientific endeavours described within this thesis attempt to create novel solutions to current scientific, commercial and industrial downfalls, and contribute to the advancement of technologies in these areas. This has been achieved through the application of theoretical and experimental principles, entrenched in the domains of chemistry and physics, which have been harnessed to assist in the transformation from nanoscience to nanotechnology. These solutions range from unique supramolecular systems capable of selective-diameter enrichment of single-walled carbon nanotubes (SWCNTs), to the fabrication of low-cost, potentially remote deployable carbon nanotube-based gas and vapour sensors, and expand right through to the development of water-soluble fluoroionophoric sensors and manipulations of a molecular form of carbon in constructing all-carbon nano-architectures. For the advancement and successful integration of carbon nanotubes (CNTs) into commercial processes, the advent of scalable separation protocols based on their electronic properties is required. SWCNTs have been successfully solubilised using water-soluble p-phosphonated calix[n]arenes (n = 4, 6, 8) and 'extended arm' upper rim functionalised (benzyl, phenyl) p-sulfonated calix[8]arenes. Selective SWCNT diameter solubilisation has been demonstrated and subsequent preferential enrichment of SWCNTs with semiconducting or metallic electronic properties has been achieved. In addition, semiconducting nanotube-enriched supernatants (liquid) have been utilised to fabricate on/off field effect transistors (FET). These water-soluble supramolecular systems can be incorporated into post-growth purification protocols, with direct implications in areas such as carbon nano-electronics and device fabrication. In the current global environment there is a heightened level of public and governmental disquiet due to the reality of impending terrorist attacks. This is compounded by the inherent ease of manufacture and effectiveness of specific chemical warfare agents (CWAs) used in small-scale terrorist operations. ... Additional all-carbon structures are described with the formation of rings of helical SWCNT bundles through post-growth SWCNT modifications, and a variety of fibrous all-carbon structures, most notably novel square-geometry carbon nano-fibres (CNFs), through catalytic-chemical vapour deposition (C-CVD) synthesis strategies. The current requirement for entirely water-soluble fluorescent sensors is routinely documented in the literature. The autofluorescence properties of p-phenyl-sulfonated calix[8]arene are characterised and this water-soluble cavitand is surveyed as a metal cation sensor candidate. This particular system was found to exhibit a change in fluorescence response when exposed to divalent metal cations, and interactions with [UO2]2+, Pb2+, Co2+, and Cu2+ ions are discussed in detail. The system is characterised through a variety of analytical techniques to yield sensor calibration data, degradation characteristics, pH sensitivity and suitability as a 'small molecule' drug-carrier.
6

Large Area MoS2 : Growth and Device Characteristics

Kumar, V Kranthi January 2016 (has links) (PDF)
There has been growing interest in two-dimensional (2-D) crystals beyond graphene for next-generation nano-electronics. Transition metal dichalcogenides have been most widely studied, for their semiconducting characteristics and hence, potential applications. This interest has fueled many efforts to establish methods for synthesis of MoS2 layers, a most promising candidate, in controlled numbers over large areas. One of the most scalable methods is chemical vapor deposition (CVD). The current approaches to growth from the vapor phase are by and large very empirical. This thesis is hence concerned with the predictive synthesis of n-layered MoS2 using CVD uniformly over large areas and the correlation of growth parameters with the structural and electronic properties of the deposited films. A simple, relatively non-toxic and non-pyrophoric chemistry, consisting of Mo(CO)6 and H2S was first chosen for vapor phase synthesis. This chemistry allowed synthesis of MoS2 from precursors located outside of the growth reactor, a necessary condition for electronics device technology. Iterative thermodynamic modeling of the Mo-S-C-O-H system and growth was then done to identify the appropriate CVD process windows for the growth of pure MoS2, departures from stoichiometry, contamination and breakdown of equilibrium modelling. Remarkable agreement between theoretical modelling and actual growth has been observed leading to predictable deposition. Within these thermodynamic windows, the gas phase supersaturation were then reduced to obtain better kinetic control over crystal growth. It is shown that control of supersaturation at the very initial stages of growth is critical to reduce the nucleation density and hence obtain monolayers with small defect densities. In addition, it is shown that at higher temperatures the kinetics of nucleation and growth are determined by the supersaturation on the growth surface. Physico-chemical modelling reveals that this steady state supersaturation is determined by the kinetics of adsorption and desorption. All of this understanding has been used to realize a variety of structures from discrete crystalline islands- 30 nm to 150 microns- to deposits with controlled number of layers – n =1 to 6 or greater- uniformly over large areas on quartz and sapphire. Gas phase chemistry also affects the electrical characteristics of the as deposited layers. It is shown, for the first time, that by changing gas phase Mo to S ratios the stoichiometry of the deposited layers MoS2 can be made metal or chalcogen deficient. This yields MoS2 that can be either p-type or n-type. p-type and n-type MoS2 with mobilities up to 7.4 cm2/Vs and 40 cm2/Vs respectively are demonstrated. FETs fabricated on MoS(2-x) samples (increasing x) with varying stoichiometry showed a maximum on-current of 18 μA (4.5 μA/μm) in vacuum and 0.6 μA (0.15 μA/μm) in air for a drain bias Vds = 1 V. Sulphur deficiency also affect reliability. While samples with a higher concentration of sulphur vacancies have higher mobility in vacuum, the mobility degrades significantly in air and gets reversed on annealing in H2S. The details of such correlation between growth and electrical characteristics are discussed in this thesis.
7

