• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 31
  • 15
  • 7
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 151
  • 151
  • 93
  • 85
  • 40
  • 22
  • 21
  • 21
  • 21
  • 18
  • 15
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Hra o trhy / Game of Markets

Dóczy, Aneta January 2017 (has links)
This diploma thesis deals with conict economic situations based on game theory. In the beginning, basic models of conict situations and current popular software tools are dened not only for the general support of student education or for science, but also for solving economic problems in game theory. Based on this analysis, the conicting situation of two competing rms is being solved. Gradually, work goes deeper into areas of delay dierential equations that better show the behavior of two players on the market. Subsequently, these delayed dierential equations are projected into the Cournot model, for which a critical value is identied that switches the stability of two rms on the market due to the delayed realization of their outputs.
102

Game Theoretic Solution for the Security of Unmanned Aerial Vehicle Network Host

Mairaj, Aakif January 2021 (has links)
No description available.
103

Three Essays on International Trade, Market Structure, and Agricultural Cooperatives

Yen, Meng-Fen, Yen January 2017 (has links)
No description available.
104

Steiner Tree Games

Rossin, Samuel 12 August 2016 (has links)
No description available.
105

Essays on Network formation games

Kim, Sunjin 06 August 2021 (has links)
This dissertation focuses on studying various network formation games in Economics. We explore a different model in each chapter to capture various aspects of networks. Chapter 1provides an overview of this dissertation. Chapter 2 studies the possible Nash equilibrium configurations in a model of signed network formation as proposed by Hiller (2017). We specify the Nash equilibria in the case of heterogeneous agents. We find 3 possible Nash equilibrium configurations: Utopia network, positive assortative matching, and disassortative matching. We derive the specific conditions under which they arise in a Nash equilibrium. In Chapter 3, we study a generalized model of signed network formation game where the players can choose not only positive and negative links but also neutral links. We check whether the results of the signed network formation model in the literature still hold in our generalized framework using the notion of pairwise Nash equilibrium. Chapter 4 studies inequality in a weighted network formation model using the notion of Nash equilibrium. As a factor of inequality, there are two types of players: Rich players and poor players. We show that both rich and poor players designate other rich players as their best friends. As a result, We present that nested split graphs are drawn from survey data because researchers tend to ask respondents to list only a few friends. / Doctor of Philosophy / This dissertation focuses on studying various network formation games in Economics. We explore a different model in each chapter to capture various aspects of networks. Chapter 1 provides an overview of this dissertation. Chapter 2 studies the possible singed network configurations in equilibrium. In the signed network, players can choose a positive (+) relationship or a negative (-) relationship toward each other player. We study the case that the players are heterogeneous. We find 3 possible categories of networks in equilibrium: Utopia network, positive assortative matching, and disassortative matching. We derive the specific conditions under which they arise in equilibrium. In Chapter 3, we study a generalized model of signed network formation game where the players can choose not only positive and negative links but also neutral links. We check whether the results of the signed network formation model in the literature still hold in our generalized framework. Chapter 4 studies inequality in a weighted network formation model using the notion of Nash equilibrium. In this weighted network model, each player can choose the level of relationship. As a factor of inequality, there are two types of players: rich players and poor players. We show that both rich and poor players choose other rich players as their best friends. As a result, we present that nested split graphs are drawn from survey data because these social network data are censored due to the limit of the number of responses.
106

