• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 12
  • 3
  • 1
  • Tagged with
  • 41
  • 15
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Non-Oxide Porous Ceramics from Polymer Precursor

Yang, Xueping 01 January 2014 (has links)
Non-oxide porous ceramics exhibit many unique and superior properties, such as better high-temperature stability, improved chemical inertness/corrosive resistance, as well as wide band-gap semiconducting behavior, which lead to numerous potential applications in catalysis, high temperature electronic and photonic devices, and micro-electromechanical systems. Currently, most mesoporous non-oxide ceramics (e.g. SiC) are formed by two-step templating methods, which are hard to adjust the pore sizes, and require a harmful etching step or a high temperature treatment to remove the templates. In this dissertation, we report a novel technique for synthesizing hierarchically mesoporous non-oxide SiC ceramic from a block copolymer precursor. The copolymer precursors with vairing block length were synthesized by reversible addition fragmentation chain transfer polymerization. The block copolymers self-assemble into nano-scaled micelles with a core-shell structure in toluene. With different operation processes, hollow SiC nanospheres and bulk mesoporous SiC ceramics were synthesized after the subsequent pyrolysis of precorsur micelles. The resultant SiC ceramics have potential applications in catalysis, solar cells, separation, and purification processes.The polymer synthesis and pyrolysis process will investigated by NMR, FTIR, GPC, TEM, and TGA/DSC. The morphology and structure of synthesised SiC hollow spheres and mesoporous ceramics were analyzed by SEM, TGA/DSC and BET/BJH analysis. Besides forming core shell micelles in selective solvent Toluene, we found that PVSZ-b-PS could also exhibit this property in the air water interface. By inducing the Langmuir-Blodgett deposition, a precursor monolayer with homogeously distributed povinylsilazane particles deposited on silicon wafer synthesized by spreading the diblock copolymer PVSZ-b-PS in the air water interface. After the pyrolysis process, orderly arranging SiC nano particles formed from the polymer precursor monolayer doped on the surface of silicon wafer, which shows great potential as an optoelectronic material. The deposition process and the relationship between compress pressure and monolayer morphology were studies, and the structure of monolayer and SiC dots were investigated by AFM, SEM.
32

Synthesis and Characterization of Surface-Functionalized Magnetic Polylactide Nanospheres

Ragheb, Ragy Tadros 21 April 2008 (has links)
Polylactide homopolymers with pendent carboxylic acid functional groups have been designed and synthesized to be studied as magnetite nanoparticle dispersion stabilizers. Magnetic nanoparticles are of interest for a variety of biomedical applications including magnetic field-directed drug delivery and magnetic cell separations. Small magnetite nanoparticles are desirable due to their established biocompatibility and superparamagnetic (lack of magnetic hysteresis) behavior. For in-vivo applications, it is important that the magnetic material be coated with biocompatible organic materials to afford dispersion characteristics or to further modify the surfaces of the complexes with biospecific moieties. The acid-functionalized silane endgroup was utilized as the dispersant anchor to adsorb onto magnetite nanoparticle surfaces and allowed the polylactide to extend into various solvents to impart dispersion stability. The homopolymers were complexed with magnetite nanoparticles by electrostatic adsorption of the carboxylates onto the iron oxide surfaces, and these complexes were dispersible in dichloromethane. The polylactide tailblocks extended into the dichloromethane and provided steric repulsion between the magnetite-polymer complexes. The resultant magnetite-polymer complexes were further incorporated into controlled-size nanospheres. The complexes were blended with poly(ethylene oxide-b-D,L-lactide) diblock copolymers to introduce hydrophilicity on the surface of the nanospheres with tailored functionality. Self-assembly of the PEO block to the surface of the nanosphere was established by utilizing an amine terminus on the PEO to react with FITC and noting fluorescence. / Ph. D.
33

