Spelling suggestions: "subject:"nanofios."" "subject:"nanofio.""
101 |
Efeitos estruturais na quantização da condutância de nanofios metálicos / Structural effects on quantization of metallic nanowires conductanceLagos Paredes, Maureen Joel 29 March 2007 (has links)
Orientador: Daniel Mario Ugarte / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-08T07:13:58Z (GMT). No. of bitstreams: 1
LagosParedes_MaureenJoel_M.pdf: 3881181 bytes, checksum: 517e8507ccdf35f0fa7a7f9fcb4b3b84 (MD5)
Previous issue date: 2007 / Resumo: O estudo de fios metálicos de tamanho atômico (NF's) tem atraído grande interesse devido aos novos efeitos químicos e físicos neles observados. Entre esses novos fenômenos podemos destacar a quantização da condutância, efeito que deve ser fundamental no desenho dos novos nanodispositivos eletrônicos. NF's são usualmente gerados através de um procedimento simples de deformação mecânica: duas superfícies metálicas são colocadas em contato e depois afastadas. Nos últimos estágios do estiramento antes da ruptura, um fio de alguns átomos de diâmetro é gerado enquanto a condutância é medida. Os NF's têm sido estudados por diferentes grupos e, em diversas condições de temperatura (4 - 300 K) e pressão (de ambiente a UHV). Os resultados apresentam importantes variações e, têm gerado interpretações muito controversas. Devemos enfatizar que muitas interpretações têm sido feitas sem considerar que a deformação estrutural dos NF's deve depender fortemente da temperatura. Nesta tese estudamos as propriedades estruturais e eletrônicas NF's e, em particular analisamos a influência de efeitos térmicos no arranjo atômico, e sua manifestação na condutância. A estrutura dos NF's foi estudada por microscopia eletrônica de transmissão de alta resolução resolvidas no tempo. A condutância foi medida utilizando um sistema de quebra controlada de junções operado em ultra-alto-vácuo. Os experimentos foram realizados a ~150 e 300 K. Nossos resultados mostraram que, à temperatura ambiente os NF's são sempre cristalinos e livre de defeitos nas regiões mais finas; e deformam unicamente ao longo dos eixos cristalográficos [111], [100] e [110]. A baixa temperatura duas importantes diferenças foram observadas: (i) NF's de ouro apresentam defeitos, principalmente falhas de empilhamento e maclas. (ii) NF's alongados na direção [110] evoluem em cadeias atômicas, de comportamento mecânico muito diferente da temperatura ambiente, onde quebram abruptamente. Segundo as imagens de microscopia eletrônica, discordâncias parciais (Shockley) geram falhas de empilhamento; e cadeias de átomos suspensos são observados a ~150 e 300 K. Histogramas globais de condutância adquiridos a baixa temperatura revelaram: (i) aumento da intensidade do pico ~1 Go; (ii) leve diminuição da condutância devido ao aumento de defeitos; e (iii) a existência de uma sub-estrutura no pico ~2 Go, indicando a formação de dois arranjos atômicos estáveis. Resumidamente, nossos resultados mostram que a formação de defeitos é um evento freqüente a ~150 K. Provavelmente, mais defeitos na estrutura devem acontecer para temperaturas menores (4 - 10 K). Portanto, uma importante mudança na evolução da condutância durante a elongação de NF's deve ser esperado a baixa temperatura. Assim, a comparação direta de medidas de transporte de NF's realizadas a diferentes temperaturas pode levar a sérias discrepâncias. Esperamos ter contribuído a melhorar a compreensão e interpretação de experimentos de transporte realizados em diferentes condições, de modo tal, a gerar um modelo único e coerente que explique as propriedades físicas de NF's metálicos / Abstract: The study of atomic-size metal nanowires (NW's) is attracting a great interest due to occurrence a novel physical and chemical phenomena. Among these new phenomena, we can mention conductance quantization that will certainly influence the design of nanodevices. NW's are usually generated by means of a simple procedure: two metallic surfaces are put into contact and, then retracted. Just before rupture atomic-size NW's are formed, and the conductance is measured during the wire elongation. The interpretation of the results is troublesome, because conductance is measured during the modification of the atomic structure. This kind of experimental study has been performed by many research groups and, a quite wide range of temperatures (4 - 300 K) and vacuum condition have been used (from ambient to UHV). In fact, the results display significant variation, what has generated several controversial interpretations. It must be emphasized that many models have been derived without taking into account that the NW structural deformation should be significantly dependent on temperature. In this Thesis research work, we have studied the structural and electronic properties of gold NW's, in particular addressing how thermal effects influence the atomistic aspects of the NW deformation and how this influences the quantum conductance behavior. The structure of NW's has been studied by means of time-resolved high resolution transmission electron microscopy; the NWs transport measurements were based on a mechanically controlled break junction operated in ultra-high-vacuum. The experiments were performed at ~150 and 300 K. Our results have shown that at room temperature the atomic-size NW's. are always crystalline and free of defects, and the atomic structure is spontaneously deformed such that one of the [111]/[100]/[110] crystallographic axis becomes approximately parallel to the stretching direction. Low temperature observations revealed two important differences: i) Au NWs show extended defects, mainly stacking faults and, twinning; ii) NWs elongated along the [110] axis evolve to suspended atomic chains, while at room temperature they break abruptly. Partial Schockley dislocations generate the staking faults; suspended atoms chains are both observed at ~150 and 300 K. The global histograms of conductance at ~150 K showed that: i) a increase of the 1 Go peak intensity; ii) slight reduction of the NWs conductance due to scattering at defects and; iii) the peak at ~2 Go shows a sub structure, what is due to the occurrence of two different atomic arrangements with similar conductance. Briefly, our results revealed that the formation of defects is very frequent in NWs generated at ~150 K; the occurrence of more defects should be expected when NWs are studied at cryogenic temperatures. Then, a significant modification of the NW conductance behavior should be expected at low temperature. In these terms, the direct comparison of conductance measurements realized at different temperature regimes can lead to serious discrepancies. We hope that this work contribute to improve the interpretation and understanding of NW transport studies in order to develop a coherent and complete model that explain the physical properties of atomic-size metal NWs / Mestrado / Física da Matéria Condensada / Mestre em Física
|
102 |
Efeitos estruturais na quantização da condutância de nanofios metálicos / Structural effects on quantization of metallic nanowires conductanceLagos Paredes, Maureen Joel 29 March 2007 (has links)
Orientador: Daniel Mario Ugarte / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-08T07:13:40Z (GMT). No. of bitstreams: 1
LagosParedes_MaureenJoel_M.pdf: 10524108 bytes, checksum: 4c8c3fb76ef4ed87845ad6eb88cf42e9 (MD5)
