• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 57
  • 17
  • 4
  • 1
  • Tagged with
  • 161
  • 78
  • 37
  • 34
  • 34
  • 34
  • 32
  • 24
  • 22
  • 18
  • 16
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

RTM-Untersuchungen an zweidimensionalen Nanostrukturen am Beispiel der reinen Au(100)-Oberfläche und des selbstassemblierten Systems Sauerstoff auf Cu(110)

Bombis, Christian. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2004--Aachen.
62

Interaction and confinement in nanostructures spin-orbit coupling and electron-phonon scattering /

Debald, Stefan. Unknown Date (has links) (PDF)
University, Diss., 2005--Hamburg.
63

Darstellung von Photosensibilisatoren und elektrochemische Abscheidung von sensibilisierten nanostrukturierten Zinkoxidelektroden

Michaelis, Esther. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Bremen.
64

Optik in photonischen Kristallen mit niedrigem Brechzahlkontrast

Augustin, Markus. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Jena.
65

Einfluss metallischer Nanostrukturen auf die optoelektronischen Eigenschaften organischer Halbleiter / Impact of metal nanostructures on the optoelectronic properties of organic semiconductors

Kolb, Verena January 2018 (has links) (PDF)
Opto-elektronische Bauelemente auf Basis organischer Moleküle haben in den letzten Jahren nicht nur in Nischenbereichen, wie der Kombination organischer Photovoltaik mit gebäudeintegrierten Konzepten, sondern vor allem auch in der Entwicklung von kommerziell verfügbaren OLED (organische lichtemittierende Dioden) Bauteilen, wie 4K TV-Geräten und Handy Displays, an Bedeutung gewonnen. Im Vergleich zu anorganischen Bauteilen weisen jedoch vor allem organische Solarzellen noch weitaus geringere Effizienzen auf, weswegen die Erforschung ihrer Funktionsweise und der Einflüsse der einzelnen Bestandteile auf mikroskopischer Ebene für die Weiterentwicklung und Verbesserung des Leistungspotentials dieser Technologie unabdingbar ist. \\ Um dies zu erreichen, wurde in dieser Arbeit die Wechselwirkung zwischen der lokalisierten Oberflächenplasmonenresonanz (LSPR) metallischer Nanopartikel mit den optischen Anregungen organischer Dünnschichten in dafür eigens präparierten opto-elektronischen Hybrid-Bauteilen aus kleinen Molekülen untersucht. Durch die Implementierung und Kopplung an solche plasmonischen Nanostrukturen kann die Absorption bzw. Emission durch das lokal um die Strukturen erhöhte elektrische Feld gezielt beeinflusst werden. Hierbei ist der spektrale Überlapp zwischen LSPR und den Absorptions- bzw. E\-missions\-spek\-tren der organischen Emitter entscheidend. In dieser Arbeit wurden durch Ausnutzen dieses Mechanismus sowohl die Absorption in organischen photovoltaischen Zellen erhöht, als auch eine verstärkte Emission in nanostrukturierten OLEDs erzeugt. \\ Besonderer Fokus wurde bei diesen Untersuchungen auf mikroskopische Effekte durch neu entstehende Grenzflächen und die sich verändernden Morphologien der aktiven organischen Schichten gelegt, da deren Einflüsse bei optischen Untersuchungen oftmals nur unzureichend berücksichtigt werden. In der Arbeit wurden daher die nicht zu vernachlässigenden Folgen der Einbringung von metallischen Nanostrukturen auf die Morphologie und Grenzflächen zusammen mit den spektralen Veränderungen der Absorptions- und Emissionscharakteristik organischer Moleküle analysiert und in Zusammenhang gebracht, wodurch eine Verbesserung der Effizienzen opto-elektronischer Bauteile erreicht werden soll. / In recent years, opto-electronic devices based on organic molecules have drawn increasing attention, not only in niche markets like building-integrated photovoltaics, but also in the development of organic light emitting diodes (OLEDs) for 4K TV and smartphone displays. Compared to devices based on inorganic semiconductors, especially, organic solar cells lack in efficiency. Therefore, the investigation and understanding of microscopic effects influencing the overall performance are crucial for further efficiency improvements of these technologies.\\ These circumstancs have motivated the topic of this thesis namely the investigation of the electromagnetic interaction between metallic nanostructures and molecular semiconductors, the latter constituting the key unit in organic opto-electronics thin film devices. The unique properties of metal nanostructures and nanoparticles, in particular, their localized surface plasmon resonances (LSPR) and the accompanying enhancement of the local electrical field and the scattering of incoming light are able to enhance both, the absorption and the emission of organic molecules in close proximity. \\ In this thesis, both phenomena were used to enhance the absorption of small molecule organic solar cells, as well as the emission in nanostructured OLEDs. Especially, the effect of artificially generated interfaces and the induced change in morphology due to nanoparticles are investigated with respect to the optical properties of the organic emitters and absorbers. \\
66

