• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 57
  • 17
  • 4
  • 1
  • Tagged with
  • 161
  • 78
  • 37
  • 34
  • 34
  • 34
  • 32
  • 24
  • 22
  • 18
  • 16
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Zur Wechselwirkung dendritischer, Thiol-funktionalisierter Monolagen mit Goldnanopartikeln

Emmrich, Eva. Unknown Date (has links) (PDF)
Essen, Universiẗat Duisburg-Essen, Chemie, Diss., 2004--Duisburg.
92

Optische Beobachtung von oberflächengebundenen und frei beweglichen Nanopartikeln

Finder, Christiane. Unknown Date (has links) (PDF)
Essen, Universiẗat, Diss., 2005--Duisburg.
93

Investigation of Polymer Based Materials in Thermoelectric Applications

Luo, Jinji 25 June 2015 (has links) (PDF)
With the advancements in the field of wireless sensor networks (WSNs), more and more applications require the sensor nodes to have long lifetime. Energy harvesting sources, e.g. thermoelectric generators (TEGs), can be used to increase the lifetime and capability of the WSNs. Integration of energy harvesters into sensor nodes of WSNs can realize self powered systems, providing the possibility for maintenance free WSNs. TEGs can convert the existing temperature differences into electricity. The efficiency of TEGs is directly related to the dimensionless figure of merit (ZT) of materials, which is given as ZT=σS^2 T/k, where σ is the electrical conductivity, S is the Seebeck coefficient, k is the thermal conductivity, T is the temperature and σS^2 is the power factor. Traditional thermoelectric (TE) materials are based on inorganic materials, of which the thermal conductivity is high. Over the past decade, the use of nanostructuring technology, e.g. superlattice, could decrease the thermal conductivity in order to enhance the efficiency of TE materials. However, the high cost and the rigidity of inorganic TE materials are limiting factors. As alternatives, polymer based materials have become the research focus due to their intrinsic low thermal conductivity, high flexibility and high electrical conductivity. Moreover, polymer based materials could be fabricated in solution form, giving the possibility for employing printing techniques hence a decrease in the production cost. Unlike the typical approach, in which secondary dopants are added into PEDOT:PSS solutions to modify the power factor of polymer films, this thesis is focused on a more efficient method to improve TE properties. This thesis demonstrates for the first time that post treatment of PEDOT:PSS films with the secondary dopant DMSO as the medium results in a much larger power factor than the traditional addition method. The post treatment method also avoids the usually required mixing step involved in the addition method. Different solvents were selected to discuss the impact factors in the modification of the power factor by this post treatment approach. The post treatment of PEDOT:PSS films was then extended to utilize a green solvent EMIMBF_4 (an ionic liquid) as the medium. EMIMBF_4 is found to exchange ions with PEDOT:PSS films. As a result, the EMIM^+ cations remain in the films and reduce the oxidation level of PEDOT chains, which affects the Seebeck coefficient and the electrical conductivity. Furthermore, TE materials based on hybrid composites with polymer as the matrix and Te nanostructures as the nanoinclusions were investigated. This thesis successfully developed a green synthesis method to obtain Te nanostructures, in which a non toxic reductant and a non toxic Te sources were used. Well controlled Te nanostructures including nanorods, nanowires and nanotubes were synthesized by wet chemical and hydrothermal synthesis. Those