Previous issue date: 2007 / Resumo: O estudo de fios metálicos de tamanho atômico (NF's) tem atraído grande interesse devido aos novos efeitos químicos e físicos neles observados. Entre esses novos fenômenos podemos destacar a quantização da condutância, efeito que deve ser fundamental no desenho dos novos nanodispositivos eletrônicos. NF's são usualmente gerados através de um procedimento simples de deformação mecânica: duas superfícies metálicas são colocadas em contato e depois afastadas. Nos últimos estágios do estiramento antes da ruptura, um fio de alguns átomos de diâmetro é gerado enquanto a condutância é medida. Os NF's têm sido estudados por diferentes grupos e, em diversas condições de temperatura (4 - 300 K) e pressão (de ambiente a UHV). Os resultados apresentam importantes variações e, têm gerado interpretações muito controversas. Devemos enfatizar que muitas interpretações têm sido feitas sem considerar que a deformação estrutural dos NF's deve depender fortemente da temperatura. Nesta tese estudamos as propriedades estruturais e eletrônicas NF's e, em particular analisamos a influência de efeitos térmicos no arranjo atômico, e sua manifestação na condutância. A estrutura dos NF's foi estudada por microscopia eletrônica de transmissão de alta resolução resolvidas no tempo. A condutância foi medida utilizando um sistema de quebra controlada de junções operado em ultra-alto-vácuo. Os experimentos foram realizados a ~150 e 300 K. Nossos resultados mostraram que, à temperatura ambiente os NF's são sempre cristalinos e livre de defeitos nas regiões mais finas; e deformam unicamente ao longo dos eixos cristalográficos [111], [100] e [110]. A baixa temperatura duas importantes diferenças foram observadas: (i) NF's de ouro apresentam defeitos, principalmente falhas de empilhamento e maclas. (ii) NF's alongados na direção [110] evoluem em cadeias atômicas, de comportamento mecânico muito diferente da temperatura ambiente, onde quebram abruptamente. Segundo as imagens de microscopia eletrônica, discordâncias parciais (Shockley) geram falhas de empilhamento; e cadeias de átomos suspensos são observados a ~150 e 300 K. Histogramas globais de condutância adquiridos a baixa temperatura revelaram: (i) aumento da intensidade do pico ~1 Go; (ii) leve diminuição da condutância devido ao aumento de defeitos; e (iii) a existência de uma sub-estrutura no pico ~2 Go, indicando a formação de dois arranjos atômicos estáveis. Resumidamente, nossos resultados mostram que a formação de defeitos é um evento freqüente a ~150 K. Provavelmente, mais defeitos na estrutura devem acontecer para temperaturas menores (4 - 10 K). Portanto, uma importante mudança na evolução da condutância durante a elongação de NF's deve ser esperado a baixa temperatura. Assim, a comparação direta de medidas de transporte de NF's realizadas a diferentes temperaturas pode levar a sérias discrepâncias. Esperamos ter contribuído a melhorar a compreensão e interpretação de experimentos de transporte realizados em diferentes condições, de modo tal, a gerar um modelo único e coerente que explique as propriedades físicas de NF's metálicos / Abstract: The study of atomic-size metal nanowires (NW's) is attracting a great interest due to occurrence a novel physical and chemical phenomena. Among these new phenomena, we can mention conductance quantization that will certainly influence the design of nanodevices. NW's are usually generated by means of a simple procedure: two metallic surfaces are put into contact and, then retracted. Just before rupture atomic-size NW's are formed, and the conductance is measured during the wire elongation. The interpretation of the results is troublesome, because conductance is measured during the modification of the atomic structure. This kind of experimental study has been performed by many research groups and, a quite wide range of temperatures (4 - 300 K) and vacuum condition have been used (from ambient to UHV). In fact, the results display significant variation, what has generated several controversial interpretations. It must be emphasized that many models have been derived without taking into account that the NW structural deformation should be significantly dependent on temperature. In this Thesis research work, we have studied the structural and electronic properties of gold NW's, in particular addressing how thermal effects influence the atomistic aspects of the NW deformation and how this influences the quantum conductance behavior. The structure of NW's has been studied by means of time-resolved high resolution transmission electron microscopy; the NWs transport measurements were based on a mechanically controlled break junction operated in ultra-high-vacuum. The experiments were performed at ~150 and 300 K. Our results have shown that at room temperature the atomic-size NW's. are always crystalline and free of defects, and the atomic structure is spontaneously deformed such that one of the [111]/[100]/[110] crystallographic axis becomes approximately parallel to the stretching direction. Low temperature observations revealed two important differences: i) Au NWs show extended defects, mainly stacking faults and, twinning; ii) NWs elongated along the [110] axis evolve to suspended atomic chains, while at room temperature they break abruptly. Partial Schockley dislocations generate the staking faults; suspended atoms chains are both observed at ~150 and 300 K. The global histograms of conductance at ~150 K showed that: i) a increase of the 1 Go peak intensity; ii) slight reduction of the NWs conductance due to scattering at defects and; iii) the peak at ~2 Go shows a sub structure, what is due to the occurrence of two different atomic arrangements with similar conductance. Briefly, our results revealed that the formation of defects is very frequent in NWs generated at ~150 K; the occurrence of more defects should be expected when NWs are studied at cryogenic temperatures. Then, a significant modification of the NW conductance behavior should be expected at low temperature. In these terms, the direct comparison of conductance measurements realized at different temperature regimes can lead to serious discrepancies. We hope that this work contribute to improve the interpretation and understanding of NW transport studies in order to develop a coherent and complete model that explain the physical properties of atomic-size metal NWs / Mestrado / Física da Matéria Condensada / Mestre em Física
|
103 |
Crescimento e caraterização de estruturas de baixa dimensionalidade para aplicações no espectro vísivel / Growth and characterization of low dimensional structures for applications in the visible spectrumChiaramonte, Thalita 26 April 2007 (has links)
Orientadores: Lisandro Pavie Cardoso, Marco Sacilotti / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-08T18:38:56Z (GMT). No. of bitstreams: 1
Chiaramonte_Thalita_D.pdf: 12073771 bytes, checksum: d01b6c585fd5556757aea0542ecf63f2 (MD5)
Previous issue date: 2007 / Resumo: Os nitretos (Ga, Al, In)N assim como os compostos GaInP, GaCuO2, representam um sistema de materiais muito importante para as aplicações em opto-eletrônica e dispositivos tais como os diodos emissores de luz (LEDs), lasers e nanosensores. Entretanto, o requisito essencial para as aplicações industriais desses materiais é a redução em seus tamanhos. Neste trabalho foram crescidos materiais metálicos formados por nitretos de gálio e também de semicondutores do tipo GaInP, GaCuO2 na forma de estruturas 3D, pela técnica de deposição química de organometálicos em fase vapor (MOCVD). Foi utilizado como precursor organometálico (OM) o trimetil gálio Ga(CH3)3e o nitrogênio N2 como gás portador. A temperatura e a pressão foram controladas durante o crescimento variando entre 500 e 750 o C e 100 a 760 Torr, respectivamente.