Supraconductivité induite dans le graphène dopé par des nanoparticules métalliques / Superconductvity in Graphene doped by metallic nanoparticles

Allain, Adrien 14 December 2012 (has links)
Cette thèse présente une étude des propriétés de transport à basses températures de matériaux hybrides composés de nano-clusters de métaux supraconducteurs (Sn et Pb) auto-assemblés à la surface d'une feuille de graphène. L'auto-assemblage du métal réalise un réseau bi-dimensionnel désordonné de jonctions Josephson. La caractérisation des propriétés supraconductrices révèle une transition de type 'BKT' avec une température de transition dépendant de la morphologie de la surface. Les propriétés supraconductrices de ce système sont fortement influencées par la grille arrière, qui contrôle la résistance dans l'état normal du graphène. Le résultat le plus marquant de cette thèse a été obtenu en utilisant du graphène désordonné. La présence de défauts structuraux dans la maille de graphène induit un régime de localisation forte à basses températures. En faisant varier le voltage de grille, la résistance de tels échantillons peut varier de 3 ordres de grandeurs. Cette grande dynamique a été mise à contribution pour la réalisation d'une transition de phase supraconducteur-isolant dans des échantillons décorés à l'étain. L'étude de cette transition de phase quantique révèle un comportement de type percolatif et une résistivité universelle prédite par la théorie à la transition. Enfin, un travail préliminaire visant à réaliser des résonateurs mécaniques supraconducteurs à l'aide des ces matériaux hybrides est également présenté. / This thesis presents a study of the low temperature transport properties of hybrid materials made of superconducting metals (Sn and Pb) nano-clusters self-assembled onto the surface of a graphene sheet. The self-assembly realizes a two-dimensional disordered array of Josephson junctions. Characterization of the superconducting properties reveals a transition of the 'BKT' kind, with a transition temperature that depends on surface morphology. The superconducting properties are strongly affected by the gate voltage, which controls the normal state resistance of the graphene sheet. The main result of this thesis was obtained using disordered graphene. The presence of structural defects in the graphene lattice induces a regime of strong localization at low temperatures. Upon varying the gate voltage, the resistance of such samples can change by 3 orders of magnitude. Taking advantage of the large dynamics offered by the gate voltage, we have induced a superconductor-insulator transition in Sn-decorated samples. The study of that quantum phase transition reveals a percolating behavior near the threshold and the universal value of resistivity predicted by theory at the transition. Finally, a preliminary work aiming at using such an hybrid material to realize superconducting nano-electro-mechanical resonators is presented.
8

Towards quantum optics experiments with single flying electrons in a solid state system / L'expériences d'optique quantique avec un unique électron volant dans la matière condensée