Herstellung und Charakterisierung von Nanostrukturen auf der Basis von II-VI-Materialien mittels der Schattenmaskentechnologie / Fabrication and characterisation of nano structures based on II-VI-materials utilising the shadow mask technology

Schumacher, Claus January 2003 (has links) (PDF)
Warum eigentlich Schattenmasken als neues alternatives Verfahren zur lateralen Strukturierung? Alle bislang üblichen Verfahren zur Herstellung lateral begrenzter Halbleiter-Kristalle strukturieren die zuvor epitaktisch flächig aufgewachsenen Schichten nachträglich. Hierdurch können Probleme entstehen. Etwa erzeugen nach einem nasschemischen Ätzprozess freistehende Quantentröge im Randbereich Oberflächenzustände, die zu nicht strahlender Rekombination führen können und daher die Lichtausbeute reduzieren. Der Prozess des erneuten Überwachsens solcher nachträglich geätzter Strukturen ist bislang noch nicht reproduzierbar. Weitere alternative Techniken, wie das Wachstum selbstorganisierter Quantenpunkte oder das it in-situ Spalten, bieten entweder noch keine befriedigende Kontrollmöglichkeit der Strukturgröße oder sind für eine industrielle Anwendung nur wenig praktikabel. Deshalb richtete sich der Blick auf das aus der III-V-Epitaxie bekannte Schattenmasken-Verfahren zur Herstellung makroskopischer sogenannter ,,nipi-Strukturen''. Diese zeigen den interessanten Effekt, dass sich die durch eine Schattenmaske wachsende Struktur in Wachstumsrichtung während des Wachstums von selbst zuspitzt. Die Größe der Masken-Apertur kann dadurch in einer Größenordnung bleiben, wie sie durch ein ultra-violett optisch lithographisches Verfahren hergestellt werden kann. Durch die Maske wächst dennoch, unterstützt von Schatten- und Selbstorganisationseffekten, ein Halbleiter-Kristall, der an seiner Spitze die Ausdehnung einer Nanostruktur hat. Im Rahmen dieser Arbeit gelang es erstmals mittels der Schattenmaskentechnologie eine ZnSe-Draht-Struktur herzustellen, deren Ausdehnung an der Spitze nur noch 25~nm beträgt. Da dieses Verfahren erstmals zur Herstellung von II-VI-Halbleiter-Schichten etabliert wurde, konnte auf keinerlei Vorarbeiten zurückgegriffen werden. Vor der Herstellung geeigneter Schattenmasken mussten zunächst geeignete Belichtungs-Masken für die optische Lithographie entworfen werden, bevor die Ätztechniken zur Herstellung der Schattenmasken selbst optimiert werden konnten. Am Ende der Schattenmaskenentwicklung stand ein Verfahren zur Präparation einer verlässlichen Startoberfläche für die anschließende II-VI-Epitaxie, ohne die ein reproduzierbares Wachstum durch die Schattenmaske nicht möglich ist. Nachdem die technologische Seite abgearbeitet war, mussten anhand geeigneter Epitaxieexperimente die Einflüsse durch die geänderten Wachstumsbedingungen erforscht werden. Insbesondere spielen beim Wachstum durch Schattenmasken Oberflächeneffekte wie Diffusion oder die Orientierung der Masken-Apertur bzgl. der Kristallrichtung eine wesentliche Rolle. Für die in dieser Arbeit verwendete Geometrie des Wachstums (Gruppe-II- und Gruppe-VI-Spezies werden aus bzgl. der Masken-Apertur spiegelbildlichen Raumwinkelbereichen angeboten) wurde herausgefunden, dass die Maskenöffnung entlang der [1-10]-Kristallrichtung orientiert sein sollte. Entlang dieser Richtung sind die Se-Dimere einer Se-reich rekonstruierten Oberfläche orientiert und somit verläuft die Vorzugsdiffusionsrichtung senkrecht zum Draht. Hierdurch können diffusionsgestützt schärfer definierte Flanken des Drahtes wachsen, als bei einer um 90° gedrehten Geometrie. Eigentlich soll nicht nur eine binäre Drahtstruktur entstehen, sondern es soll zum Beispiel ein ZnCdSe-Quantentrog in einen Draht aus einem geeigneten Barriere-Material eingebettet werden. Bei diesen Versuchen stellte sich anhand von Tieftemperatur-PL- und charakteristischen Röntgenphotonen-Spektren heraus, dass Cadmium in einem epitaktisch gewachsenen Draht stärker als andere Spezies auf der Wachstumsoberfläche diffundiert. Eine kontrollierte Deposition eines ZnCdSe-Quantentroges ist nicht möglich. Um Diffusionseffekte zu vermeiden kann statt eines ternären Troges ein binärer in eine nun quaternäre Barriere eingebettet werden. Dieser Ansatz wird bereits in einer parallel zu dieser Arbeit begonnenen Dissertation