DATA QUALITY CONSEQUENCES OF MANDATORY CYBER DATA SHARING BETWEEN DUOPOLY INSURERS

Reinert, Olof, Wiesinger, Tobias January 2020 (has links)
Cyber attacks against companies are becoming more common as technology advances and digitalization is increasing exponentially. All Swedish insurance companies that sell cyber insurance encounter the same problem, there is not enough data to do good actuarial work. In order for the pricing procedure to improve and general knowledge of cyber insurance to increase, it has been proposed that insurance companies should share their data with each other. The goal of the thesis is to do mathematical calculations to explore data quality consequences of such a sharing regime. This thesis is based on some important assumptions and three scenarios. The most important assumptions are that there are two insurance companies forced to share all their data with each other and that they can reduce the uncertainty about their own product by investing in better data quality. In the first scenario, we assume a game between two players where they can choose how much to invest in reducing the uncertainty. In the second scenario, we assume that there is not a game, but the two insurance companies are forced to equal investments and thus have the same knowledge of their products. In the third scenario, we assume that the players are risk averse, that is, they are not willing to take high risk. The results will show how much, if any, the insurance companies should invest in the different scenarios to maximize their profits (if risk neutral) or utility (if risk averse). The results of this thesis show that in the first and second scenario, the optimal profit is reached when the insurance companies do not invest anything. In the third scenario though, the optimal investment is greater than zero, given that the companies are enough risk averse.
107