Bautze, Tobias 19 December 2014 (has links)
Ce travail de thèse porte sur l’étude fondamentale de systèmes nano-électroniques,mesurés à très basse température. Nous avons réalisé des interféromètres électroniques àdeux chemins à partir d’électrons balistiques obtenus dans un gaz 2D d’électrons d’unehétéro-structure GaAs/AlGaAs. Nous montrons que la phase des électrons, et ainsileur état quantique,peut être contrôlée par des grilles électrostatiques. Ces dispositifsse révèlent être des candidats prometteurs pour la réalisation d’un qubit volant. Nousavons développé une simulation numérique évoluée d’un modèle de liaisons fortes à partirde transport quantique ballistique qui décrit toutes les découvertes expérimentales etnous apporte une connaissance approfondie sur les signatures expérimentales de cesdispositifs particuliers. Nous proposons des mesures complémentaires de ce système dequbit volants. Pour atteindre le but ultime, à savoir un qubit volant à un électron unique,nous avons assemblé la source à électron unique précédemment développée dans notreéquipe à un beam splitter électronique. Les électrons sont alors injectés depuis une boîtequantique à un train de boîte quantiques en mouvement. Ce potentiel électrostatique enmouvement est généré par des ondes acoustiques de surface créées par des transducteursinter-digités sur le substrat GaAs piézo-électrique. Nous avons étudié et optimisé chacunde ces composants fondamentaux nécessaires à la réalisation d’un beam splitter à électronunique et développé un procédé local et fiable de fabrication. Ce dispositif nous permet d’étudier les interactions électroniques pour des électrons isolés et pourra servir de basede mesure pour des expériences d’optique quantiques sur un système électronique del’état condensé. Enfin, nous avons développé un outil puissant de simulation du potentielélectrostatique à partir de la géométrie des grilles. Ceci permet d’optimiser la conceptiondes échantillons avant même leur réalisation. Nous proposons ainsi un prototype optimiséde beam splitter à électron unique. / This thesis contains the fundamental study of nano-electronic systems at cryogenictemperatures. We made use of ballistic electrons in a two-dimensional electron gasin a GaAs/AlGaAs heterostructure to form a real two-path electronic interferometerand showed how the phase of the electrons and hence their quantum state can becontrolled by means of electrostatic gates. The device represents a promising candidateof a flying qubit. We developed a sophisticated numerical tight-binding model based onballistic quantum transport, which reproduces all experimental findings and allows togain profound knowledge about the subtle experimental features of this particular device.We proposed further measurements with this flying qubit system. With the ultimate goalof building a single electron flying qubit, we combined the single electron source that hasbeen developed in our lab prior to this manuscript with an electronic beam splitter. Theelectrons are injected from static quantum dots into a train of moving quantum dots.This moving potential landscape is induced in the piezoelectric substrate of GaAs bysurface acoustic waves from interdigial transducers. We studied and optimized all keycomponents, which are necessary to build a single electron beam splitter and built up areliable local fabrication process. The device is capable of studying electron interactionson the single electron level and can serve as a measurement platform for quantum opticsexperiments in electronic solid state systems. Finally, we developed a powerful toolcapable of calculating the potential landscapes of any surface gate geometry, which canbe used as a fast feedback optimization tool for device design and proposed an optimizedprototype for the single electron beam splitter.
9

METHOD DEVELOPMENT IN THE NEGF FRAMEWORK: MAXIMALLY LOCALIZED WANNIER FUNCTION AND BÜTTIKER PROBE FOR MULTI-PARTICLE INTERACTION

Kuang-Chung Wang (8082827) 06 December 2019 (has links)
<div>The work involves two new method implementation and application in the Quantum transport community for nano-scale electronic devices. </div><div><br></div><div>First method: Ab-initio Tight-Binding(TB)</div><div> </div><div>As the surfacing of novel 2D materials, layers can be stacked freely on top of each other bound by Van der Waals force with atomic precision. New devices created with unique characteristics will need the theoretical guidance. The empirical tight-binding method is known to have difficulty accurately representing Hamiltonian of the 2D materials. Maximally localized Wannier function(MLWF) constructed directly from ab-initio calculation is an efficient and accurate method for basis construction. Together with NEGF, device calculation can be conducted. The implementation of MLWF in NEMO5 and the application on 2D MOS structure to demystify interlayer coupling are addressed. </div><div> </div><div>Second method: Büttiker-probe Recombination/Generation(RG) method:</div><div><br></div><div>The non-equilibrium Green function (NEGF) method is capable of nanodevice performance predictions including coherent and incoherent effects. To treat incoherent scattering, carrier generation and recombination is computationally very expensive. In this work, the numerically efficient Büttiker-probe model is expanded to cover recombination and generation effects in addition to various incoherent scattering processes. The capability of the new method to predict nanodevices is exemplified with quantum well III-N light-emitting diodes and photo-detector. Comparison is made with the state of art drift-diffusion method. Agreements are found to justify the method and disagreements are identified attributing to quantum effects. </div><div><br></div><div>The two menthod are individually developed and utilized together to study BP/MoS2 interface. In this vertical 2D device, anti-ambipolar(AAP) IV curve has been identified experimentally with different explanation in the current literature. An atomistic simulation is performed with basis generated from density functional theory. Recombination process is included and is able to explain the experiment findings and to provide insights into 2D interface devices.</div><div><br></div><div> </div>
10