Σύνθεση και χαρακτηρισμός τροποποιημένων πολυλειτουργικών νανοπεριεκτών

Ταπεινός, Χρήστος 17 July 2014 (has links)
Σκοπός της παρούσας διδακτορικής διατριβής είναι η σύνθεση, ο χαρακτηρισμός και η βιολογική αξιολόγηση τροποποιημένων πολυλειτουργικών νανοπεριεκτών (ΠΝΠ) ως συστημάτων μεταφοράς φαρμάκων (ΣΜΦ), με άμεση εφαρμογή στη θεραπεία του καρκίνου του μαστού και του προστάτη. Με τον όρο νανοπεριέκτες (ΝΠ) εννοούμε τα σωματίδια τα οποία βρίσκονται στην κλίμακα του νανομέτρου και κυμαίνονται σε διαστάσεις από περίπου 1nm έως και 100 nm. Ο όρος πολυλειτουργικά αναφέρεται στις ιδιότητες αυτών των νανοδομών και πιο συγκεκριμένα στο πως μεταβάλλονται οι ιδιότητες αυτών όταν υπάρχει επίδραση εξωτερικών παραγόντων όπως θερμοκρασία, pH, όξειδο-αναγωγικό περιβάλλον και μεταβαλλόμενο μαγνητικό πεδίο. Για την παρασκευή των πολυμερικών νανοπεριεκτών χρησιμοποιήθηκαν διάφορα είδη πολυμερισμών όπως, πολυμερισμός γαλακτώματος μέσω ριζών, πολυμερισμός σπόρου (seed), πολυμερισμός μεταφοράς ατόμου με ρίζες, πολυμερισμός διασποράς και πολυμερισμός μέσω απόσταξης-καταβύθισης. Οι διάφορες ευαισθησίες στα ΝΣ προστέθηκαν μέσω συμπολυμερισμού διαφόρων μονομερών τα οποία παρουσιάζουν τις προαναφερθείσες ιδιότητες. Κάποια από τα μονομερή τα οποία χρησιμοποιήθηκαν, όπως το υδρόξυ προπυλικό μεθακρυλαμίδιο (HPMA) το οποίο παρουσιάζει ευαισθησία στη μεταβολή της θερμοκρασίας και το 3-Μεθυλ-N-(2-((2-(3-οξοβουταναμιδο)εθυλ) δισουλαφανυλ)εθυλ)βουτ-3-εναμίδιο (Disulfide) το οποίο παρουσιάζει ευαισθησία στις μεταβολές του όξειδο-αναγωγικού περιβάλλοντος συνετέθησαν στο εργαστήριο, ενώ τα υπόλοιπα ήταν εμπορικά διαθέσιμα. Το κύριο μονομερές το οποίο χρησιμοποιήθηκε στους πολυμερισμούς είναι ο Μεθακρυλικός Μεθυλεστέρας (MMA) το οποίο είναι μη τοξικό και κατά τον πολυμερισμό του δημιουργεί σφαιρικές δομές συγκεκριμένου μεγέθους (νανοσφαίρες). Με τη χρήση του συγκεκριμένου μονομερούς συνετέθησαν συμπολυμερή, τα οποία είναι ευαίσθητα στη θερμοκρασία, στο pH και στο όξειδο-αναγωγικό περιβάλλον ή σε συνδυασμό των παραγόντων αυτών. Οι πολυμερικές νανοσφαίρες-νανοπεριέκτες οι οποίες συνετέθησαν είναι κενές στο εσωτερικό τους, ή είναι της μορφής πυρήνας-κέλυφος, όπου το κέλυφος περιέχει τα μονομερή με τις επιθυμητές ευαισθησίες. Η κοιλότητα η οποία δημιουργείται στο εσωτερικό των νανοσφαιρών, σε ορισμένες περιπτώσεις, έχει ως σκοπό τον εγκλωβισμό φαρμακευτικών ουσιών. Τα φαρμακευτικά μόρια τα οποία χρησιμοποιούνται στην παρούσα διδακτορική διατριβή, είτε στο εσωτερικό των νανοσφαιρών είτε προσδεδεμένα στην επιφάνεια αυτών, είναι η Δοξορουβικίνη (Doxorubicin) και η Δαουνοροβικίνη (Daunorubicin). Η επαγωγή των μαγνητικών ιδιοτήτων στους νανοπεριέκτες πραγματοποιήθηκε με τη σύνθεση μαγνητικών νανοσωματιδίων (ΜΝΣ) τα οποία παρασκευάστηκαν πάνω στην επιφάνειά τους. Η χρήση ενός εναλλασσόμενου μαγνητικού πεδίου αυξάνει τοπικά τη θερμοκρασία με αποτέλεσμα, αφενός να διευκολύνεται η τοπική απελευθέρωση της εγκλωβισμένης φαρμακευτικής ουσίας και αφετέρου, εξαιτίας της υψηλής θερμοκρασίας που αναπτύσσεται τοπικά, να οδηγείται το καρκινικό κύτταρο σε απόπτωση (προγραμματισμένος κυτταρικός θάνατος). Για το χαρακτηρισμό των νανοπεριεκτών χρησιμοποιήθηκε μία πληθώρα τεχνικών. Για το μορφολογικό χαρακτηρισμό χρησιμοποιήθηκε η ηλεκτρονική μικροσκοπία σάρωσης και διέλευσης, Scanning Electron Microscopy (SEM) και Transmission Electron Microscopy (ΤΕΜ) αντίστοιχα, για το δομικό, η φασματοσκοπία υπερύθρου (FT-IR), η φασματοσκοπία Raman, η φασματοσκοπία πυρηνικού μαγνητικού συντονισμού (Nuclear Magnetic Resonance, NMR) και η τεχνική περίθλασης ακτίνων-Χ, ενώ για τη μελέτη των μαγνητικών ιδιοτήτων χρησιμοποιήθηκε η φασματοσκοπία δονούμενου δείγματος Vibrating Sample Magnetometry, VSM). Επίσης χρησιμοποιήθηκαν η τεχνική της δυναμικής σκέδασης φωτός (Dynamic Light Scattering, DLS) η οποία έδωσε πληροφορίες για τις ιδιότητες και τη συμπεριφορά των νανοπεριεκτών μέσα στο διάλυμα, καθώς επίσης και η φασματοσκοπία ορατού-υπεριώδους (Ultra Violet-Visible, UV-VIS), μέσω της οποίας έγινε μελέτη του εγκλωβισμού και της απελευθέρωσης των χρησιμοποιούμενων φαρμάκων από τις νανoσφαίρες. Τέλος, πραγματοποιήθηκαν μελέτες υπερθερμίας με τη βοήθεια ενός εξωτερικού εναλλασσόμενου μαγνητικού πεδίου. / The aim of this thesis is the synthesis, characterization and biological evaluation of modified multifunctional nanoparticles (MMNs) as drug delivery systems (DDS, with immediate effect in the treatment of breast and prostate cancer. The term nanoparticles (NPs) refer to the particles which are in the nanometer scale and range in size, from about 1nm to and 100 nm. The term multifunctional refers to the properties of these nanostructures and more particularly to the way that change their properties when external factors such as temperature, pH, redox environment and alternating magnetic field are applied. For the preparation of polymeric nanoparticles, different types of polymerizations were used such as, emulsion polymerization, seed polymerization, atom transfer radical polymerization, dispersion polymerization and polymerization through distillation-precipitation process. The different sensitivities were added via copolymerization of different monomers which exhibit the aforementioned properties. Some of the monomers used like, N-(-2-HydroxyPropyl) Methacrylamide (HPMA), which is sensitive to temperature changes and N,N'-(disulfanediylbis(ethane-2,1-diyl))bis(2-methylacrylamide) (Disulfide) which is sensitive to changes in the redox environment, were synthesized in the laboratory, while the rest, were commercially available. The primary monomer, used in the polymerizations, was Methyl Methacrylate (MMA) which is non-toxic and in through to its polymerization creates spherical structures of certain size (nanospheres). By using the specific monomer, copolymers, which are sensitive to temperature, pH and redox environment or a combination of these factors, were synthesized. The synthesized polymeric nanospheres-nanocontainers, are either hollow inside, or form core-shell structures, where the shell contains the monomers with the desired sensitivity. The cavity which is created inside the nanospheres, in some cases, is intended to entrap pharmaceutical substances. The drug molecules used in this thesis, either within or tethered to the surface of the nanospheres are, Doxorubicin (DOX) and Daunorubicin (DNR). The induction of the magnetic properties in nanocontainers was performed by the synthesis of magnetic nanoparticles (MNPs), prepared on their surface. The use of an alternating magnetic field increases the temperature locally resulting on one hand to facilitate local release of the entrapped drug, and on the other hand, because of the high temperatures developed locally, to lead the tumor cell to apoptosis (programmed cell death). For the characterization of nanoparticles a variety of techniques were used. For the morphological characterization, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used while for the structural characterization, Fourier Transform Infrared Spectroscopy (FT-IR), Raman Spectroscopy, Nuclear Magnetic Resonance (NMR) and X-ray diffraction Spectroscopy were used. Magnetic properties were studied by Vibrating Sample Magnetometry (VSM). The Dynamic Light Scattering technique (DLS) was also used in order to get information about the properties and behavior of nanoparticles in solution and Ultra Violet-Visible Spectroscopy (UV-VIS), gave information about Loading and Release of the drugs used in nanocontainers. Hyperthermia measurements were carried out by using an external alternating magnetic field.
34