erfolgreich verfolgt. Bei der Etablierung eines neuen Verfahrens zur Herstellung von Halbleiter-Kristallen müssen auch Aussagen über die strukturellen Eigenschaften der gewachsenen Strukturen getroffen werden. Hierzu wurden die mittels eines ,,Lift-Off''-Prozesses nun freistehenden Drahtstrukturen einer Röntgenstrukturanalyse unterzogen. Die reziproken Gitterkarten zeigen bei senkrechter Orientierung der Beugungsebene relativ zum Draht, dass der Schichtreflex nicht auf der Relaxationsgeraden liegt. Bei einer rein plastischen Relaxation eines Halbleiter-Kristalls müsste dies jedoch für beide Orientierungen der Beugungsebene (senkrecht und parallel zum Draht) der Fall sein. Der Schichtreflex ist in Richtung des Substratreflexes verschoben. Der Netzebenenabstand ist somit also verkleinert. Eine mögliche Erklärung hierfür ist die zylinderförmige ,,Verbiegung'' der Atomebenen im Realraum und somit der Netzebenen im reziproken Raum. Die Überlegungen führen somit auf eine zusätzlich elastische anstelle auschließlich plastischen Relaxation des Kristalls. Um eine solche These erhärten zu können wurde auf der Basis der aus den REM- und AFM-Bildern ausgewerteten Geometrie der Drahtstrukturen ein atomares Modell eines verspannten Kristalls erstellt. Mittels eines Monte-Carlo-Algorithmus' kann dieses Modell seine eingeprägte Verspannungsenergie elastisch abbauen. Die Fouriertransformierte des Realraumbildes des elastisch relaxierten Drahtes lässt sich direkt mit den reziproken Gitterkarten vergleichen. Mittels dieser Simulation konnte die vertikale Verschiebung des Schichtreflexes unmittelbar den zylindrisch ,,verbogenen'' Kristallebenen zugeordnet werden. Ferner ermöglichen die Simulationen erstmalig die qualitative Interpretation der Beugungsmessungen an den Schattenmasken selbst. Die im Rahmen der Dissertation von H.R.~Ress vorgenommenen Beugungsmessungen an den Schattenmasken zeigen neben der vertikalen Verschiebung des AlGaAs-Schichtreflexes charakteristische diffuse Streifen um den Schichtreflex, die bislang unverstanden waren. Die Simulationen zeigen, dass diese Streifen erst bei der elastischen Relaxation des Drahtes durch die konvexe Wölbung der Drahtflanke entstehen. Diese diffusen Streifen lassen sich in den in dieser Arbeit gewachsenen Drähten aus II-VI-Halbleitern nicht unmittelbar nachweisen. Da die Schattenmasken bedingt durch das Herstellungsverfahren eine Rauigkeit der Schattenkanten von bis zu 150~nm aufweisen sind auch die Flanken der durch die Masken gewachsenen Strukturen stark aufgeraut. Deshalb streuen die den Draht begrenzenden Fassetten nicht kohärent und bieten entsprechend keine definierte Abbruchbedingung der Fouriertransformation. / What is the motivation for the establishment of an alternative technique for lateral structuring? Till date, for definition of semiconductor nano structures, the established technology relies on the post-growth, ex-situ structuring of layer samples. The processes involved in this technology may cause a number of problems. For instance, wet chemical etching of quantum wires generate surface states which result in non radiative recombination of carriers and hence reduce the optical efficiency. Secondly, the process of overgrowth of such etched structures is not well controlled so far. Further alternative techniques like self organised growth of quantum dots or in-situ cleaved edge overgrowth either do not provide a satisfying size control or are too laborious for them to be industrially practicable. Thus, efforts were directed towards the use of shadow mask technique, a process well established for the fabrication of III-V n-i-p-i structures. These structures exhibit the interesting effect of an acuminating crystal during growth. A standard optical lithography process which achieves mask apertures down to 300~nm is sufficient: Driven by the effect of shadow and self organisation, the structure growing within the growth cavity has nano scale dimension at its tip. In the course of the work we succeeded, for the first time, to fabricate a ZnSe wire structure with a tip width of only 25nm. Since this technique was applied to the II-VI semiconductors for the first time, no relevant literature was available for the the preparatory work. Prior to the