Duas classes de estruturas 3D foram obtidas a partir da decomposição total ou parcial do gás pre-cursor, devido a interação entre o OM e o substrato que gera diferentes morfologias: i) as ligas metálicas (Ga, Al, In) formando estruturas semelhantes a balões, cetros (hastes com terminações esféricas) e neurônios, todos apresentando uma fina membrana de carbono amorfo que reveste a estrutura. Após o crescimento, estas estruturas foram submetidas ao processo de nitretação sob atmosfera de NH3 para transformá-las em micro/nanocristais de GaN; ii) os fios semicondutores micro/nanométricos com uma esfera metálica em sua terminação (bambus e cetros) .
Na formação de ambas as estruturas, os precursores OM são como moléculas catalisadoras do crescimento. Este crescimento é considerado como um método alternativo e original para se obter estruturas 3D. Uma possível associação com o modelo apresentado pelo mecanismo de crescimento Vapor-Líquido-Sólido (VLS), que utiliza uma partícula metálica para promover os nanotubos de carbono e os nanofios semicondutores, ainda está em discussão. Informações estruturais e ópticas dessas novas estruturas crescidas sobre substratos de Cu (grade de difração), Si (001), InP (policristalino) e Al/SiO2/Si (fotolitografia) foram obtidas através da caracterização por difração de raios-X, microscopia eletrônica de varredura e de transmissão em alta resolução, espectroscopia por energia disper-siva, catodoluminescência e a espectroscopia de excitação por dois fótons. Nas amostras nitretadas, micro/nano cristais de GaN obtidos da liga de Ga aparecem impregnados no carbono turbostrático (folhas de carbono sem orientação obtidas do amorfo) que revestem as estruturas, e emitem na região do espectro l £ 365 nm, devido às suas dimensões quânticas. As hastes das estruturas do tipo bambus apresentam nódulos formados por discos monocristalinos de GaInP rotacionados de 60 o um em relação ao outro. Óxidos CuGaO2 e CuGa2O4compondo nanofios, denominados cetros, também foram obtidos / Abstract: Nitride (Ga, Al, In)N as well as GaInP, GaCu O2 compounds represent a very important class of materials to be used in the opto-electronic and devices applications such as light emission diodes (LEDs) lasers and nanosensors. However, the essential requirement to the industrial applications of these materials is the reduction in theirs sizes. In this work 3D structures based on gallium nitride and also GaInP, GaCuO2 semiconductors were grown by metalorganic chemical vapor deposition (MOCVD) technique. Trimethyl-gallium Ga(CH3) was used as the metal-organic (MO) precursor and nitrogen N2as carrier gas. During the growth to the temperature and pressure intervals of 500 - 700 oC and 100 - 760 Torr, respectively.
Two 3D material classes were obtained from the total or partial precursor gas decomposition, since the interaction between the MO compound and the substrate gives rise to different morphologies: i) (Ga,In,Al) metallic alloys form ballons, scepters (wires with spherical ends) and neurons like structures, all involved by a thin carbon amorphous membrane. After growth, these structures were turned into GaN micro/nanocrystals by nitridation process under NH3 atmosphere; ii) micro/nanometer semiconductor wires with a metallic sphere at its end (bamboos and scepters). In order to form both structures, the MO precursors are taken as a catalyst molecule of the growth process. This is an alternative and original method to obtain 3D structures and a possible association to the model used in the vapour-liquid-solid (VLS) growth mechanism, in which a metallic particle promotes the carbon nanotubes and semiconductors nanowires is still under discussion. Structural and optical informations on these new structures grown on Cu (diffraction grid), Si(001), InP (polycrystalline) and Si/Al (photolithography) substrates were obtained through the characterization by X-ray diffraction, scanning electron microscope, high resolution transmission electron microscopy, en-ergy dispersive x-rays, cathodoluminescence and two photon excitation. In the nitrided samples, GaN micro/nanocrystals obtained from Ga alloy appear embedded in the turbostratic carbon (C sheets at random obtained from the amorphous) which involves the structures and, they emit in the l £ 365 nm region specter, due to their quantum dimensions. The bamboo rods present nodes consisting of GaInP single crystal discs turned by 60o one with respect to the other. The CuGaO2 and CuGa2O4 oxides compounding nanowires, called scepters, also were obtained. / Doutorado / Física / Doutor em Ciências
|
104 |
Nanofios semicondutores : análise de propriedades elétricas e estruturais por microscopia no modo Kelvin Probe / Semiconductor nanowires : analysis of electric and structural properties by Kelvin Probe force microscopyNarvaez Gonzalez, Angela Carolina 15 September 2008 (has links)
Orientador: Monica Alonso Cotta / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-11T21:43:56Z (GMT). No. of bitstreams: 1
NarvaezGonzalez_AngelaCarolina_M.pdf: 14145813 bytes, checksum: 31ac8f1ebde240684c9bbe88b9c9b7a7 (MD5)
Previous issue date: 2008 / Resumo: As propriedades elétricas de nanofios (InAs, InP, InP-InAs-InP, InAsP) individuais e em junções foram estudadas implementando simultaneamente as técnicas Non Contact Atomic Force Microscopy NC-AFM (para aquisição da topografia) e Amplitude-sensitive Modulated Kelvin Probe Microscopy AM-KPFM (fornece medidas do Potencial de Superfície), permitindo correlacionar as propriedades elétricas com a estrutura da amostra. Em particular, o comportamento do Potencial de Superfície (PS) em função do diâmetro do nanofio foi investigado e utilizado na identificação do material que o compõe.
Em uma primeira etapa, a técnica AM-KPFM foi caracterizada, principalmente em termos de resolução para análise de nano-objetos. Nossos resultados evidenciaram um fator de escala presente associado à eletrônica do equipamento, que somente permitiu realizar uma análise qualitativa dos dados adquiridos. Além disso, foi observada uma diminuição no contraste nas medidas elétricas quando o tamanho do objeto analisado diminui.
Medidas em nanofios individuais de InP e InAs permitiram estabelecer que há uma queda no PS quando o diâmetro do fio diminui. Este comportamento é o resultado de duas contribuições: a perda no contraste (efeito de tamanho na medida) e o incremento local da função trabalho, que poderíamos associar ao aumento da proporção entre a carga superficial e a carga no interior do fio. Nas junções, há um aumento no PS na região da junção, indicando a formação de uma barreira de energia associada à acumulção de carga. Isto isola as junções do comportamento típico observado em nanofios individuais. Medidas em junções montadas em dispositivos poderiam complementar o estudo deste tipo de configurações.