Biodegradable polymeric delivery systems for protein subunit vaccines

Heffernan, Michael John 17 June 2008 (has links)
The prevention and treatment of cancer and infectious diseases requires vaccines that can mediate cytotoxic T lymphocyte-based immunity. A promising strategy is protein subunit vaccines composed of purified protein antigens and immunostimulatory adjuvants, such as Toll-like receptor (TLR) agonists. In this research, we developed two new biodegradable polymeric delivery vehicles for protein antigens and TLR agonists, as model vaccine delivery systems. This work was guided by the central hypothesis that an effective vaccine delivery system would have stimulus-responsive degradation and release, biodegradability into excretable non-acidic degradation products, and the ability to incorporate various TLR-inducing adjuvants. The first vaccine delivery system is a cross-linked polyion complex micelle which efficiently encapsulates proteins, DNA, and RNA. The micelle-based delivery system consists of a block copolymer of poly(ethylene glycol) (PEG) and poly(L-lysine), cross-linked by dithiopyridyl side groups to provide transport stability and intracellular release. The second delivery system consists of solid biodegradable microparticles encapsulating proteins, nucleic acids, and hydrophobic compounds. The microparticles are composed of pH-sensitive polyketals, which are a new family of hydrophobic, linear polymers containing backbone ketal linkages. Polyketals are synthesized via a new polymerization method based on the acetal exchange reaction and degrade into non-acidic, excretable degradation products. In addition, the technique of hydrophobic ion pairing was utilized to enhance the encapsulation of ovalbumin, DNA, and RNA in polyketal microparticles via a single emulsion method. Using in vitro and in vivo immunological models, we demonstrated that the micelle- and polyketal-based vaccine delivery systems enhanced the cross-priming of cytotoxic T lymphocytes. The model vaccines were composed of ovalbumin antigen and various TLR-inducing adjuvants including CpG-DNA, monophosphoryl lipid A, and dsRNA. The results demonstrate that the cross-linked micelles and polyketal microparticles have considerable potential as delivery systems for protein-based vaccines.
35

Observação de vórtices magnéticos em calotas tridimensionais submicrométricas / Magnetic vortex observation in sub-micrometric tri-dimensional caps

Soares, Marcio Medeiros 28 March 2008 (has links)
Orientadores: Flavio Garcia, Eduardo Granado Monteiro da Silva / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-10T05:04:16Z (GMT). No. of bitstreams: 1 Soares_MarcioMedeiros_M.pdf: 20040711 bytes, checksum: 307f0dbee3ef2d92b25427c28d39c7d6 (MD5) Previous issue date: 2008 / Resumo: Neste trabalho fizemos um estudo sistemático de filmes compostos por multicamadas Co/Pd depositados sobre arranjos auto-organizados de esferas de látex submicrométricas (50 ¿ 1000 nm). O filme depositado sobre a esfera (não-magnética) forma uma calota magnética com espessura variável. As espessuras de Co e Pd foram escolhidas de modo a obter duas classes de multicamadas, uma com anisotropia intrínseca perpendicular e outra com anisotropia intrínseca planar, quando depositadas sobre um substrato plano. Os arranjos de calotas com anisotropia intrínseca perpendicular que produzimos têm um comportamento magnético que reproduz resultados publicados recentemente na literatura. Para os sistemas com anisotropia intrínseca planar a microestrutura magnética é profundamente dependente da forma tridimensional da calota, assim como do seu tamanho. A investigação destas calotas envolveu caracterizações magnéticas por efeito Hall extraordinário, efeito Kerr magneto-ótico e SQUID, análise estrutural por microscopia eletrônica de transmissão (TEM) e sondagem da configuração da magnetização por microscopia de força magnética (MFM). Para esferas menores (diâmetros de 50 e 100 nm), as imagens de TEM mostram que as calotas segmentam-se em nanopilares orientados radialmente. Em concordância com as caracterizações magnéticas, propomos que a segmentação em pilares induz uma anisotropia efetiva radial nessas calotas menores. Nas calotas maiores (500 e 1000 nm) estudamos a influência do gradiente de espessura, medido por TEM, sobre a anisotropia efetiva ao longo da esfera. Nestas calotas as multicamadas são contínuas e, correlacionando caracterizações magnéticas, imagens de TEM, medidas de MFM e simulações micromagnéticas, chegamos à conclusão de que a magnetização forma um vórtice em seu topo, influenciada pela forma tridimensional da calota. O núcleo dos vórtices que observamos é razoavelmente maior do que aqueles mostrados na literatura para vórtices em discos, indicando que tal sistema de calotas pode ser promissor para aplicações em mídias de gravação magnética / Abstract: In this work we have performed a systematic study on Co/Pd multilayers deposited over self-assembled polystyrene nanospheres (with diameter ranging from 50 to 1000 nm). The film deposited over the nonmagnetic nanosphere forms a magnetic cap with variable thickness. The Co and Pd layer thicknesses were chosen in order to obtain two classes of multilayers, one exhibiting intrinsic in-plane anisotropy and the other exhibiting intrinsic out-of-plane anisotropy, when deposited on flat substrates. The magnetic behavior of the caps¿ arrays with intrinsic out-of-plane anisotropy which we have produced agrees with results recently reported in the literature. The magnetic microstructure of the systems with intrinsic in-plane anisotropy is mainly influenced by three-dimensional shape and size of the caps. The study of those caps included magnetic characterization by Extraordinary Hall Effect, Magneto-Optic Kerr Effect and SQUID, structural analysis by Transmission Electron Microscopy (TEM) and magnetic configuration probing by Magnetic Force Microscopy (MFM). For the smallest spheres (50 and 100 nm in diameter) TEM images show that the cap is segmented into radial nanopillar like structures. Agreeing with our magnetic measurements, we propose that this segmentation induces an effective radial anisotropy in the smallest caps. For the largest caps (500 and 1000 nm in diameter) we have studied the influence of the thickness gradient (probed by TEM) on the effective anisotropy along de cap. In those caps the multilayers are continuous and, correlating magnetic characterizations, TEM images, MFM profiles and micromagnetic simulations, we concluded that the magnetization forms a curling structure in the top of the caps. The so formed magnetic vortex is strongly influenced by the cap¿s shape. We observed that the magnetic vortex core is considerably larger than the ones shown in the literature for vortex in planar discs, indicating that this cap system may be promising for applications in magnetic recording medias / Mestrado / Materiais Magneticos e Propriedades Magneticas / Mestre em Física
36