as synthesized Te nanowires were then integrated into PEDOT:PSS solution for composite films fabrication. A high Seebeck coefficient up to 200 μV/K was observed in the composite film. / Mit den Weiterentwicklungen der Drahtlosen Sensornetzwerke (engl. WSN, wireless sensor networks) stellen immer mehr Anwendungen die Forderung einer langen Lebensdauer der Sensorknoten. Energiegewinnungssysteme (engl. Energy Harvesters) wie z.B. thermoelektrische Generatoren (TEGs) können genutzt werden, um die Lebensdauer und Leistungsfähigkeit der WSN zu steigern. Mit der Integration von Energy Harvesters können WSN ohne äußere Stromversorgung realisiert und somit die Möglichkeit zur Wartungsfreiheit geschaffen werden. TEGs liefern Energie durch die Umwandlung einer Temperaturdifferenz in Elektrizität. Die Effektivität der TEG ist direkt verbunden mit der Material-Kennzahl ZT und ist gegeben durch ZT=σS^2 T/k, wobei σ die elektrische Leitfähigkeit ist, S der Seebeck Koeffizient, k die thermische Leifähigkeit, T die Temperatur und σS^2 der Leistungsfaktor. Herkömmliche thermoelektrische (TE) Materialien basieren auf anorganischen Materialien, von denen die thermische Leitfähigkeit hoch ist. Im Laufe des letzten Jahrzehnts konnte durch den Einsatz der Nanostrukturierung die thermische Leitfähigkeit verringern werden um damit die Effizienz von TE-Materialien zu steigern. Die Steifigkeit dieser Materialien ist ein anderer Aspekt. Als Alternative für anorganische TE Materialien sind Polymer basierte TE Materialien zum Fokus der Forschung geworden aufgrund einer intrinsisch niedrigen thermischen Leitfähigkeit, hohen Flexibilität und hohen elektrischen Leitfähigkeit. Des Weiteren können diese Polymere in gelöster Form verarbeitet werden, was die Möglichkeit für den Einsatz von Drucktechnologien und damit geringeren Produktionskosten gibt. Anders als der herkömmliche Ansatz den Leistungsfaktor der Polymerfilme durch die Ergänzung von sekundären Dotanten in PEDOT:PSS Lösungen zu verändern, wurde in dieser Arbeit eine effizientere Methode zur Verbesserung der TE Eigenschaften gesucht. In dieser Arbeit wird zum ersten Mal gezeigt, dass die Nachbehandlung von PEDOT:PSS Schichten mit sekundären Dotanten Dimethylsulfoxid (DMSO) als Medium der Nachbehandlung zu einem viel höheren Leistungsfaktor führt als bei der Zugabemethode und außerdem die sonst erforderliche Mischprocedur vermeidet. Es wurden verschiedene Lösungsmittel ausgewählt um die Einflussfaktoren bei der Modifikation des Leistungsfaktors durch die Nachbehandlung von Polymerschichten zu diskutieren. Die Nachbehandlung von PEDOT:PSS Schichten wurde nachfolgend erweitert um das umweltfreundliche Lösungsmittel EMIMBF4 (eine ionische Flüssigkeit) als das Medium einzusetzen. EMIMBF4 ist bekannt für den Austausch von Ionen mit PEDOT:PSS Schichten, so dass EMIM Kationen in der Schicht verbleiben, die Oxidationsstufe der PEDOT-Ketten senken und damit den Seebeck-Koeffizient und die elektrische Leitfähigkeit beeinflussen. Des Weiteren konzentriert sich diese Arbeit auf TE Materialien basierend auf Kompositen aus Polymeren mit Nanoeinlagerungen. Erfolgreiche Syntheseansätze wurden für Tellur-Nanostrukturen entwickelt, bei denen keine giftigen Reduktionsmittel und keine giftigen Tellur-Quellen zur Verwendung kamen. Es erfolgte die Erzeugung von kontrollierten Tellur-Nanostrukturen, einschließlich Nanostäben, Nanodrähten und Nanoröhren, mit nass-chemischer und hydrothermaler Synthese. Die so hergestellten Nanodrähte wurden dann in PEDOT:PSS Lösungen integriert für die Herstellung von Komposite-Schichten. Dabei konnte ein hoher Seebeck-Koeffizienten, bis zu 200 μV/K, festgestellt werden.
94