A caracterização do PS em função do diâmetro para os nanofios de InP e InAs permitiu a identificação do material (InAs ou InP) presente ao longo dos fios heteroestruturados de InP-InAs-InP, mostrando também a presença da nanopartícula de ouro usada como catalisador no crescimento. Os contrastes no PS ao longo do fio não se correlacionam diretamente às imagens de Microscopia Eletrônica de Transmissão, sugerindo que a interface elétrica é diferente da metalúrgica. Nos nanofios de InAsP, pelo contrário, os dados obtidos indicam a formação de uma liga ternária / Abstract: The electric properties of InAs, InP, InP-InAs-InP and InAsP nanowires (NWs) -assembled both individually and in junctions - were studied by simultaneous imple-mentation of Non Contact Atomic Force Microscopy NC-AFM (for topography) and Amplitude-sensitive Modulated Kelvin Probe Microscopy AM-KPFM (for Surface Potential distribution), obtaining spatially resolved electrical measurements of the sample structure. In particular, the SP vs NW diameter behavior was investigated and used to identify the material composing the nanowires.
In a first approach, AM-KPFM was characterized mainly in terms of resolution for the analysis of the nano-objects. Our results suggest there is a scale factor on our measurements associated to the equipment electronics, that limited our discussion to a qualitative interpretation of the acquired data. Also, a contrast decrease on SP measurements was observed when the size of the object is reduced, comparatively to the tip. The experimental results on individual InAs and InP nanowires showed a SP saturation level (SPsat) below which SP drops with the NW diameter. This behavior came from at least two contributions: a loss of SP contrast due to object/tip size effects and a local increment on work function, that we associate to the larger surface/volume ratio close to the NW tip which makes the material more intrinsic.
For NWs on junctions, a larger SP value is correlated to the regions where the junction is formed, possibly due to charge accumulation. Measurements of junctions assembled on devices could complement the study of this kind of structures. The SP vs diameter characterization of InAs and InP nanowires also allowed the identification of the material along the heterostructured InP-InAs-InP nanowire, showing the presence of the Au nanoparticle used to catalyze the growth. The SP image is not directly correlated with HR-TEM images, suggesting that electric and metallurgic interfaces are not the same. For InAsP nanowires, the acquired data indicate the formation of an homogeneous ternary alloy / Mestrado / Física da Matéria Condensada / Mestre em Física
|
105 |
Estudo da dinâmica da parede de domínio transversal em nanofios magnéticosFerreira, Vanessa Aparecida 18 December 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-03-31T14:30:36Z
No. of bitstreams: 1
vanessaaparecidaferreira.pdf: 9577737 bytes, checksum: e1c35053ce9fcc426eee1d371014e5d9 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-04-24T02:58:15Z (GMT) No. of bitstreams: 1
vanessaaparecidaferreira.pdf: 9577737 bytes, checksum: e1c35053ce9fcc426eee1d371014e5d9 (MD5) / Made available in DSpace on 2016-04-24T02:58:15Z (GMT). No. of bitstreams: 1
vanessaaparecidaferreira.pdf: 9577737 bytes, checksum: e1c35053ce9fcc426eee1d371014e5d9 (MD5)
Previous issue date: 2013-12-18 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O entendimento dos processos que envolvem a magnetização de ferromagnetos torna-se cada
vez mais necessário frente às recentes aplicações tecnológicas em mídias magnéticas, cabeças
de leitura e escrita e MRAMs. O estudo de nanofios magnéticos revela a presença de paredes
de domínios do tipo vórtice ou transversal que podem ser transportadas para diferentes regiões
sem deformação, tendo assim um grande potencial para aplicações tecnológicas. A manipulação
da parede de domínio no nanofio é feita através da aplicação de campos magnéticos ou
correntes de spin-polarizado. Controlar o movimento das paredes de domínio nos nanofios
magnéticos é fundamental a sua aplicabilidade em tecnologias de memórias e dispositivos lógicos.
Neste trabalho, usando simulações numéricas, apresentamos um estudo da dinâmica da
parede de domínio transversal “head-to-head” em nanofios magnéticos de Permalloy-79. Em
nossas simulações os nanofios são modelados por uma hamiltoniana que leva em consideração
a interação de troca e a interação dipolar, e a dinâmica do sistema é regida pelas equações de
Landau-Lifshitz-Gilbert. A parede de domínio se move sob a ação de pulsos de campo magnético
aplicado na direção do eixo do nanofio. Desta forma, analisamos a influência da espessura
e largura do nanofio e da amplitude de campo magnético no valor da velocidade da parede
de domínio. Propomos a inclusão de uma impureza magnética pela alteração da constante de
troca J para J0 entre o sítio com a impureza magnética e seus vizinhos. A impureza magnética
pode se comportar como um sítio de aprisionamento da parede de domínio ou como um sítio
de espalhamento, dependendo da variação da constante de troca J0 em relação ao seu valor de
referência J. Este comportamento pode ser de grande interesse no controle da posição da parede
de domínio. Estudamos o comportamento do potencial de interação entre a impureza e a parede
de domínio. Variando-se a posição da impureza percebemos que a energia de interação aumenta
quando ela se encontra próxima ao polo sul da parede de domínio transversal, favorecendo o
aprisionamento ou a repulsão da parede. Observamos que a impureza magnética afeta a velocidade
da parede de domínio. Realizamos um estudo sobre o campo magnético necessário para a
liberação de uma parede de domínio que se encontra aprisionada em uma impureza magnética.
Estabelecemos uma relação entre este campo magnético e a largura do nanofio. Observamos
também que sob a aplicação de um pulso de campo magnético acima do campo de Walker, a
parede de domínio pode inverter sua polaridade ao atingir a impureza e inverter o sentido de sua
propagação. Nossos resultados mostram que uma potencial aplicação tecnológica em dispositivos
de memória pode ser o uso de impurezas magnéticas inseridas litograficamente em nanofios
magnéticos para o controle da posição das paredes de domínio. / The understanding of the processes involving the magnetization of ferromagnets becomes increasingly
necessary in the face of recent technological applications in magnetic media, reading
and writing heads and MRAMs. The study of magnetic nanowires reveals the presence of
vortex domain walls or transverse domain walls that can be transported to different regions
without deformation, generating a great potential for technological application. The domain
wall manipulation in the nanowire is made by applying a magnetic field or spin-polarized current.