Utilização de quitosana no controle sobre a formação de hot spots e protetor superficial de nanoesferas de ouro para estudos de adsorção por espalhamento Raman intensificado por superfície

Oliveira, Débora Guimarães de 31 August 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-11-05T13:41:09Z No. of bitstreams: 1 deboraguimaraesdeoliveira.pdf: 3971933 bytes, checksum: 7b5a0ee6a3a033ca0149c8adc512aea2 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-11-23T11:16:07Z (GMT) No. of bitstreams: 1 deboraguimaraesdeoliveira.pdf: 3971933 bytes, checksum: 7b5a0ee6a3a033ca0149c8adc512aea2 (MD5) / Made available in DSpace on 2018-11-23T11:16:07Z (GMT). No. of bitstreams: 1 deboraguimaraesdeoliveira.pdf: 3971933 bytes, checksum: 7b5a0ee6a3a033ca0149c8adc512aea2 (MD5) Previous issue date: 2018-08-31 / A proteção superficial de nanoesferas de ouro (AuNEs) pode fornecer uma maior estabilidade coloidal, importante quando se trabalha com sistemas biológicos, por apresentarem situações diversas que podem levar à agregação das AuNEs. O biopolímero quitosana (Quit) é um material atóxico, apresenta baixo custo, e vem sendo muito utilizado em sistemas biológicos para diagnóstico de doenças. Sistemas sensíveis, como os biossensores utilizados na detecção de moléculas adsorvidas em AuNEs, podem ser monitorados por mudança na banda de ressonância de plasmon de superfície localizado (LSPR) e pela utilização da técnica de espalhamento Raman intensificado por superfície (SERS). Quando as moléculas são adsorvidas nas superfícies das AuNEs é possível observar a indução de agregação da suspensão coloidal pela mudança na banda LSPR. Devido à sensibilidade analítica, as superfícies das AuNEs são protegidas para evitar agregação e precipitação coloidal, e a obtenção de resultados falso-positivos. Esta tese teve como objetivo realizar vários estudos utilizando as AuNEs protegidas superficialmente por Quit para oferecer uma maior estabilidade e controlar a formação de hot spots na presença do analito. Para tal, sempre foram realizados experimentos comparando as AuNEs com e sem proteção superficial por Quit. Os estudos iniciais observaram a resistência à agregação das AuNEs com relação ao tempo de exposição em temperatura ambiente. Seguindo o raciocínio as AuNEs também foram expostas à diferentes concentrações dos agentes agregantes etanol (EtOH) e KCl. Os analitos utilizados como molécula prova para o SERS e também para observar possíveis mudanças na banda LSPR, foram os corantes: cristal violeta (CV), rodamina 6G (R6G) e IR-820, que apresentam cargas superficiais positiva ou negativa; a fim de identificar alguma preferência na adsorção por carga superficial do analito. Para os estudos em espectroscopia SERS, foram realizadas medidas variando concentração de Quit na presença dos corantes juntos ou separados, além de observar a interferência na ordem de adição do corante no sinal SERS. A Quit se mostrou promissora para aumentar a estabilidade das AuNEs e, portanto, experimentos para tentar modular e controlar a formação de hot spots foram realizados. O efeito SERS foi utilizado como uma ferramenta analítica em que foi estudada a relação direta do sinal SERS obtido dos corantes, com a sua concentração em solução. A partir destes resultados, foi possível construir isotermas de adsorção dos corantes estudados, que foram ajustadas ao modelo de Langmuir. / The surface protection of gold nanospheres (AuNEs) can provide greater colloidal stability, important when work with biological system, because the present diverse situations that can lead to the aggregation of AuNEs. The chitosan biopolymer (Quit) is a non-toxic material, presents low cost, and has been widely in biological systems for the diagnosis of diseases. Sensitive systems, such as biosensors used in detection of adsorbed molecules in AuNEs, can be monitored by changing in Localized Surface Plasmon Resonance´s band (LSPR) and by use of Surface-Enhanced Raman Spectroscopy technique (SERS). When the molecules are adsorbed on the AuNEs surfaces is possible to observe the induction of aggregation of the colloidal suspension by the change in the LSPR band. Due to the analytical sensitivity, the surfaces of the AuNES are protected to avoid aggregation and colloidal precipitation, and to obtain false positive results. This thesis aimed to perform several studies using the AuNEs surface protected by Quit to offer greater stability and to control the formation of hot spots in the presence of the analyte. For this, experiments were always done to compare the AuNEs with and without surface protection by Quit. The initial studies observed the resistance to AuNEs aggregation in relation to exposure time at room temperature. Following the reasoning, the AuNEs were also exposed to different concentrations of the aggregating agents ethanol (EtOH) and KCl. The analytes that were used as a test molecule for the SERS and also to observe possible changes in the LSPR band were the dyes: crystal violet (CV), rhodamine 6G (R6G) and IR-820, which have positive or negative surface charges; in order to identify some preference in surface adsorption of the analyte. For the SERS spectroscopy studies, measurements were performed varying the concentration of Quit in the presence of the dyes together or separated, besides observing the interference in the order of dye addition in the SERS signal. The Quit proved promising to increase the stability of AuNEs and, therefore, modification experiments, aiming at modulate and control the formation of hot spots, were performed. The SERS effect was used as an analytical tool in which the direct relationship of the SERS signal obtained from the dyes with their concentration in solution was studied. From these results, it was possible to construct adsorption isotherms of the studied dyes, which were adjusted to the Langmuir model.
37