Non-Cooperative Games for Self-Interested Planning Agents

Jordán Prunera, Jaume Magí 03 November 2017 (has links)
Multi-Agent Planning (MAP) is a topic of growing interest that deals with the problem of automated planning in domains where multiple agents plan and act together in a shared environment. In most cases, agents in MAP are cooperative (altruistic) and work together towards a collaborative solution. However, when rational self-interested agents are involved in a MAP task, the ultimate objective is to find a joint plan that accomplishes the agents' local tasks while satisfying their private interests. Among the MAP scenarios that involve self-interested agents, non-cooperative MAP refers to problems where non-strictly competitive agents feature common and conflicting interests. In this setting, conflicts arise when self-interested agents put their plans together and the resulting combination renders some of the plans non-executable, which implies a utility loss for the affected agents. Each participant wishes to execute its plan as it was conceived, but congestion issues and conflicts among the actions of the different plans compel agents to find a coordinated stable solution. Non-cooperative MAP tasks are tackled through non-cooperative games, which aim at finding a stable (equilibrium) joint plan that ensures the agents' plans are executable (by addressing planning conflicts) while accounting for their private interests as much as possible. Although this paradigm reflects many real-life problems, there is a lack of computational approaches to non-cooperative MAP in the literature. This PhD thesis pursues the application of non-cooperative games to solve non-cooperative MAP tasks that feature rational self-interested agents. Each agent calculates a plan that attains its individual planning task, and subsequently, the participants try to execute their plans in a shared environment. We tackle non-cooperative MAP from a twofold perspective. On the one hand, we focus on agents' satisfaction by studying desirable properties of stable solutions, such as optimality and fairness. On the other hand, we look for a combination of MAP and game-theoretic techniques capable of efficiently computing stable joint plans while minimizing the computational complexity of this combined task. Additionally, we consider planning conflicts and congestion issues in the agents' utility functions, which results in a more realistic approach. To the best of our knowledge, this PhD thesis opens up a new research line in non-cooperative MAP and establishes the basic principles to attain the problem of synthesizing stable joint plans for self-interested planning agents through the combination of game theory and automated planning. / La Planificación Multi-Agente (PMA) es un tema de creciente interés que trata el problema de la planificación automática en dominios donde múltiples agentes planifican y actúan en un entorno compartido. En la mayoría de casos, los agentes en PMA son cooperativos (altruistas) y trabajan juntos para obtener una solución colaborativa. Sin embargo, cuando los agentes involucrados en una tarea de PMA son racionales y auto-interesados, el objetivo último es obtener un plan conjunto que resuelva las tareas locales de los agentes y satisfaga sus intereses privados. De entre los distintos escenarios de PMA que involucran agentes auto-interesados, la PMA no cooperativa se centra en problemas que presentan un conjunto de agentes no estrictamente competitivos con intereses comunes y conflictivos. En este contexto, pueden surgir conflictos cuando los agentes ponen en común sus planes y la combinación resultante provoca que algunos de estos planes no sean ejecutables, lo que implica una pérdida de utilidad para los agentes afectados. Cada participante desea ejecutar su plan tal como fue concebido, pero las congestiones y conflictos que pueden surgir entre las acciones de los diferentes planes fuerzan a los agentes a obtener una solución estable y coordinada. Las tareas de PMA no cooperativa se abordan a través de juegos no cooperativos, cuyo objetivo es hallar un plan conjunto estable (equilibrio) que asegure que los planes de los agentes sean ejecutables (resolviendo los conflictos de planificación) al tiempo que los agentes satisfacen sus intereses privados en la medida de lo posible. Aunque este paradigma refleja muchos problemas de la vida real, existen pocos enfoques computacionales para PMA no cooperativa en la literatura. Esta tesis doctoral estudia el uso de juegos no cooperativos para resolver tareas de PMA no cooperativa con agentes racionales auto-interesados. Cada agente calcula un plan para su tarea de planificación y posteriormente, los participantes intentan ejecutar sus planes en un entorno compartido. Abordamos la PMA no cooperativa desde una doble perspectiva. Por una parte, nos centramos en la satisfacción de los agentes estudiando las propiedades deseables de soluciones estables, tales como la optimalidad y la justicia. Por otra parte, buscamos una combinación de PMA y técnicas de teoría de juegos capaz de calcular planes conjuntos estables de forma eficiente al tiempo que se minimiza la complejidad computacional de esta tarea combinada. Además, consideramos los conflictos de planificación y congestiones en las funciones de utilidad de los agentes, lo que resulta en un enfoque más realista. Bajo nuestro punto de vista, esta tesis doctoral abre una nueva línea de investigación en PMA no cooperativa y establece los principios básicos para resolver el problema de la generación de planes conjuntos estables para agentes de planificación auto-interesados mediante la combinación de teoría de juegos y planificación automática. / La Planificació Multi-Agent (PMA) és un tema de creixent interès que tracta el problema de la planificació automàtica en dominis on múltiples agents planifiquen i actuen en un entorn compartit. En la majoria de casos, els agents en PMA són cooperatius (altruistes) i treballen junts per obtenir una solució col·laborativa. No obstant això, quan els agents involucrats en una tasca de PMA són racionals i auto-interessats, l'objectiu últim és obtenir un pla conjunt que resolgui les tasques locals dels agents i satisfaci els seus interessos privats. D'entre els diferents escenaris de PMA que involucren agents auto-interessats, la PMA no cooperativa se centra en problemes que presenten un conjunt d'agents no estrictament competitius amb interessos comuns i conflictius. En aquest context, poden sorgir conflictes quan els agents posen en comú els seus plans i la combinació resultant provoca que alguns d'aquests plans no siguin executables, el que implica una pèrdua d'utilitat per als agents afectats. Cada participant vol executar el seu pla tal com va ser concebut, però les congestions i conflictes que poden sorgir entre les accions dels diferents plans forcen els agents a obtenir una solució estable i coordinada. Les tasques de PMA no cooperativa s'aborden a través de jocs no cooperatius, en els quals l'objectiu és trobar un pla conjunt estable (equilibri) que asseguri que els plans dels agents siguin executables (resolent els conflictes de planificació) alhora que els agents satisfan els seus interessos privats en la mesura del possible. Encara que aquest paradigma reflecteix molts problemes de la vida real, hi ha pocs enfocaments computacionals per PMA no cooperativa en la literatura. Aquesta tesi doctoral estudia l'ús de jocs no cooperatius per resoldre tasques de PMA no cooperativa amb agents racionals auto-interessats. Cada agent calcula un pla per a la seva tasca de planificació i posteriorment, els participants intenten executar els seus plans en un entorn compartit. Abordem la PMA no cooperativa des d'una doble perspectiva. D'una banda, ens centrem en la satisfacció dels agents estudiant les propietats desitjables de solucions estables, com ara la optimalitat i la justícia. D'altra banda, busquem una combinació de PMA i tècniques de teoria de jocs capaç de calcular plans conjunts estables de forma eficient alhora que es minimitza la complexitat computacional d'aquesta tasca combinada. A més, considerem els conflictes de planificació i congestions en les funcions d'utilitat dels agents, el que resulta en un enfocament més realista. Des del nostre punt de vista, aquesta tesi doctoral obre una nova línia d'investigació en PMA no cooperativa i estableix els principis bàsics per resoldre el problema de la generació de plans conjunts estables per a agents de planificació auto-interessats mitjançant la combinació de teoria de jocs i planificació automàtica. / Jordán Prunera, JM. (2017). Non-Cooperative Games for Self-Interested Planning Agents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90417
108