Controlling the movement of domain walls in magnetic nanowires is fundamental to its
applicability in memory technologies and logic devices. In this work, using numerical simulations,
we present a study of the dynamics of the “head-to-head” transverse domain wall in
magnetic nanowires made of Permalloy-79. In the simulations the nanowires are modeled by
a Hamiltonian that takes into account the exchange interaction and dipolar interaction and the
dynamics of the system is governed by Landau-Lifshitz-Gilbert equations. The domain wall
moves under the influence of pulses of magnetic field. Thus, we analyzed the influence of the
thickness and width of the nanowire and the amplitude of the magnetic field in the domain wall
velocity. We propose the inclusion of a magnetic impurity by changing the exchange constant
J to J0 between a site with impurity and its neighbors. The magnetic impurity can behave like a
pinning or scattering site to the domain wall depending on the variation of the exchange constant
J0 in relation to the value of reference J. This behavior can be of great interest to control
the position of the domain wall. We studied the behavior of the interaction potential between
impurity and domain wall. Varying the position of the impurity we observed that the interaction
energy increases when it is near to the south pole of the domain wall favoring the pinning or
scattering of the wall. We observed that the magnetic impurity affects the domain wall velocity.
We performed a study of the magnetic field required for depinning the domain wall which is
pinned to a magnetic impurity. We established a relation between the depinning magnetic field
and the width of the nanowire. We also observed that under the influence of a pulse of magnetic
field above the Walker field the domain wall can reverse its polarity when achieving attractive
impurity and reverse the direction of propagation. We believe that a potential technological
application in memory devices can be the use of magnetic impurities lithographically inserted
in magnetic nanowires to control the positions of the domain walls.
|
106 |
Estudo de nanofios da liga metálica NiTi via dinâmica molecular e um novo conjunto de parâmetros para o potencial interatômico Tight-Binding, aplicado na fase B19' da liga de NiTiSilva, Douglas Martins Vieira da 24 February 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-06-08T13:51:53Z
No. of bitstreams: 1
douglasmartinsvieiradasilva.pdf: 9760300 bytes, checksum: 76f54b4635afbf189d4c45e3c3a06ab7 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-06-08T13:53:47Z (GMT) No. of bitstreams: 1
douglasmartinsvieiradasilva.pdf: 9760300 bytes, checksum: 76f54b4635afbf189d4c45e3c3a06ab7 (MD5) / Made available in DSpace on 2016-06-08T13:53:47Z (GMT). No. of bitstreams: 1
douglasmartinsvieiradasilva.pdf: 9760300 bytes, checksum: 76f54b4635afbf189d4c45e3c3a06ab7 (MD5)
Previous issue date: 2016-02-24 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / NiTi (nitinol) é uma liga com efeito memória de forma (EMF), o EMF é um termo
utilizado para descrever a capacidade de certos materiais, depois de deformados plasticamente,
voltarem às suas formas originais por aquecimento. Ligas com essa propriedade
são empregadas em vários setores da indústria metalúrgica, que vão desde aeroespacial,
eletrônica, construção, Robótica e Bioengenharia. Podem ser utilizadas em conectores,
sensores, dispositivos de segurança e muitas outras aplicações.
Este trabalho foi divido em duas partes: utilizando os parâmetros do potencial TBSMA,
energia de coesão, parâmetros de rede em T=0K, para a fase B2 NiTi, retirados do
trabalho do Liu e colaboradores, estudamos a formação de nano os com simulações via
Dinâmica Molecular (DM) em duas fases especí cas da liga de NiTi: a fase de alta temperatura
B2 cúbica (austenítica) e a fase de baixa temperatura B19 monocíclica (martensítica),
alongando o sistema em diferentes direções cristalográ cas; ajustamos os parâmetros do
potencial TB-SMA para a liga NiTi na fase B19', calculando (via método de Parrinello-
Rahman) a variação do volume e da entalpia do sistema com a temperatura, obtendo a
temperatura de fusão com ótima concordância com valor experimental e comprovando a
e cácia do potencial utilizado. Apresentamos resultados das energias do estado fundamental
e a estabilidade mecânica relativa as fases B2, B19, B19' e BCO, bem como as
transições de fase ocorridas sob tensão mecânica e os parâmetros de rede para cada uma
dessas fases. Vimos que é necessário uma tensão xz = 0.38 GPa para estabilizar a fase
B19'. Também determinamos as constantes elásticas e os parâmetros elásticos macroscó-
picos (módulos de bulk, limites de Reuss e Voigt) para a fase B19' de NiTi. Os resultados
estão em ótima concordância com dados experimentais. / NiTi (Nitinol) is an alloy with shape memory e ect (SMA), the SMA is a term used
to describe the ability of some materials after having been deformed plastically, back
to its original shape by heating. Metallic materials that have this interesting property
are employed in various sectors of the metallurgical industry, ranging from aerospace,
electronics, construction, Robotics and Bioengineering. This type of material can be used
in connectors, sensors, safety devices, and many other applications.
This study was divided into two parts: using the parameters the potential TB-SMA,
energy choesion, lattice parameters at T=0K, for the phase B2 NiTi, removed from Liu
et al work, we studied the formation of nanowires with means molecular dynamics (MD)
simulations at two speci c stages of NiTi alloy: a high-temperature phase B2 cubic (austenitic)
and phase B19 monocyclic low temperature (martensite), extending the system
in di erent crystallographic directions; adjust the TB-SMA potential parameters for the
NiTi alloy in B19' phase, calculating (by method Parrinello-Rahman) the volume variation
and the enthalpy of the system to temperature, obtaining the melting temperature with
excellent agreement with experimental value and proving the e ectiveness of potential use.
We present results of the energy of the ground state and the mechanical stability relative
B2, B19, B19' and BCO phases, as well as phase transitions observed under mechanical
tension and the network parameters for each of these phases. We saw that a voltage is
necessary xz = 0.38 GPa to stabilize the B19' phase. Also determine the elastic constants
and the macroscopic elastic parameters (bulk modules, limits Reuss and Voigt) for phase
B19' of NiTi. The results are in excellent agreement with experimental data.