Synthese funktionaler organisch/anorganischer Hybridmaterialien und deren Anwendung zur Gestaltung von Grenz- und Oberflächen

Göring, Mandy 20 January 2020 (has links)
In der vorliegenden Arbeit werden Zwillingsmonomere, die eine Aminogruppe über eine Alkylkette kovalent am Siliziumatom gebunden tragen, synthetisiert, organisch/anorganischen Hybridmaterialien aus diesen Monomeren hergestellt und in der Herstellung von Metall/Kunststoff-Verbunde angewendet. Über Reaktionen der Aminogruppe mit Benzaldehyden und cyclischen Carbonsäureanhydriden am Zwillingsmonomer 2-(3-Amino-n-propyl)-2-methyl-4H-1,3,2-benzodioxasilin können weitere funktionale Zwillingsmonomere synthetisiert werden. Bei der Herstellung von Hybridmaterialien liegt der Fokus auf der simultanen Zwillingspolymerisation der funktionellen Monomere mit dem Monomer 2,2’-Spirobi[4H-1,3,2-benzodioxasilin]. Die erhaltenen Materialien werden mittels spektroskopischer und thermischer Verfahren untersucht. Die Zugänglichkeit der Aminogruppe in den Hybridmaterialien wird mittels Modellreaktionen untersucht. Die Zwillingsmonomere werden zudem auf verschiedene Metallsubstrate aufgebracht, polymerisiert und anschließend hinsichtlich der Oberflächenrauheit, Abriebfestigkeit und Oberflächenpolarität untersucht. Die in der Beschichtung integrierte Aminogruppe kann zur kovalenten Anbindung eines Maleinsäureanhydrid-Copolymers genutzt werden. Bei der Herstellung von Metall/Kunststoff-Verbunden werden Press- und Spritzgießverfahren genutzt. Hier können die funktionellen Zwillingsmonomere erfolgreich als Haftvermittler eingesetzt und auf verschiedene Metall/Thermoplast-Kombinationen angewendet werden.:Inhaltsverzeichnis Abkürzungsverzeichnis 1 Einleitung 1.1 Einleitung und Motivation 1.2 Zielsetzung 2 Kenntnisstand 2.1 Leichtbau, Verbundwerkstoffe und Werkstoffverbunde 2.1.1 Metall/Kunststoff-Hybridbauteile 2.1.2 Haftungsmechanismen 2.1.3 Methoden zur Vorbehandlung einer Metalloberfläche für die Herstellung von Metall/Kunststoff-Verbunde 2.1.4 Prüfmethoden 2.2 Organisch/anorganische Hybridmaterialien 2.2.1 Klassifizierung von Kompositen und Hybridmaterialien 2.2.2 Synthesestrategien 2.2.3 Zwillingspolymerisation 3 Ergebnisse und Diskussion 3.1 Amino-funktionalisierte Zwillingsmonomere 3.1.1 Synthese von amino-funktionalisierten Zwillingsmonomeren 3.1.2 Synthese von amino-funktionalisierten organisch/anorganischen Hybridmaterialien 3.1.3 Charakterisierung der organisch/anorganischen Hybridmaterialien 3.1.4 Zugänglichkeit der funktionellen Gruppe der organisch/anorganischen Hybridmaterialien 3.1.5 Trifunktionelles Zwillingsmonomer 3.2 Derivatisierung der amino-funktionalisierten ZM 3.2.1 Bildung einer Amidbindung 3.2.2 Bildung eines Azomethins 3.3 Verwendung der (simultaner) Zwillingspolymerisation zur Gestaltung von Oberflächen 3.3.1 Beschichtung unterschiedlicher Metallsubstrate 3.3.2 Mikroverschleiß 3.3.3 Optimierung des Beschichtungsvorgangs zur Generierung dünner Schichten . 3.3.4 Funktionalisierung mit Maleinsäureanhydrid-(MSA)-Copolymer 3.4 Herstellung von Metall/Kunststoff-Verbunde 3.4.1 Herstellung im Pressverfahren 3.4.2 Herstellung im Spritzgießprozess 3.4.3 Allgemeine Betrachtungen zur Verbundfestigkeit 4 Zusammenfassung und Ausblick 4.1 Zusammenfassung 4.2 Ausblick 5 Experimenteller Teil 5.1 Geräte und Chemikalien 5.2 Synthese 5.2.1 2,2’-Spirobi[4H-1,3,2-benzodioxasilin] (1) 5.2.2 Synthese von amino-funktionalisierten Zwillingsmonomeren 5.2.3 Derivatisierung von 2-(3-Amino-n-propyl)-2-methyl-4H-1,3,2-benzodioxasilin (2) 5.3 Organisch/anorganische Hybridmaterialien 5.3.1 Synthese organisch/anorganische Hybridmaterialien 5.3.2 Extraktion der Hybridmaterialien 5.3.3 Umsetzung der Hybridmaterialien mit Aldehyden 5.3.4 Umsetzung der Hybridmaterialien mit tert-Butylglycidylether (t-BGE) 5.3.5 Umsetzung der Hybridmaterialien mit Methyliodid 5.4 Herstellung von Schichten mittels Zwillingspolymerisation 5.4.1 Materialien 5.4.2 Beschichtungsvorgang 5.4.3 Funktionalisierung mit MSA-Copolymer 5.4.4 Mikro-Ritzprüfung 5.4.5 Bestimmung der Schichtdicke mittels Rasterkraftmikroskopie 5.5 Herstellung von Metall/Kunstsoff-Verbunde 5.5.1 Verwendete Materialien 5.5.2 Herstellung im Pressverfahren 5.5.3 Herstellung im Spritzgießprozess 5.5.4 Prüfung 6 Anhang 6.1 Zusammensetzung Hybridmaterialien 6.2 TG-MS-Analyse der Verbindungen 1, 2, 9, 10 und 11 6.3 Thermisches Verhalten – Beobachtung DSC 6.4 1H-13C-Korrelationsspektren (gs-HSQC) ausgewählter Extrakte 6.5 XPS-Analyse der Hybridmaterialien 6.6 Betrachtungen zum Reaktionsfortschritt bei der Herstellung von Hybridmaterialien 6.7 Bestimmung der Schichtdicke mittels Rasterkraftmikroskopie - Beispiel 6.8 Bruchbilder Literaturverzeichnis Danksagung Selbstständigkeitserklärung Lebenslauf Publikationen und Posterpräsentationen
95