An investigation into Braess' paradox

Bloy, Leslie Arthur Keith 28 February 2007 (has links)
Braess' paradox is a counter-intuitive phenomenon which can occur in congesting networks. It refers to those cases where the introduction of a new link in the network results in the total travel time on the network increasing. The dissertation starts by introducing the traffic assignment problem and the concept of equilibrium in traffic assignment. The concept of equilibrium is based on Wardrop's first principle that all travellers will attempt to minimize their own travel time regardless of the effect on others. A literature review includes details of a number of papers that have been published investigating theoretical aspects of the paradox. There is also a brief description of Game Theory and the Nash Equilibrium. It has been shown that the equilibrium assignment is an example of Nash Equilibrium. The majority of work that has been published deals with networks where the delay functions that are used to compute the travel times on the links of the network do not include explicit representation of the capacity of the links. In this dissertation a network that is similar in form to the one first presented by Braess was constructed with the difference being that the well-known BPR function was used in the delay functions. This network was used to show that a number of findings that had been presented previously using simpler functions also applied to this network. It was shown that when it occurs, Braess' paradox only occurs over a range of values at relatively low levels of congestion. Real-world networks were then investigated and it was found that similar results occurred to those found in the simpler test networks that are often used in discussions of the paradox. Two methodologies of eliminating the paradox were investigated and the results are presented. / Decision Sciences / M.Sc.
109

Etude des marchés d'assurance non-vie à l'aide d'équilibre de Nash et de modèle de risques avec dépendance