|
107 |
Estudo de adsorção de impurezas moleculares e caminhos de reação em nanofios de ouro / Study of adsorption of molecular impurities and reaction pathways in gold nanowiresNascimento, Ana Paula Favaro, 1982- 22 August 2018 (has links)
Orientador: Edison Zacarias da Silva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-22T13:09:46Z (GMT). No. of bitstreams: 1
Nascimento_AnaPaulaFavaro_D.pdf: 24653202 bytes, checksum: cb09f1eecbbf100b37ad50fd3a26f857 (MD5)
Previous issue date: 2013 / Resumo: A fabricação e o estudo de nanofios de ouro despertam grande interesse na comunidade científica, na tentativa de maior entendimento de efeitos quânticos de sistemas em escala reduzida, assim como na possibilidade de seu uso em aplicações tecnológicas. Uma vez que os nanofios de ouro apresentam propriedades surpreendentes quando dopados por impurezas atômicas fomos motivados a estudar como estas se formam. Devido ao fato de em escala nanoscópica o ouro apresentar atividade catalítica, consideramos que a presença de impurezas se deve a reação de pequenas moléculas em nanofios de Au. O estudo foi realizado por meio de cálculos abinitio via Teoria do Funcional da Densidade, usando o código computacional SIESTA. A metodologia para o estudo da estrutura eletrônica desses sistemas foi a de otimização de geometria e de dinâmica molecular ab initio. Nosso foco de estudo foi encontrar caminhos reacionais para a formação de impurezas atômicas de carbono ou de oxigênio nas cadeias atômicas lineares de nanofios monoatômicos. A análise se baseou na interação entre duas moléculas catalisada pelo nanofio, as moléculas consideradas em nosso estudo foram CO e O2. Um estudo extensivo e detalhado das possíveis reações foi feito. Dentre os vários caminhos estudados, uma reação sequencial onde uma molécula de O2 é adsorvida por apenas um dos seus oxigênios, inicia um processo, que seguido pela adsorção de uma molécula de CO, leva a formação de um complexo O2-CO ligado a cadeia atômica do nanofio. Nós mostramos situações onde este complexo fica ativado e reage formando uma molécula de CO2 que vai para a fase gasosa deixando o nanofio dopado com um átomo de oxigênio. Portanto este trabalho apresenta um caminho reacional para a formação de uma impureza atômica na cadeia atômica de um nanofio de ouro, uma questão que esperava uma solução a quase uma década. / Abstract: The manufacture and the study of gold nanowires weakened great interest of the scientific community in the quest for better understanding of the quantum effects in systems with reduced scales and also due to the possibility of their use in technological applications. Since gold nanowires present novel and surprising properties when doped with atomic impurities, this led us into the search to understand how these impurities can be produced. Due to the fact that gold in nanoscale presents catalytic activity, we considered the possibility of chemical reactions with small molecules in the presence of gold nanowires. The present study was performed with ab initio calculations based in the density functional theory as implemented by the SIESTA code. The methodology for the electronic structure studies was the geometry optimization using conjugated gradient method and abinitio molecular dynamics. Our focus was to find reaction paths to produce atomic impurities of carbon and oxygen in linear atomic chains of gold nanowires. The analysis was based in the reaction of two molecules catalized by the nanowire, the molecules considered in this study were CO and O2. An extensive and detailed study of possible pathways was undertaken. Among the various paths, a sequential reaction where only one O of a adsorbed O2 molecule attached to the nanowire, started the process, followed by the adsorption of a CO molecule nearby that formed an O2-CO complex attached to the atomic chain of the nanowire. We presented circumstances in which this complex becomes activated and evolves to form a CO2 molecule that goes into the gas phase leaving an atomic oxygen impurity attached to the linear chain. Therefore, this work presented a reactional path to the formation of an atomic impurity in the atomic chain of a gold nanowire, a question that waited an answer for almost ten years. / Doutorado / Física / Doutora em Ciências
|
108 |
Hollow magnetic and semiconductor micro/nanostructures : synthesis, physical properties and applicationPomar, César Augusto Díaz January 2018 (has links)
Orientador: Prof. Dr. José Antonio Souza / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, Santo André, 2018. / O objetivo deste trabalho e sintetizar materiais magneticos e semicondutores ocos
micro/nanoestruturados hierarquicamente, para obter um melhor entendimento das
propriedades fisicas e explorar aplicacoes tecnologicas. Inicialmente, microtubos de hematita
e magnetita foram sintetizados por oxidacao termica juntamente com uma corrente eletrica
aplicada e utilizando-se o microfio de ferro metalico como precursor. A fraccao volumetrica
de Fe2O3(hematite) e Fe3O4(magnetite) nos microtubos e a formacao das nanoestruturas de
hematite na superficie pode ser controlada por alteracoes sistematicas dos parametros de
sintese tais como temperatura, rampa de aquecimento, tempo de aquecimento e valor da
corrente electrica. A reacao quimica de oxidacao envolve um processo onde uma fina camada
de oxido e formada primeiro na superficie do metal, seguida por difusao simultanea de ions
metalicos atraves da camada oxida e difusao de oxigenio da atmosfera para o interior. A
difusao para fora e mais rapida, levando a criacao de vacancias que coalescem em poros
formando os microtubos. Medidas de resistividade eletrica in situ foram realizadas durante o
processo de oxidacao mostrando todo o processo de formacao do microtubo. Imagens de
microscopia eletronica de varredura mostram a morfologia do microtubo com diametro
variando de 40 ¿Êm a 100 ¿Êm e comprimento de 5 mm. Medidas de difracao de raios-X em po
evidenciam a presenca de fases cristalinas de hematita (Fe2O3) e magnetita (Fe3O4) nos
microtubos. Nanoestruturas de hematita aparecem em forma de bastoes e fios dispersos
homogeneamente ao redor da superficie do microtubo com diametros de 80-300 nm e
comprimento de 1-5 ¿Êm. Experimentos in vitro envolvendo aderencia, migracao e
proliferacao de culturas de celulas de fibroblastos na superficie dos microtubos indicaram a
ausencia de citotoxicidade para este material. Tambem o calculo do torque e da forca
magnetica desses microtubos com nanofios em funcao do gradiente de campo magnetico
externo, mostrou que ele e robusto, abrindo a possibilidade para fabricacao de bio-microrobos magneticos para aplicacao em biotecnologia. Por outro lado, microarquiteturas ocas de
SnS e ZnS decoradas com nanoestruturas foram sintetizadas por evaporacao termica livre de
catalisadores utilizando microfios de metal e po de enxofre como materiais de partida. Para o
SnS, observamos formacao de uma estrutura oca composta por uma camada metalica de Sn na
superficie interna, e uma camada de SnS de estrutura ortorrombica com nanoestruturas de SnS
na superficie. Para o ZnS, descobrimos a formacao de uma esfera oca com uma camada
metalica na parte interna, uma camada de ZnS com fase cubica, e sobre ela nanoestruturas de
ZnS com fase cristalina hexagonal cresceram homogeneamente. O diametro da microsfera e
de 415 ¿Êm e os nanofios tem um diametro e comprimento medio de 70 nm e 7 ¿Êm,
respectivamente. As microestruturas ocas semicondutoras de ZnS e SnS exibiram atividade
eficiente para degradar azul de metileno sob irradiao com luz solar simulada. Os resultados
revelam que essas nano/microestruturas possuem alta fotoatividade para degradacao organica. / The aim of this work is to synthesize hierarchically micro/nanostructured hollow
magnetic and semiconductor materials, to obtain a better understanding on the physical
properties, and find technological applications. Initially, hematite and magnetite microtubes
were synthesized by thermal oxidation process along with the presence of an applied electrical
current and using metallic iron microwire as a precursor. The volume fraction of both Fe2O3
(hematite) and Fe3O4 (magnetite) phase on microtubes can be controlled as well as surface
nanostructures formation of hematite by systematic change of the synthesis parameters such
as temperature, heating rate, annealing time and electrical current value. The oxidation
chemical reaction involves a process where a thin oxide layer is formed first on the metal
surface, followed by simultaneous outward diffusion of metal ions through the oxide scale
and inward diffusion of oxygen from the atmosphere into the core. In our case, the outward
diffusion is faster leading to the creation of vacancies which coalesce into voids forming the
microtubes. In situ electrical resistivity measurements were carried out during the oxidation
process showing the whole process of the microtube formation. Scanning electron microscopy
images show microtube morphology with diameter ranging from 40 ìm to 100 ìm and length
of 5 mm. X-ray powder diffraction measurements evidence the presence of hematite (Fe2O3)
and magnetite (Fe3O4) crystal phases comprising microtubes. Nanostructures of hematite
appear in form of sticks and wires homogeneously dispersed on the microtube surface with
diameters ranking from 80 nm to 300 nm and length of 1 to 5 ìm. In vitro experiments
involving adherence, migration, and proliferation of fibroblasts cell culture on the surface of
the microtubes indicated the absence of immediate cytotoxicity for this material. We have also
calculated both torque and driving magnetic force for these microtubes with nanowires as a
function of external magnetic field gradient which were found to be robust opening the
possibility for magnetic bio micro-robot device fabrication and application in biotechnology.