Selective growth of tilted ZnO nanoneedles and nanowires by PLD of patterned sapphire substrates

Shkurmanov, Alexander, Sturm, Chris, Lenzner, Jörg, Feuillet, Guy, Tendille, Florian, De Mierry, Philippe, Grundmann, Marius 22 September 2016 (has links) (PDF)
We report the possibility to control the tilting of nanoneedles and nanowires by using structured sapphire substrates. The advantage of the reported strategy is to obtain well oriented growth along a single direction tilted with respect to the surface normal, whereas the growth in other directions is suppressed. In our particular case, the nanostructures are tilted with respect to the surface normal by an angle of 58°. Moreover, we demonstrate that variation of the nanostructures shape from nanoneedles to cylindrical nanowires by using SiO2 layer is observed.
96

Shape Evolution of Nanostructures by Thermal and Ion Beam Processing / Formänderung von Nanostrukturen durch thermische und ionenstrahlbasierte Prozesse / Modeling & Atomistic Simulations

Röntzsch, Lars 10 January 2008 (has links) (PDF)
Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc.
97

Transport phenomena in metallic nanostructures: an ab initio approach / Transporteigenschaften metallischer Nanostrukturen: eine ab-initio Beschreibung

Zahn, Peter 03 May 2005 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit werden ab initio Berechnungen des Restwiderstandes von metallischen Nanostrukturen vorgestellt. Die elektronische Struktur der idealen Systeme wird mit Hilfe einer Screened KKR Greenschen Funktionsmethode im Rahmen der Vielfachstreutheorie auf der Grundlage der Dichtefunktionaltheorie berechnet. Die Potentiale von Punktdefekten werden selbstkonsistent mit Hilfe einer Dyson-Gleichung für die Greensche Funktion des gestörten Systems berechnet. Unter Nutzung der ab initio Ubergangswahrscheinlichkeiten wird der Restwiderstand durch Lösung der quasi-klassischen Boltzmann-Gleichung bestimmt. Ergebnisse für ultradünne Cu-Filme und die Leitfähigkeitsanomalie während des Wachstums von Co/Cu-Vielfachschichten werden vorgestellt. Der Einfluss von Oberflächen, geordneten und ungeordneten Grenzflächenlegierungen und von Defekten an verschiedenen Positionen in der Vielfachschicht auf den Effekt des Giant Magnetoresistance wird untersucht. Die selbstkonsistente Berechnung der Streueigenschaften und die verbesserte Lösung der Boltzmann-Transportgleichung unter Einbeziehung der Vertex-Korrekturen stellen ein leistungsfähiges Werkzeug zur umfassenden theoretischen Beschreibung dar. Sie verhelfen zu nützlichen Einsichten in die mikroskopischen Prozesse, die die Transporteigenschaften von nanostrukturierten Materialen bestimmen. / A powerful formalism for the calculation of the residual resistivity of metallic nanostructured materials without adjustable parameters is presented. The electronic structure of the unperturbed system is calculated using a screended KKR multiple scattering Green's function formalism in the framework of density functional theory. The scattering potential of point defects is calculated self-consistently by solving a Dyson equation for the Green's function of the perturbed system. Using the ab initio scattering probabilities the residual resistivity was calculated solving the quasiclassical Boltzmann equation. Examples are given for the resistivity of ultrathin Cu films and the conductance anomaly during the growth of a Co/Cu multilayer. Furthermore, the influence of surfaces, ordered and disordered interface alloys and defects at different positions in the multilayer on the effect of Giant Magnetoresistance is investigated. The self-consistent calculation of the scattering properties and the improved treatment of the Boltzmann transport equation including vertex corrections provide a powerful tool for a comprehensive theoretical description and a helpful insight into the microscopic processes determining the transport properties of magnetic nanostructured materials.
98