fabrication of suitable shadow masks, it is required to (a) design lithographic masks and (b) establish appropriate etching procedures. Additionally, the procedure requires the preparation of a reliable III-V surface for the subsequent II-VI growth. After successful implementation of the techniques, suitable experiments were developed which enabled the investigation of the growth conditions for the growth within a growth cavity. In particular, surface effects, like diffusion or the orientation of the mask aperture with respect to the symmetry directions of the crystal, play an considerable role. For the samples dicussed in this work, an alignment of the effusion cells was performed such that, group II and VI molecular beams impinged on the substrate at equal incident angles with respect to the surface normal. In this geometry, it was found that the highest lateral precision is achieved with mask apertures parallel to the [1-10] crystal direction. The selenium dimers are oriented along this direction and hence the main diffusion occures perpendicular to the wire. Hence the edges of the forming wire are more pronounced in this orientation. Originally, not only binary but also ternary quantum structures, for instance ZnCdSe quantum wells embedded into ZnSe barriers, were planned. Low temperature PL and EDAX experiments revealed that the cadmium diffusion coefficient is much larger than those of zinc and selenium. Therefore, a homogeneous cadmium distribution inside the ternary quantum well alloy, could not be achieved. To overcome this problem of segregation, a binary well can be embedded within a quaternary barrier. This approach was successfully pursued in a parallel endeavour. When a novel technique for fabrication of semiconductor structures is established, it is indespensable to provide evidence of high structural quality of the grown crystals. Therefore, the free standing wire structures were probed by high resolution x-ray diffraction analysis after the removal of the mask (lift-off process). The reciprocal space maps acquired in these experiments exhibit that the layer reflection does not lie on the line of relaxation only when the plane of diffraction is aligned perpendicular to the wire. Considering only plastic relaxation of the lattice, a deviation from the line of relaxation should occur for neither parallel nor perpendicular orientation. The layer reflection has moved towards the substrate reflection. The distance of lattice planes has therefore decreased. One possible explanation for this is a cylindrically shaped ''bending'' of atom planes in real space and consequentially of the lattice planes in reciprocal space. In conclusion, an additional elastic, instead of solely plastic relaxation, of the crystal has to be considered. To substantiate such a thesis, an atomic model was developed. The geometry of the modelled wire structures was choosen, based on the SEM and AFM images. The strain incorporated into the modelled crystal was relaxed by means of a Monte Carlo algorithm. The fourier transform of the real space image is related to the reciprocal space map directly. Based one this simulations, the vertically displacement of the layer reflection can be attributed to cylindrically bending of the lattice planes. Furthermore, these simulations enabled a qualitative interpretation of the diffractograms of the shadow masks themselves. In the course of this work, diffraction measurements were carried out on the III-V shadow masks by H.R. Ress. Apart from the vertical displacement of the AlGaAs layer reflection they were found to exhibit a characteristic cross-shaped diffuse reflection surrounding the layer reflection. This effect was not understood until now. The simulations clarified these features as due to a convex curvature of the wire's edges. Due to the low scattering volume of the II-VI wire structures fabricated in this work, these diffuse intensity is not observeable. Additionally, the fabrication technique itself brings in a roughness of the mask's shadow edges of roughly 150~nm, which in turn affects the roughness of wire structure. Hence the bounding facets of the wire do not scatter coherently and hence no defined termination condiction of the fourier transform is defined.
67