On the other hand, SnS and ZnS hollow microarchitectures decorated with
nanostructures were synthesized by catalysis free thermal evaporation technique using metal
microwires and sulfur powder as starting materials. For SnS, we observed a hollow formation
comprised of a thin metallic Sn layer in the inner surface, SnS orthorhombic structure thick
layer with SnS nanostructures on the top. For ZnS, we found out the formation of hollow
sphere with a thin metallic layer in the inner part, a thick cubic phase layer of ZnS, and on this
second phase, nanostructures of ZnS hexagonal crystal phase grew up homogeneously. The
microsphere diameter is about 415 ìm and the nanowires on the surface have average
diameter of 70 nm and length 7 ìm. ZnS and SnS hollow semiconducting microstructures
have exhibited efficient activity to degrade the methylene blue under simulated sunlight
irradiation. The results reveal that these nano/microstructures have high photoactivity to
organic degradation.
|
109 |
Transport phenomena in quasi-one-dimensional heterostructuresDias, Mariama Rebello de Sousa 21 February 2014 (has links)
Made available in DSpace on 2016-06-02T20:15:31Z (GMT). No. of bitstreams: 1
5844.pdf: 11430873 bytes, checksum: b80a5790a9ebf6ae63ff48e52968ae60 (MD5)
Previous issue date: 2014-02-21 / Universidade Federal de Sao Carlos / O crescimento e caracterização de sistemas de heteroestruturas semicondutoras quasi-unidimensionais têm atraído grande interesse devido à sua potencial de aplicação tecnológica, como foto-detectores, dispositivos opto-eletrônicos assim como seu para o processamento de informação quântica e aplicações em fotônica. O objetivo desta tese é o estudo das propriedades de transporte eletrônico e de spin em sistemas semicondutores quasi-unidimensionais, especificamente trataremos de nanofios (NWs) homogêneos, NWs acoplados, NWs do tipo plano-geminado (TP), diodos de tunelamento ressonante (ETD) e cadeias de pontos quânticos (QDCS). Escolhemos o método k-p, particularmente o Hamiltoniano de Luttinger, para descrever os efeitos de confinamento e tensão biaxial. Este sugeriu uma modulação do caráter do estado fundamental que, complementada com a dinâmica fônons fornecidas pelas simulações da Dinâmica Molecular (MD), permitiu a descrição da modulação da mobilidade de buracos por emissão ou absorção de fônons. Em relação ao sistema de NWs acoplado,estudamos, através do método da matriz de transferência (TMM), as propriedades de transporte de elétrons e spin sob a interação de spin-órbita (SOI) de Eashba, localizada na região de acoplamento entre fios. Foram consideradas várias configurações de tensões de gate (Vg) aplicadas nos fios. Desse modo, compreendemos a modulação do transporte de spin quando esse é projetado no direção-z através da combinação do SOI e das dimensionalidades do sistema. Da mesma forma, a combinação de SOI e da Vg aplicada deu origem a modulação da polarização, quando o spin medido é projetado na mesma direção em que o SOI de Eashba atua, a direção y. Usando o TMM, exploramos as propriedades de transporte de um DBS e o efeito de uma resistência em série com o intuito de provar a natureza da biestabilidade das curvas características I V bem como o aumento de sua área com temperatura, resultados fornecidos por experimentos. O modelo indicou que aumentando da resistência pela diminuição sa temperatura aumenta a área biestável. A presença de uma hetero-junção adicional ao sistema induz uma densidade de carga nas suas interfaces. De acordo com esta configuração, a queda de tensão total do ETDS muda, podendo ser confirmada experimentalmente. A formação dos peculiares campos de deformação e sua influência sobre a estrutura eletrônicas e propriedades de transporte em superredes de TP foi estudada sistematicamente. Assim, as propriedades de transporte, de ambos os elétrons e buracos, pode ser sintonizada eficientemente, mesmo no caso de elétrons r em sistemas de blenda de zinco, contrastando com a prevista transparência de elétrons r em superredes de semicondutores III-V heteroestruturados. Além disso, constatamos que a probabilidade de transmissão para buracos da banda de valência também poderia ser efetivamente modificada através de uma tensão externa.Por fim, colaboradores sintetizaram com sucesso sistemas de QDCs de InGaAs através da epitaxia de feixe molecular e engenharia de tensão. Um comportamento anisotrópico da condutância com a temperatura foi observado em QDCs com diferentes concentrações de dopagem, medida realizada ao longo e entre os QDCs. O modelo teórico 1D de hoppíng desenvolvido mostrou que a presença de estados OD modela a resposta anisotrópica da condutância neste sistemas. / The growth and characterization of semiconductor quasi-one-dimensional heterostructure systems have attracted increasing interest due to their potential technological application, like photo-detectors, optoelectronic devices and their promising features for quantum information processing and photonic applications. The goal of this thesis is the study of electronic and spin transport properties on quasi-one-dimensional semiconductor systems; specifically, homogenous nanowires (NWs), coupled NW s, twin-plane (TP) NWs, resonant tunneling diodes (RTDs), and quantum dot chains (QDCs). The k-p method, in particular the Luttinger Hamiltonian, was chosen to describe the effects of biaxial confinement and strain. This suggested a modulation of the ground state character that, complemented with the phonon dynamics provided by Molecular Dynamics (MD) simulations, allowed the description of the hole mobility modulation by either phonon emission or absorption. Regarding the coupled NW s system, the electron and spin transport properties affected by a Rashba spin-orbit interaction (SOI) at the joined region were unveiled through the Transfer Matrix Method (TMM). Various configurations of gate voltages (Vg), applied on the wire structure, were considered. We were able to understand the modulation of the spin transport projected in the z-direction trough the combination of the SOI and the system dimensionalities. Likewise, the combination of SOI and applied Vg gave rise to a modulation of the polarization, when the measured spin is projected in the same direction where the Rashba SOI acts, the y-direction. The transport properties of a DBS and the effect of a