Propagation, Scattering and Amplification of Surface Plasmons in Thin Silver Films / Propagation, Streuung und Verstärkung von Oberflächenplasmonen in dünnen Silberfilmen

Seidel, Jan 01 May 2005 (has links) (PDF)
Plasmons, i.e. collective oscillations of conduction electrons, have a strong influence on the optical properties of metal micro- and nanostructures and are of great interest for novel photonic devices. Here, plasmons on metal-dielectric interfaces are investigated using near-field optical microscopy and differential angular reflectance spectroscopy. Emphasis is placed on the study of plasmon interaction with individual nanostructures and on the nonlinear process of surface plasmon amplification. Specifically, plasmon transmission across single grooves in thin silver films is investigated with the help of a near-field optical microscope. It is found that plasmon transmittance as a function of groove width shows a non-monotonic behavior, exhibiting certain favorable groove widths with strongly decreased transmittance values. Additionally, evidence of groove-mediated plasmon mode coupling is observed. Spatial beating due to different plasmon wave vectors produces distinct interference features in near-field optical images. A theoretical approach explains these observations and gives estimated coupling effciencies deduced from visibility considerations. Furthermore, stimulated emission of surface plasmons induced by optical pumping using an organic dye solution is demonstrated for the first time. For this a novel twin-attenuated-total-reflection scheme is introduced. The experiment is described by a theoretical model which exhibits very good agreement. Together they provide clear evidence of the claimed process.
99

Abscheidung von (Kohlenstoff)Nanostrukturen mittels PE-HF-CVD

Pacal, Frantisek 04 December 2006 (has links) (PDF)
Kohlenstoffnanoröhren besitzen eine Reihe von einzigartigen strukturellen, mechanischen und elektronischen Eigenschaften. Sie können in Abhängigkeit von der Chiralität metallisches oder halbleitendes Verhalten zeigen, hohe mechanische, thermische und chemische Stabilität aufweisen, können chemisch funktionalisiert werden und sind hervorragende Elektronenemitter. Vor dem Hintergrund dieser vielversprechenden Eigenschaften wurde schnell die Frage von möglichen technischen Anwendungen von Kohlenstoffnanoröhren gestellt. Vor einer umfassenden kommerziellen Umsetzung sind allerdings noch grundlegende Untersuchungen, sowohl zu den Eigenschaften als auch zu einer gezielten Herstellung und Manipulation, erforderlich. Der Mechanismus des gerichteten Wachstums der Kohlenstoffnanoröhren ist äußerst komplex, weshalb er bis heute nicht völlig aufgeklärt werden konnte. Der Grund liegt in der Vielfalt der möglichen Reaktionen zwischen den Molekülen in der Gasphase, der Wechselwirkung zwischen Gasphase und verwendeten Unterlagen und den Reaktionsmechanismen auf diesen Substratoberflächen. Bislang fehlt es an einem einheitlichen Verständnis des Entstehungsprozesses von Kohlenstoffnanoröhren bzw. –nanostrukturen. Der Schwerpunkt dieser Arbeit liegt in der Abscheidung von Kohlenstoffnanostrukturen mittels plasmaaktivierter und hitzdrahtgestützter chemischen Gasphasenabscheidung -„Plasma enhanced hot filament chemical vapor deposition“ (PE-HF-CVD). Es sollen Abscheidungsbedingungen für die Synthese von unterschiedlichen Kohlenstoffnanostrukturen gefunden und optimiert werden. Die Darstellung und Charakterisierung von „phasenreinen“, mehrwandigen, tubularen Röhren auf unterschiedlichen metallbeschichteten Substraten steht im Vordergrund der Arbeit. Das Interesse besteht in einer Abscheidung bei niedrigen Substrattemperaturen, damit temperaturempfindliche Werkstoffe wie z.B. Glas, als Substratmaterialien eingesetzt werden können. Mittels der PE-HF-CVD Methode, die als vielversprechende Technologie zur Darstellung gerichteter Kohlenstoffnanoröhren gilt, sollen Erkenntnisse zum Einfluss einzelner Abscheidungsparameter auf den Wachstumsprozess von Nanoröhren gewonnen werden, wozu auch die plasmadiagnostische Langmuirsondentechnik und die optische Emissionsspektroskopie (OES) eingesetzt werden. Dadurch soll der Zusammenhang zwischen inneren Plasmaparametern und Wachstumsprozessen der Kohlenstoffnanoröhren oder –fasern definiert werden, um eine Prozesskontrolle während der Abscheidungsphase zu ermöglichen.
100