Photostromspektroskopie an Nanokontakten : Tunnel- und Einzelmolekülkontakte unter Femtosekundenbeleuchtung / Photocurrent spectroscopy on nanocontacts : tunnel and single molecule junctions under femtosecond illumination

Dantscher, Sandra January 2006 (has links) (PDF)
In dieser Arbeit wurde der lichtinduzierte Ladungstransfer in Nanokontakten untersucht. Dabei wurden sowohl Tunnel- als auch Molekülkontakte eingesetzt. Zur Präparation der Tunnelkontakte standen zwei verschiedene Methoden zur Verfügung: mechanisch kontrollierte Bruchkontakte und elektromigrierte Nanokontakte. Die Bruchkontakttechnik bietet die Möglichkeit, den Abstand der Elektroden mit Sub-AA-Genauigkeit zu verändern, während die elektromigrierten Kontakte einen durch die Präparationsbedingungen fest vorgegebenen Abstand haben. Bei den hier untersuchten Molekülen handelt es sich um Dithiole, die über eine Schwefel-Gold-Bindung an die Elektroden gebunden sind. Die Beleuchtung erfolgte im Fall der Bruchkontakte mit ultrakurzen Laserpulsen bei 800 nm und durch Frequenzverdopplung bei 400 nm. Durch Fokussierung auf einen Radius von ca. 100 mum wurden Spitzenintensitäten von 10^7 Wcm^-2 (800 nm) bzw. 10^6 Wcm^-2 (400 nm) erreicht. Die Bruchkontakte (Tunnel- und Molekülkontakte) waren bis zu den auftretenden Maximalintensitäten von 10^7 Wcm^-2 stabil. Für alle untersuchten Tunnelkontakte konnte eine lichtinduzierte Stromkomponente von bis zu 1 nA nachgewiesen werden. Sie ist proportional zum jeweils fließenden mittleren DC-Strom und beträgt typischerweise einige Prozent davon. Dieser Strom wurde auf die thermische Ausdehnung der Elektroden auf Grund der dort durch Absorption deponierten Lichtenergie zurückgeführt. Aus der relativen Größe des lichtinduzierten Signals und einem Wert der Austrittsarbeit von Gold von ca. 4,7 eV ergibt sich eine Expansion jeder Elektrode um etwa 1 pm. Dies ist in guter Überinstimmung mit einem einfachen thermischen Modell der freitragenden Elektroden. Bei einigen Kontakten wurde noch eine weitere lichtinduzierte Stromkomponente in der Größenordnung einiger pA gefunden, die nicht von der angelegten Biasspannung abhängt, aber linear mit der Laserleistung zunimmt. Ein Modell, das diese Befunde erklärt, geht von einer asymmetrischen Anregung in den beiden Elektroden aus. Somit ergibt sich ein Nettostrom angeregter Elektronen in eine Richtung. Die dazugehörige gemessene Quanteneffizienz liegt nahe bei 1, was ein Indiz auf einen Beitrag von sekundären heißen Elektronen zum Strom ist. Auch bei den Molekülkontakten konnte eine lichtinduzierte Stromkomponente identifiziert werden, die linear von der Laserintensität abhängt. Sie wird, ähnlich wie im Fall der Tunnelkontakte, der thermisch verursachten Expansion der Elektroden zugeschrieben, allerdings ließ sich der genaue Prozess bisher noch nicht erklären. Es ist anzunehmen, dass die Zunahme der Elektrodenlänge durch eine Umordnung auf atomarer Längenskala in der vordersten Spitze der Goldelektrode kompensiert wird, da dies der duktilste Bereich des gesamten Kontakts ist. Der genaue Prozess konnte jedoch noch nicht geklärt werden. Messungen, die den Elektrodenabstand um einige AA veränderten, lieferten weitere Indizien für die Komplexität der Molekülkontakte. So trat in manchen Fällen eine starke Korrelation zwischen Veränderungen des mittleren DC-Stroms und des lichtinduzierten Signals auf, was auf einen einzelnen Transportpfad für beide Signale hindeutet. Andererseits veränderten sich die beiden Ströme teilweise aber auch unabhängig voneinander, was nur durch mehrere parallele Transportkanäle im Kontakt erklärt werden kann. Zusätzlich zum thermisch verursachten lichtinduzierten Signal wurden, wie im Fall der Tunnelkontakte, biasspannungsunabhängige Ströme identifiziert. Sie sind in der gleichen Größenordnung wie in Tunnelkontakten und werden somit der gleichen Ursache zugeschrieben, nämlich einer asymmetrischen Anregung in den Metallelektroden, die zu einem Nettostrom in einer Richtung führt. Im zweiten Teil der Arbeit wurden elektromigrierte Tunnelkontakte untersucht. Da diese Kontakte einen sehr großen Elektrodenabstand in der Größenordnung von 30 nm aufwiesen, konnte nur bei Kombination von einer Biasspannung von mehreren Volt mit Femtosekundenbeleuchtung ein Strom im Bereich von 100 fA detektiert werden. Durch Verbesserung der Fokussierung im Vergleich zu den Experimenten an den Bruchkontakten wurden Spitzenintensitäten von 10^11 Wcm^-2 erreicht. Die lichtinduzierten Tunnelströme zeigen eine quadratische Intensitätsabhängigkeit, was einem Zwei-Photonen-Prozess entspricht, sowie eine ebenfalls nichtlineare Spannungsabhängigkeit. Zur Beschreibung der Daten wurde das Modell einer Multiphotonen-Photofeldemission verwendet, das auf der Fowler-Nordheim-Formel für Feldemission basiert. Durch geeignete Wahl der Modellparameter (Elektrodenabstand, Krümmungsradius der Elektrodenspitze und Barrierenhöhe im Tunnelkontakt) war es möglich, die Spannungsabhängigkeit des lichtinduzierten Signals zu reproduzieren. / The goal of the present work was the investigation of light induced charge transfer in nano contacts. In this context, tunnel and molecular contacts were employed. Tunnel contacts were prepared by two different methods: the mechanically controlled break-junction technique (MCBJ) and the electromigration of nano junctions. The MCBJs make it possible to vary the distance of the electrodes with sub-AA precision while the gap width of the electromigrated contacts has a fixed value which is determined by the preparation conditions. All molecules under investigation are dithiols that bind to the metallic electrode by a strong gold-sulfur bonding. In the experiments with the MCBJs the contacts were illuminated with ultrashort laser pulses at 800 nm and its second harmonic at 400 nm. Focussing on a spot radius of approximately 100 mum resulted in peak intensities of 10^7 Wcm^-2 for 800 nm and 10^6 Wcm^-2 for 400 nm. The MCBJs (tunnel and molecular junctions) were stable up to the maximum intensities of 10^7 Wcm^-2. For all investigated tunnel junctions a light induced current of up to 1 nA could be detected. This current is proportional to the respective average DC current through the junction (caused by an applied bias voltage) and typically amounts to some percent of it. The light induced current component was attributed to a thermal expansion of the electrodes due to photon absorption. From its relative magnitude and the work function of gold of 4.7 eV an expansion of each electrode of about 1 pm could be deduced. This is in good agreement with a simple thermal model for the freestanding electrodes. For some contacts an additional light induced current component in the range of some pA was identified. It is independent of the applied bias, but increases linearily with the laser power. A model that accounts for these findings is based on an asymmetric excitation in the two electrodes. Thus, a net current of excited electrons in one particular direction is generated. The corresponding measured quantum efficiency is approximately 1 indicating a significant contribution of secondary hot charge carriers to the current. Also, for the molecular contacts a light induced current component could be identified that depends linearily on the laser intensity. Like in the case of the tunnel contacts it is accounted for by the thermal expansion of the electrodes. However, it has not yet been possible to explain the precise mechanism. The increase of the electrode length is presumably compensated by a rearrangement on the atomic scale in the foremost part of the tip since this is the most ductile region of the whole contact. A detailed explanation however is still missing. Measurements where the electrode separation is varied by some AA provide further evidence for the complexity of the molecular junctions. In some cases a strong correlation between changes in the average DC current and the light induced signal could be observed. This suggests a single transport path for the two signals. On the other hand the signals sometimes changed independently of each other. This can only be explained by several parallel transport channels in the contact. In addition to the thermally caused light induced signal also a bias independent current could be identified, like in the case of tunnel junctions. These currents are in the same order of magnitude as in tunnel contacts and are therefore attributed to the same origin, i.e. an asymmetric excitation in the metal electrodes that causes a net current in one direction. For bias voltages up to +/- 1 V this current contribution is constant and in particular doesn't exhibit any spectral features. In the second part of the present work electromigrated tunnel contacts were investigated. These junctions exhibited a very large electrode separation of around 30 nm. Therefore, only the combination of a bias voltage of some volts and illumination with femtosecond laser pulses yielded a detectable current in the range of 100 fA. By improving the focussing with respect to the MCBJ experiments peak intensities up to 10^11 Wcm^-2 were reached. The light induced tunnel currents exhibit a quadratic intensity dependence that corresponds to a two-photon process. Moreover, the bias dependence is non-linear as well. For the description of the data a model of a multi-photon photo-field emission was used that is based on the Fowler-Nordheim equation of field emission. By a suitable choice of the model parameters (electrode separation, radius of curvature of the electrode tips and barrier height in the tunnel junction) it was possible to reproduce the bias dependence of the light-induced signal.
68