Μελέτη υλικών βιολογικού ενδιαφέροντος μέσω προηγμένων φασματοσκοπικών τεχνικών / Study of bio-materials through advanced spectroscopic technics

Αγγελοπούλου, Αθηνά 30 April 2014 (has links)
Σήμερα η μελέτη των βιοϋλικών προσανατολίζεται σε δύο κατευθύνσεις, την ανάπτυξη συστημάτων μεταφοράς φαρμάκων και συστημάτων κατάλληλων να διεγείρουν κυτταρικές λειτουργίες. Η έρευνά μας έχει σχέση με την συγκριτική μελέτη συστημάτων μεταφοράς φαρμάκων κατάλληλων για εφαρμογή σε οστικούς καρκίνους. Τέτοιου είδους συστήματα θα πρέπει, αρχικά να είναι ικανά να μεταφέρουν τα φαρμακευτικά μόρια και στη συνέχεια να μπορούν να επάγουν οστεογένεση. Η δεύτερη λειτουργικότητα είναι ιδιαιτέρως σημαντική καθώς έχει σαν αποτέλεσμα την πλήρωση του οστικού ελλείμματος που προκαλείται από την δράση των καρκινικών κυττάρων. Για τον σκοπό αυτό, διερευνήθηκε η ικανότητα του υαλώδους δικτύου να μεταφέρει φαρμακευτικά μόρια μέσω παραδοσιακών συστημάτων μεταφοράς. Συνεπώς, ακολούθησε η ex vitro μελέτη pH-ευαίσθητων τροποποιημένων πυριτικών ξηρών πηκτών στα οποία είχε συνδεθεί το αντικαρκινικό φάρμακο δοξορουπμυσίνη. Συγκεκριμένα, πυριτικά ξηρά πηκτώματα συντέθηκαν με την μέθοδο sol-gel και τροποποιήθηκαν περαιτέρω με χημεία καρβοδιϊμιδίου. Η τροποποίηση είχε σαν αποτέλεσμα την επιφανειακή σύνδεση υδροπηκτών δεξτράνης που παρουσιάζουν ευαισθησία στο pH. Στη συνέχεια, ακολούθησε η σύνθεση των ανόργανων βιοενεργών νανοσφαιρών. Για την σύνθεση των υαλωδών νανοσφαιρών με εσωτερική κοιλότητα ακολουθήθηκε η διαδικασία επικάλυψης sol-gel, κατά την οποία έγινε η ηλεκτροστατική επικάλυψη νανοσωματιδίων πολυστυρενίου με αποτέλεσμα την σύνθεση ανόργανων πυριτικών και φωσφοπυριτικών νανοσφαιρών. Επιπλέον, μελετήθηκε η εφαρμογή του συμπολυμερούς του πολυμεθακρυλικού μεθυλεστέρα – υδρομεθακρυλικού προπυλεστέρα ως υποστρώματος καθώς το PMMA αποτελεί βασικό συστατικό των οστικών τσιμέντων και παρουσιάζει βελτιωμένες μηχανικές ιδιότητες. Προκειμένου να ολοκληρωθεί η συγκριτική μελέτη μας, ακολούθησε η ex vitro ανάλυση των παραπάνω υβριδικών φωσφοπυριτικών νανοσφαιρών καθώς επίσης των πυριτικών νανοσφαιρών PS και PMMA-co-HPMA. Η επώαση σε διάλυμα SBF οδήγησε στον σχηματισμό ανθρακικού πυριτικού υδροξυαπατίτη με το μέγεθος των κρυσταλλιτών να μην υπερβαίνει τα 45 nm και έντονη παρουσία συσσωματωμάτων. Βέλτιστες ιδιότητες βιοενεργότητας παρουσιάζουν οι τροποποιημένες με αμίνες υβριδικές νανοσφαίρες PMMA-co-HPMA, οι οποίες έχουν επίσης την δυνατότητα να χρησιμοποιηθούν ως μεταφορείς φαρμακευτικών μορίων σε όξινο καθώς επίσης και σε φυσιολογικό pH με παρατεταμένη δυνατότητα αποδέσμευσης. / Recently the study of biomaterials has moved in two directions, the evolution of drug delivery systems and of systems that can stimulate specific cellular responses. Our investigation aims to the study of drug delivery systems for bone cancer therapy. These systems must fulfill two important functionalities. At first, they should be able to deliver drug molecules to bone cancer environment through loading or surface conjugation and subsequently to cause osteogenesis. Their second functionality is especially important since it leads to substitution of bone defects caused from the action of cancer cells. For this purpose, the ability of the glassy network to deliver drug molecules was studied. For this purpose, expanded ex vitro research was followed in DOX conjugated pH-sensitive functionalized silica xerogels. Specifically, silica xerogels were synthesized through a sol-gel process and further functionalized with carbodiimide chemistry. The functionalization process resulted in pH-sensitive dextran hydrogels. The study of the enhanced properties of glassy substrates was followed by the synthesis of amorphous bioactive nanospheres. Moreover, the change of the organic core and the use of PMMA-co-HPMA were advantageous due to the enhanced mechanical properties of PMMA-co-HPMA and its use in bone cements. In order to accomplish our comparative investigation, we followed the ex vitro study of the above hybrid binary silicate, ternary and quaternary phosphosilicate nanospheres as well as the silicate PS and PMMA-co-HPMA nanospheres. The incubation in SBF solution resulted in the formation of a silica-substituted carbonate hydroxyapatite (Si-HCA) a with crystallite size of around 45 nm and extended surface aggregates. The amino-modified PMMA-co-HPMA hybrid nanospheres present enhanced biocompatible properties, with prolonged release ability as drug delivery systems, in acidic as well as physiological pH.
38

Quantificação de fármacos antituberculose em nanofibras por eletroforese capilar / Determination of anti-tuberculosis drugs in nanofibers by capillary electrophoresis.