resistance in series was explored within the TMM to prove the nature of a bistability of the I V characteristics and its enhanced area with temperature provided by the experiment. The model indicates that increasing the resistente by decreasing the temperature, the bistable area enhances. The presence of an additional heterojunction induces a sheet charge at its interfaces. Under this configuration, the total voltage drop of the RTD changes and can be confirmed experimentally.The formation of the peculiar strain fields and their influence on the electronic structure and transport properties of a TP superlattice was systematically studied. Hence, the transport properties of both electrons and holes could be effectively tuned even in the case of T-electrons of zincblende systems, contrasting to the predicted transparency of T-electrons in heterolayered III-V semiconductor superlattices. Also, the transmission probability for holes at valence band could also be effectively modified by applying an external stress. Finally, using molecular-beam-epitaxy and skillful strain engineering, systems of In-GaAs QDCs were successfully synthesized by collaborators. The QDCs with different doping concentrations showed an anisotropic behavior of the conductance, measured along and across the QDCs, with temperature. The theoretical ID hopping model developed found that the presence of OD states shapes the anisotropic response of the conductance in this system.
|
110 |
Origem e estabilidade de nanoestruturas de InAs sobre ligas de InP e InGaAs / Origin and stability of InAs nanostructures on InP and InGaAs alloysNieto González, Luis 17 August 2018 (has links)
Orientador: Mônica Alonso Cotta / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-17T22:17:37Z (GMT). No. of bitstreams: 1
NietoGonzalez_Luis_D.pdf: 3428571 bytes, checksum: 13775c720d8ebcf8c855b532ae715b49 (MD5)
Previous issue date: 2007 / Resumo: Neste trabalho estudamos os mecanismos de crescimento durante a epitaxia por feixe químico de nanoestruturas III-V baseadas no sistema InAs/InP. Particularmente, foram estudados nanofios e ilhas de InAs sobre uma camada buffer InP(001) e nanofios de InAs sobre uma matriz de InGaAs/InP (com mesmo parâmetro de rede). Apresentaremos, nesta tese, as diferenças e similaridades destes sistemas quanto a condições de crescimento, distribuição de tamanho, forma e os efeitos de volume da camada de InGaAs sobre as nanoestruturas de InAs quando comparadas ao sistema InAs/InP. Nossa escolha do InGaAs/InP como camada buffer para a nucleação dos fios de InAs, foi feita porque facilitaria a utilização deste sistema em diversas aplicações, proporcionando maior flexibilidade no desenho dos dispositivos. Por outro lado, este material abre a possibilidade de controlar as características das nanoestruturas através das propriedades de bulk e superficiais da liga ternária InGaAs. Além disso, ligas ternárias podem exibir efeitos de volume que afetam suas propriedades superficiais. Estes fenômenos podem afetar a nucleação dos fios quânticos e por isso foram objeto de nosso estudo. Para isso utilizamos e correlacionamos medidas in situ de difração de elétrons de alta energia (RHEED), microscopia de força atômica (AFM) e eletrônica de transmissão (TEM), com os resultados obtidos por difração de raios X com incidência rasante (GIXD). Verificamos, deste modo, tanto a influência das condições de crescimento, como o comportamento da relaxação da energia elástica nas nanoestruturas. Com todos estes resultados mostramos como acontece a evolução da deformação nos nanofios e pontos quânticos de InAs/InP e como acontecem as transições de forma entre estes dois tipos de nanoestruturas, em função das condições de crescimento e tipo de superfície do substrato utilizado. Mostramos, também que a introdução de um composto ternário (InGaAs) entre o InAs e o InP não afeta significativamente a forma e tamanho das nanoestruturas quando comparadas ao caso InAs/InP. Em particular, a interdifusão gerada por variações locais da composição na camada buffer em nanofios de InAs pode ser minimizada através de mudanças nas condições de crescimento do InGaAs / Abstract: In this work we study the growth mechanisms of III-V nanostructures by chemical beam epitaxy (CBE) based on the InAs/InP materials system. Particularly, nanowires and nanodots of InAs on InP (001) and InAs nanowires on InGaAs/InP (lattice matched) buffer layers were studied. The differences and similarities of these systems are presented in this text, as a function of growth conditions, size distribution, as well as the bulk effects of the InGaAs layer on InAs nanostructures when compared to the InAs/InP system. Our choice of InGaAs/InP buffer layer for InAs nanowire nucleation was due to the possible use of this system in many applications, providing greater flexibility in device design. Furthermore, this material opens up the possibility of controlling nanostructures characteristics through bulk and surface properties of the InGaAs ternary alloy. In other hand, ternary alloys may present volume effects that affect their surface properties. These phenomena can affect quantum wires nucleation and thus became one of the subjects of our study. With these goals in mind, we have correlated in situ high-energy electrons diffraction (RHEED) measurements, atomic force microscopy (AFM) and transmission electron microscopy (TEM) images with the results obtained by grazing incidence X-ray diffraction (GIXD). We report here the influence of the growth conditions on nanostructure shape as well as the behavior of elastic energy relaxation within the nanostructures. Our results show how the evolution of deformation within InAs/InP nanowires and quantum dots occur and how the shape transition between these two types of nanostructures depend on the growth conditions and the substrate surface type used. We also show that the introduction of a ternary compound (InGaAs) between InAs and InP does not significantly affect the shape and size of nanostructures as compared to the InAs / InP case. In particular, the interdifusion generated in InAs nanowires by local variations in the buffer layer composition can be minimized through changes in InGaAs growth conditions / Doutorado / Estrutura de Líquidos e Sólidos; Cristalografia / Doutor em Ciências
|
Page generated in 0.0398 seconds