Functional plasmonic nanocircuitry / Funktionelle plasmonische Nanoschaltkreise

Razinskas, Gary January 2018 (has links) (PDF)
In this work, functional plasmonic nanocircuitry is examined as a key of revolutionizing state-of-the-art electronic and photonic circuitry in terms of integration density and transmission bandwidth. In this context, numerical simulations enable the design of dedicated devices, which allow fundamental control of photon flow at the nanometer scale via single or multiple plasmonic eigenmodes. The deterministic synthesis and in situ analysis of these eigenmodes is demonstrated and constitutes an indispensable requirement for the practical use of any device. By exploiting the existence of multiple eigenmodes and coherence - both not accessible in classical electronics - a nanoscale directional coupler for the ultrafast spatial and spatiotemporal coherent control of plasmon propagation is conceived. Future widespread application of plasmonic nanocircuitry in quantum technologies is boosted by the promising demonstrations of spin-optical and quantum plasmonic nanocircuitry. / In dieser Arbeit werden funktionelle plasmonische Schaltkreise als Schlüssel zur Revolutionierung modernster elektronischer und photonischer Schaltkreise in Bezug auf deren Integrationsdichte und Übertragungsbandbreite untersucht. Mit Hilfe numerischer Simulationen werden Bauelemente speziell für die Steuerung des Photonenflusses im Nanometerbereich mittels einzelner bzw. mehrerer plasmonischer Eigenmoden konzipiert. Die deterministische Synthese und Analyse solcher Eigenmoden wird aufgezeigt und stellt eine unverzichtbare Voraussetzung für die praktische Anwendung eines jeden Nanoschaltkreises dar. Durch die Existenz mehrerer Eigenmoden und Kohärenz - beide in der klassischen Elektronik nicht zugänglich - lässt sich ein nanoskaliger Richtkoppler für die ultraschnelle räumliche und räumlich-zeitliche kohärente Kontrolle der Plasmonenausbreitung entwerfen. Künftig werden plasmonische Schaltkreise aufgrund der vielversprechenden Demonstrationen von spinoptischen und quantenplasmonischen Schaltkreisen in Quantentechnologien weite Verbreitung finden.
69

Lorentz-Mikroskopie an ferromagnetischen Nanostrukturen im Vortex-Regime

Huber, Michael January 2007 (has links)
Zugl.: Regensburg, Univ., Diss., 2007
70

Deposition and growth of various nanomaterials at nanostructured interfaces

Bock, Eva. January 2009 (has links)
Heidelberg, Univ., Diss., 2008.

Page generated in 0.0676 seconds