Yataco Lazaro, Lourdes Marcela 20 October 2017 (has links)
Apesar de ser uma das doenças infecciosas mais antigas e bem conhecidas, a tuberculose (TB) permanece como a segunda maior causa de morte após a síndrome da imunodeficiência adquirida. A TB é uma doença infecciosa e transmissível, causada pela bactéria Mycobacterium tuberculosis (Mtb), que afeta prioritariamente os pulmões, embora possa acometer outros órgãos e sistemas. O presente trabalho teve como objetivo desenvolver nanofibras e nanoesferas de poli (D,L-láctico co-glicólico) (PLGA) contendo os Insumos Farmacêuticos Ativos (IFAs), rifampicina e isoniazida; caracterizá-las físico quimicamente e determinar a eficiência de encapsulação destes IFAs pelos métodos de eletroforese capilar (CE) e cromatografia líquida de alta eficiência (HPLC). O método de CE para a determinação simultânea dos IFAs antituberculose (isoniazida, rifampicina, pirazinamida e etambutol) foi otimizado por meio de um delineamento de experimentos de mistura com uma abordagem de vértices extremos usando o Software estatístico Minitab 17. Para o desenvolvimento das nanofibras se utilizou a técnica de electrospinning e para as nanoesferas se utilizou a técnica de emulsão/evaporação de solvente. As nanofibras foram caraterizadas por microscopia eletrônica de varredura (SEM), microscopia eletrônica de transmissão (TEM), espectrofotometria de absorção na região do infravermelho (FTIR), calorimetria exploratória diferencial (DSC) e termogravimetria/termogravimetria derivada (TGA) e as nanoesferas foram caracterizadas pelas técnicas de espalhamento dinâmico de luz (DLS), potencial zeta, índice de polidispersão, pH, SEM, TEM, FTIR e DSC. A eficiência de encapsulação dos IFAs nas nanofibras e nas nanoesferas foram realizadas através de duas técnicas analíticas, HPLC e CE, previamente validadas. A eficiência de encapsulação de isoniazida e rifampicina nas nanofibras foi 12,16 % e 5,90 %, respectivamente usando a técnica de HPLC e através da técnica de CE a eficiência de encapsulação foi de 12,30 % e 6,36 %, para isoniazida e rifampicina, respectivamente. A eficiência de encapsulação para a melhor formulação das nanoesferas foi de 2,33 % e 14,75 % para a isoniazida e rifampicina, respectivamente através da técnica de HPLC e uma eficiência de encapsulação de 2,26 % para a isoniazida e 14,22 % para a rifampicina através da técnica de CE. O método por CE teve a vantagem de apresentar um menor tempo de analise, menos de 6 min, com uma adequada resolução entre os picos dos IFAs. O tempo de analise por HPLC foi de 10 min. O método de CE foi menos lesivo ao meio ambiente, devido à pouca quantidade de solventes orgânicos, tornando assim a CE em um método alternativo à HPLC. / Despite being one of the oldest and most well-known infectious diseases, tuberculosis (TB) remains the second leading cause of death after acquired immunodeficiency syndrome. TB is an infectious and transmissible disease caused by Mycobacterium tuberculosis (Mtb) bacteria, which primarily affects the lungs, although it can affect other organs and systems. The present work aimed to develop nanofibers and nanospheres of poly (D, L-lactic co-glycolic) (PLGA) containing Active Pharmaceutical Ingredients (IPAs), rifampicin and isoniazid; characterize them physical-chemically and determine the encapsulation efficiency of these drugs by capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) methods. A CE method for determination of IPAs (isoniazid, rifampicin, pyrazinamide and ethambutol) was optimized through a design of mixing experiments with an extreme vertex approach using the Minitab 17 statistical Software. For the development of nanofibers and nanospheres the electrospinning and the emulsion/solvent evaporation techniques, respectively were used. Nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA). Nanospheres were characterized by dynamic light scattering (DLS), zeta potential, polydispersity index, pH, SEM, TEM, FTIR and DSC. The encapsulation efficiency of the IPAs in nanofibres and nanospheres was performed using two analytical techniques, HPLC and EC, previously validated. For nanofibers, the encapsulation efficiency were 12.16 % and 5.90 % for isoniazid and rifampicin, respectivey by using HPLC method and 12,30 % for isoniazid and 6,36 % for rifampicin by CE method. The encapsulation efficiency for the best formulation of nanospheres was 2,33 % and 14,75 % for rifampicin and isoniazid, respectively by using HPLC method and 2,26 % for isoniazid and 14,22 % for rifampicin by EC method. It was shown that CE method presented a shorter analysis time (< 6min) and also and adequate resolution between the IPAs peaks. The time of analysis for the HPLC method was 10 min.CE method was less aggressive to the environment because it uses smaller amount of organic solvents. Therefore the CE is an alternative method to HPLC.
39

Quantificação de fármacos antituberculose em nanofibras por eletroforese capilar / Determination of anti-tuberculosis drugs in nanofibers by capillary electrophoresis.