Nanopinces optiques à base de modes de Bloch lents en cavité / SlowBloch mode nanotweezers

Gerelli, Emmanuel 13 December 2012 (has links)
Ce travail de thèse s’inscrit dans les efforts actuellement réalisés, pour améliorer l’efficacité des pinces optiques conventionnelles qui permettent de manipuler sans contact des objets de quelques dizaines de nanomètres à quelques dizaines de micromètres avec une extrême précision et trouvent de nombreuses applications en biophysique et sciences de colloïdes.L’objectif de cette thèse a été d’explorer une nouvelle approche pour la réalisation de Nanopinces Optiques. Elle s’appuie sur l’utilisation de cavités à cristaux photoniques à modes de Bloch lents. Ces cavités peuvent être efficacement et facilement excitées par un faisceau Gaussien à incidence normale. Contrairement aux pinces optiques conventionnelles, des objectifs à faibles ouvertures numériques peuvent être utilisés. Les performances attendues en termes de piégeage vont bien au-delà de limitations imposées par la limite de diffraction pour les pinces conventionnelles. Ce travail démontre expérimentalement l’efficacité de l’approche. Cette thèse comporte deux parties principales. Dans un premier temps, il a fallu monter un banc expérimental pour mener nos études. Nous avons construit un banc optique, interfacé les instruments, et développé des applications logicielles pour analyser les données. Deux éléments importants ont présidé à sa construction : - Le développement d’un système optique permettant d’exciter les nanostructures photoniques - la conception d’un système d’imagerie pour suivre les nanoparticules. La seconde partie de ce travail a porté sur la mise en évidence du piégeage optique à l’aide de nanostructure à base de cristaux photonique. Nous avons d’abord montré que même des cavités possédant des coefficients de qualités modérés (quelques centaines) permettait d’obtenir des pièges optiques dont l’efficacité est d’un ordre de grandeur supérieur à celui de pinces conventionnels. Fort de ce résultat, nous avons exploré un nouveau type de cavité à cristaux photoniques s’appuyant sur une approche originale : des structures bi-périodiques. Nous avons montré qu’à l’aide de cette approche des facteurs de qualités de l’ordre de plusieurs milliers étaient facilement atteignable. A l’aide de ces nouvelles structures, nous sommes arrivés aux résultats le plus important de ce travail : le piégeage de nanoparticules de 250nm de rayon avec une puissance optique incidente de l’ordre du milliwatt. Une analyse fine du mouvement de la nanoparticule, nous a permis de trouver la signature du mode de Bloch lent. / This thesis aims at improving the efficiency of conventional optical tweezers (cOT). They allow to manipulate objects with dimension from a few tens of nanometer to a few tens of micrometers with a high accuracy and without contact. This has numerous applications in biophysics and colloidal science. This thesis investigates a new approach for optical nanotweezers. It uses a photonic crystal (PC) cavity which generates a slow Bloch mode. This cavity can be effectively and easily excited with a Gaussian beam at the normal incidence. Contrarily to cOT, objective with a small numerical aperture can be used. The expected performances in terms of trapping go well beyond the diffraction limit of cOT. This work demonstrates experimentally the efficacy of approach. This thesis is divided in two main sections. First, we had to set up an experimental bench to carry out to our study. We built the optical bench interface instruments and develop programs to analyze the data. Two essential elements have been considered: - The development of the optical system allowing the excitation of the photonics nanostructure. - The design an imaging system to track nanoparticles. Second, we have focus on the demonstration of the optical trapping. We started by with a low Q factor (few hundred) cavity. Trapping efficiency of an order of magnitude higher than cOT has been demonstrated. Then, we have explored a new king of PC cavity based on double period structure. We show that thanks to this approach high Q factor of several thousand are easily reached. With this structure, we managed to trap 250nm polystyrene beads, with an optical power of the order of a milliwatt. A deep analysis of the nanoparticle trajectories allowed us to find a slow Bloch mode signature.

Page generated in 0.4757 seconds