Herstellung und Charakterisierung von irregulären Kohlenstoff-Nanostrukturen

Hentsche, Melanie 13 March 2007 (has links) (PDF)
Die vorliegende Promotion beinhaltet die Untersuchung von irregulären Kohlenstoff-Nanostrukturen, die mittels Hochenergie-Kugelmahlen hergestellt wurden. Die wissenschaftliche Herausforderung besteht darin, die strukturelle Vielfalt dieser Nanostrukturen experimentell zu erfassen, zu klassifizieren und bezüglich ausgewählter Eigenschaften zu bewerten, sowie mit den Herstellungsparametern in Zusammenhang zu bringen. Die Pulver konnten nach den Mahlungen hinsichtlich ihrer Struktur in zwei grundsätzliche Typen eingeteilt werden: (I) ein Nanopulver, das aus graphitischen Stapelpaketen besteht, welche in eine amorphe Matrix eingebettet sind, (II) ein vollständig amorphisiertes Pulver. Die Strukturanalyse in Bezug auf die Mahlbedingungen (Mahlatmosphäre, Mahltemperatur) zeigt, dass die Dauer der Nanostrukturierung sowie die Anzahl und Größe von graphitischen Stapelpaketen gezielt beeinflusst werden kann. Außerdem konnten Hinweise gefunden werden, die darauf hindeuten, dass Mahlen bei tiefen Temperaturen oder unter Wasserstoffatmosphäre die Agglomeration der Nanopartikel verringern kann. Das Kugelmahlen ermöglicht es ebenfalls, die spezifische Oberfläche des Graphitpulvers von 5,5 m2/g auf 725 m2/g innerhalb von fünf Mahlstunden zu erhöhen. Der Anteil der Verunreinigungen (Fe) liegt dabei nicht höher als 0,05 wt%. Es ist jedoch zu beachten, dass sämtliche Eigenschaften stark von den verschiedenen Mahlparametern (Mahltemperatur, Mahlmaterial) abhängen. Die für Adsorptionsuntersuchungen optimalen Eigenschaften (große spezifische Oberfläche, erhöhte Reaktivität, geringe Verunreinigungen) werden schon nach kurzer Mahldauer erreicht. Wiederholungsmahlungen und Wiederholungsmessungen verschiedener Eigenschaften (spezifische Oberfläche, Verbrennungstemperatur) machen deutlich, dass die Ergebnisse reproduzierbar sind, und dass keine Alterungserscheinungen während der Lagerung unter Argonatmosphäre im Zeitraum von einem Jahr auftreten. Die Wasserstoffspeicherung an nanostrukturierten Kohlenstoffpulvern konnte nachgewiesen werden. Die maximalen Speicherkapazitäten für Temperaturen nahe 77 K lagen bei 1,5 wt%. Für niedrigere Temperaturen Tist = 35 K zeigten sich höhere Speicherkapazitäten von bis zu 5 wt%. Die Korrelation der ermittelten Speicherkapazitäten mit den theoretisch erreichbaren Werten in Bezug auf die Oberfläche der Proben zeigt, dass im Experiment deutlich höhere Werte erhalten werden. Dies lässt den Schluss zu, dass neben der Speicherung an der Oberfläche der Pulver ein weiterer Speichermechanismus innerhalb der Mikroporen der Proben stattfindet.

Page generated in 0.0558 seconds