Lourdes Marcela Yataco Lazaro 20 October 2017 (has links)
Apesar de ser uma das doenças infecciosas mais antigas e bem conhecidas, a tuberculose (TB) permanece como a segunda maior causa de morte após a síndrome da imunodeficiência adquirida. A TB é uma doença infecciosa e transmissível, causada pela bactéria Mycobacterium tuberculosis (Mtb), que afeta prioritariamente os pulmões, embora possa acometer outros órgãos e sistemas. O presente trabalho teve como objetivo desenvolver nanofibras e nanoesferas de poli (D,L-láctico co-glicólico) (PLGA) contendo os Insumos Farmacêuticos Ativos (IFAs), rifampicina e isoniazida; caracterizá-las físico quimicamente e determinar a eficiência de encapsulação destes IFAs pelos métodos de eletroforese capilar (CE) e cromatografia líquida de alta eficiência (HPLC). O método de CE para a determinação simultânea dos IFAs antituberculose (isoniazida, rifampicina, pirazinamida e etambutol) foi otimizado por meio de um delineamento de experimentos de mistura com uma abordagem de vértices extremos usando o Software estatístico Minitab 17. Para o desenvolvimento das nanofibras se utilizou a técnica de electrospinning e para as nanoesferas se utilizou a técnica de emulsão/evaporação de solvente. As nanofibras foram caraterizadas por microscopia eletrônica de varredura (SEM), microscopia eletrônica de transmissão (TEM), espectrofotometria de absorção na região do infravermelho (FTIR), calorimetria exploratória diferencial (DSC) e termogravimetria/termogravimetria derivada (TGA) e as nanoesferas foram caracterizadas pelas técnicas de espalhamento dinâmico de luz (DLS), potencial zeta, índice de polidispersão, pH, SEM, TEM, FTIR e DSC. A eficiência de encapsulação dos IFAs nas nanofibras e nas nanoesferas foram realizadas através de duas técnicas analíticas, HPLC e CE, previamente validadas. A eficiência de encapsulação de isoniazida e rifampicina nas nanofibras foi 12,16 % e 5,90 %, respectivamente usando a técnica de HPLC e através da técnica de CE a eficiência de encapsulação foi de 12,30 % e 6,36 %, para isoniazida e rifampicina, respectivamente. A eficiência de encapsulação para a melhor formulação das nanoesferas foi de 2,33 % e 14,75 % para a isoniazida e rifampicina, respectivamente através da técnica de HPLC e uma eficiência de encapsulação de 2,26 % para a isoniazida e 14,22 % para a rifampicina através da técnica de CE. O método por CE teve a vantagem de apresentar um menor tempo de analise, menos de 6 min, com uma adequada resolução entre os picos dos IFAs. O tempo de analise por HPLC foi de 10 min. O método de CE foi menos lesivo ao meio ambiente, devido à pouca quantidade de solventes orgânicos, tornando assim a CE em um método alternativo à HPLC. / Despite being one of the oldest and most well-known infectious diseases, tuberculosis (TB) remains the second leading cause of death after acquired immunodeficiency syndrome. TB is an infectious and transmissible disease caused by Mycobacterium tuberculosis (Mtb) bacteria, which primarily affects the lungs, although it can affect other organs and systems. The present work aimed to develop nanofibers and nanospheres of poly (D, L-lactic co-glycolic) (PLGA) containing Active Pharmaceutical Ingredients (IPAs), rifampicin and isoniazid; characterize them physical-chemically and determine the encapsulation efficiency of these drugs by capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) methods. A CE method for determination of IPAs (isoniazid, rifampicin, pyrazinamide and ethambutol) was optimized through a design of mixing experiments with an extreme vertex approach using the Minitab 17 statistical Software. For the development of nanofibers and nanospheres the electrospinning and the emulsion/solvent evaporation techniques, respectively were used. Nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA). Nanospheres were characterized by dynamic light scattering (DLS), zeta potential, polydispersity index, pH, SEM, TEM, FTIR and DSC. The encapsulation efficiency of the IPAs in nanofibres and nanospheres was performed using two analytical techniques, HPLC and EC, previously validated. For nanofibers, the encapsulation efficiency were 12.16 % and 5.90 % for isoniazid and rifampicin, respectivey by using HPLC method and 12,30 % for isoniazid and 6,36 % for rifampicin by CE method. The encapsulation efficiency for the best formulation of nanospheres was 2,33 % and 14,75 % for rifampicin and isoniazid, respectively by using HPLC method and 2,26 % for isoniazid and 14,22 % for rifampicin by EC method. It was shown that CE method presented a shorter analysis time (< 6min) and also and adequate resolution between the IPAs peaks. The time of analysis for the HPLC method was 10 min.CE method was less aggressive to the environment because it uses smaller amount of organic solvents. Therefore the CE is an alternative method to HPLC.
40

Understanding the role of microorganisms in determining the fate of biogenic elemental selenium nanomaterial

Fischer, Sarah 25 July 2023 (has links)
Selenium (Se) is an essential micronutrient and is also used in various industrial processes. However, Se also exhibits a low toxicity threshold and therefore presents a significant risk to human kind when released into the environment. The gap between Se deficiency (< 40 µg•day−1) and acute Se poisoning (> 400 µg•day−1) for humans is rather narrow. In addition, detrimental effects to the health of humans and other biota can arise from radioactive Se isotopes. Namely, 79Se is of concern, as it is one of the fission products originating from nuclear power production. The toxicity of selenium not only depends on its concentration but also on its speciation. This of course applies to both stable and radioactive isotopes. Microorganisms play a key role in determining and altering the speciation of Se in the selenium geochemical cycle. The naturally released selenium oxyanions (selenite (SeIVO32−) and selenate (SeVIO42−)) can be microbially reduced to differently shaped biogenic elemental selenium (BioSe, Se(0)) nanomaterials - BioSe-Nanospheres and BioSe-Nanorods. Even after more than 30 years of elaborated research on selenium, the impact of the microbial biota on the shape change of these BioSe-Nanomaterials lacks a fundamental understanding. Furthermore, due to the various species of microorganisms having different metabolisms, a detailed investigation of representative organism is required to predict the fate of selenium in the environment and engineered systems. Thus, the motivation behind this Ph.D. work was to study the effect of selected microorganisms (based on their high resilience, application in wastewater treatment processes, and capability to reduce selenium oxyanions) on the properties and fate of the produced biogenic elemental selenium nanomaterials. Namely, this meant deciphering the role of selenium oxyanion reduction mechanism on the localisation (intracellular or extracellular) of the microbially produced biogenic elemental selenium nanoparticles. This understanding is important as the localisation defines the release of the selenium nanoparticles in the environment and hence its potential pathway into the food chain. Further, the role of the microorganisms (pure culture and mixed culture) on the composition and stability of the corona (organic layer) on the BioSe-Nanomaterials was studied as properties of the corona can affect the stability and hence the localization of the nanomaterials. Moreover, the effect of the microbial environment on the shape establishment and stability, as well as on the fate of the produced biogenic elemental selenium nanomaterials was also investigated. Eventually, the obtained results narrow the identified knowledge gap and improve the understanding of the fate of selenium in the environment. In the first part of this Ph.D. thesis, the bacterial strain Bacillus safensis JG-B5T was chosen to study the influence of microbes on the fate of Se in the environment due to its occurrence in uranium mining sites where selenium is also found. First, this bacterium has been analysed by genome sequencing and its genomic data were deposited at the NCBI database. With the obtained results, the bacterial strain was classified in the corresponding phylogenetic tree. Furthermore, this Ph.D. work revealed that B. safensis JG-B5T is an obligate aerobic microorganism with the ability to reduce SeO32− to elemental selenium (Se(0)) in the form of red BioSe-Nanospheres. A reduction of SeO42− has not been observed. Two-chamber reactor experiments revealed that direct contact between SeO32− and the bacterial cells was necessary to start the reduction. In addition, microscopic investigations identified changes in the bacterial cell morphologies induced by toxic stress effects of SeO32−. Only extracellular production of BioSe-Nanospheres was observed using STEM equipped with a HAADF detector. The produced BioSe-Nanospheres were characterized by Raman spectroscopy as being amorphous Se. Furthermore, a stabilizing corona containing proteins and EPS, which caps the BioSe-Nanospheres, has been identified by FT-IR spectroscopy. The detailed composition of this corona has been further studied using proteomics analysis. The combination of two-chamber reactor experiments, genome analysis and the identified corona proteins indicated that the selenite reduction process of B. safensis JG-B5T was primarily mediated through membrane-associated proteins, like succinate dehydrogenase. Thus, a detailed molecular mechanism of the microbial reduction of SeO32− to BioSe-Nanospheres by the bacterial strain B. safensis JG-B5T has been proposed within this work. Besides these investigations on the formation of BioSe-Nanospheres, ζ-potential measurements have shown a low colloidal stability of the produced BioSe-Nanospheres. Thus, B. safensis JG-B5T is an attractive candidate in selenite wastewater treatment as it provides easy ways of recovering Se while maintaining low Se discharge. These investigations motivated us to study the general role of the microbial origin and microbial environment of the discharged nanomaterials in their shape change from BioSe-Nanospheres to BioSe-Nanorods. This constitutes the second part of this Ph.D. thesis. Thus, two different known microbial BioSe-Nanospheres producers by means of selenite reduction were used, namely the bacterial strain Escherichia coli K-12 and the microbial mix culture of anaerobic granular sludge. It was shown with Raman spectroscopy and SEM imaging that the BioSe-Nanospheres produced by E. coli K-12 remain amorphous and spherical when exposed to thermophilic conditions (up to one year), whereas those obtained by anaerobic granular sludge transform to trigonal BioSe-Nanorods. ζ-potential measurements identified a decrease of the colloidal stability of the transformed BioSe-Nanorods of anaerobic granular sludge compared to the still spherical BioSe-Nanospheres of E. coli K-12. As the shape of these BioSe-Nanospheres is stabilized by their corona, detailed investigations were performed to derive key factors affecting its shape change. CheSeNMs capped with different amount of BSA were produced and incubated to evaluate the quantitative effect of the amount of proteins in the corona on the shape stability of BioSe-Nanomaterials. This experiment implied that the larger quantity of proteins present in the corona of the BioSe-Nanospheres provide better shape stability. Indeed, the BioSe-Nanospheres produced by E. coli K-12 have 5.5 times more protein than those produced by anaerobic granular sludge. To gain deeper insight into their structural properties, proteomics analysis identified the surface proteins of the BioSe-Nanomaterials. The proteomics analysis also showed that the corona of BioSe-Nanospheres produced by E. coli K-12 consists of 1009 different proteins compared to only 173 on those produced by anaerobic granular sludge. The possible difference in the interaction of the corona proteins and selenium was elucidated using density functional theory calculations. The calculations suggest the possibility of the S-Se bond formation between Se atom and sulphur of the cysteine and methionine residues of the corona proteins. Furthermore, as representative for the microbial environment the bacterial strain B. safensis JG-B5T was used to mimic the role of microorganisms living in the vicinity of the discharged nanoparticles. The bacterial strain was incubated with purified BioSe-Nanospheres produced by E. coli K-12 at mesophilic conditions. Raman spectroscopy and SEM imaging showed that in contrast to the thermophilic incubation, the BioSe-Nanospheres transformed to BioSe-Nanorods in the presence of B. safensis JG-B5T. Proteomics analysis identified that the protein corona of BioSe-Nanospheres produced by E. coli K-12 was degraded by extracellular peptidases secreted upon co-incubation with B. safensis JG-B5T bacteria, which led to their transformation to BioSe-Nanorods. All the above findings show, how microorganisms fundamentally impact the speciation, colloidal stability, and shape of selenium. These, consequently, affect their flow coefficients or partition factors in the environment and therefore their fate. This work consequently demonstrates that the shape of the BioSe-Nanomaterials depends on both, their microbial origin and their microbial surrounding. Especially, the dynamic changes induced by this microbial environment on the shape of already formed BioSe-Nanospheres after their discharge are to be further explored. This increases the complexity in determining the risk assessment of Se and probably other redox active elements, which needs to be re-evaluated and improved by including microbial criteria for better accuracy. Based on the presented investigations, further studies regarding the detailed application and expansion to other bacterial strains will continuously widen the understanding of the behaviour of Se in the environment and engineered systems.

Page generated in 0.0568 seconds