Dutang, Christophe 31 May 2012 (has links)
L’actuariat non-vie étudie les différents aspects quantitatifs de l’activité d’assurance. Cette thèse vise à expliquer sous différentes perspectives les interactions entre les différents agents économiques, l’assuré, l’assureur et le marché, sur un marché d’assurance. Le chapitre 1 souligne à quel point la prise en compte de la prime marché est importante dans la décision de l’assuré de renouveler ou non son contrat d’assurance avec son assureur actuel. La nécessitéd’un modèle de marché est établie. Le chapitre 2 répond à cette problématique en utilisant la théorie des jeux non-coopératifs pour modéliser la compétition. Dans la littérature actuelle, les modèles de compétition seréduisent toujours à une optimisation simpliste du volume de prime basée sur une vision d’un assureur contre le marché. Partant d’un modèle de marché à une période, un jeu d’assureurs est formulé, où l’existence et l’unicité de l’équilibre de Nash sont vérifiées. Les propriétés des primes d’équilibre sont étudiées pour mieux comprendre les facteurs clés d’une position dominante d’un assureur par rapport aux autres. Ensuite, l’intégration du jeu sur une période dans un cadre dynamique se fait par la répétition du jeu sur plusieurs périodes. Une approche par Monte-Carlo est utilisée pour évaluer la probabilité pour un assureur d’être ruiné, de rester leader, de disparaître du jeu par manque d’assurés en portefeuille. Ce chapitre vise à mieux comprendre la présence de cycles en assurance non-vie. Le chapitre 3 présente en profondeur le calcul effectif d’équilibre de Nash pour n joueurs sous contraintes, appelé équilibre de Nash généralisé. Il propose un panorama des méthodes d’optimisation pour la résolution des n sous-problèmes d’optimisation. Cette résolution sefait à l’aide d’une équation semi-lisse basée sur la reformulation de Karush-Kuhn-Tucker duproblème d’équilibre de Nash généralisé. Ces équations nécessitent l’utilisation du Jacobiengénéralisé pour les fonctions localement lipschitziennes intervenant dans le problème d’optimisation.Une étude de convergence et une comparaison des méthodes d’optimisation sont réalisées.Enfin, le chapitre 4 aborde le calcul de la probabilité de ruine, un autre thème fondamentalde l’assurance non-vie. Dans ce chapitre, un modèle de risque avec dépendance entre lesmontants ou les temps d’attente de sinistre est étudié. De nouvelles formules asymptotiquesde la probabilité de ruine en temps infini sont obtenues dans un cadre large de modèle de risquesavec dépendance entre sinistres. De plus, on obtient des formules explicites de la probabilité deruine en temps discret. Dans ce modèle discret, l’analyse structure de dépendance permet dequantifier l’écart maximal sur les fonctions de répartition jointe des montants entre la versioncontinue et la version discrète. / In non-life actuarial mathematics, different quantitative aspects of insurance activity are studied.This thesis aims at explaining interactions among economic agents, namely the insured,the insurer and the market, under different perspectives. Chapter 1 emphasizes how essentialthe market premium is in the customer decision to lapse or to renew with the same insurer.The relevance of a market model is established.In chapter 2, we address this issue by using noncooperative game theory to model competition.In the current literature, most competition models are reduced to an optimisationof premium volume based on the simplistic picture of an insurer against the market. Startingwith a one-period model, a game of insurers is formulated, where the existence and uniquenessof a Nash equilibrium are verified. The properties of premium equilibria are examinedto better understand the key factors of leadership positions over other insurers. Then, thederivation of a dynamic framework from the one-period game is done by repeating of theone-shot game over several periods. A Monte-Carlo approach is used to assess the probabilityof being insolvent, staying a leader, or disappearing of the insurance game. This gives furtherinsights on the presence of non-life insurance market cycles.A survey of computational methods of a Nash equilibrium under constraints is conductedin Chapter 3. Such generalized Nash equilibrium of n players is carried out by solving asemismooth equation based on a Karush-Kuhn-Tucker reformulation of the generalized Nashequilibrium problem. Solving semismooth equations requires using the generalized Jacobianfor locally Lipschitzian function. Convergence study and method comparison are carried out.Finally, in Chapter 4, we focus on ruin probability computation, another fundemantalpoint of non-life insurance. In this chapter, a risk model with dependence among claimseverity or claim waiting times is studied. Asymptotics of infinite-time ruin probabilitiesare obtained in a wide class of risk models with dependence among claims. Furthermore,we obtain new explicit formulas for ruin probability in discrete-time. In this discrete-timeframework, dependence structure analysis allows us to quantify the maximal distance betweenjoint distribution functions of claim severity between the continuous-time and the discrete
110

A Novel Cloud Broker-based Resource Elasticity Management and Pricing for Big Data Streaming Applications

Runsewe, Olubisi A. 28 May 2019 (has links)
The pervasive availability of streaming data from various sources is driving todays’ enterprises to acquire low-latency big data streaming applications (BDSAs) for extracting useful information. In parallel, recent advances in technology have made it easier to collect, process and store these data streams in the cloud. For most enterprises, gaining insights from big data is immensely important for maintaining competitive advantage. However, majority of enterprises have difficulty managing the multitude of BDSAs and the complex issues cloud technologies present, giving rise to the incorporation of cloud service brokers (CSBs). Generally, the main objective of the CSB is to maintain the heterogeneous quality of service (QoS) of BDSAs while minimizing costs. To achieve this goal, the cloud, although with many desirable features, exhibits major challenges — resource prediction and resource allocation — for CSBs. First, most stream processing systems allocate a fixed amount of resources at runtime, which can lead to under- or over-provisioning as BDSA demands vary over time. Thus, obtaining optimal trade-off between QoS violation and cost requires accurate demand prediction methodology to prevent waste, degradation or shutdown of processing. Second, coordinating resource allocation and pricing decisions for self-interested BDSAs to achieve fairness and efficiency can be complex. This complexity is exacerbated with the recent introduction of containers. This dissertation addresses the cloud resource elasticity management issues for CSBs as follows: First, we provide two contributions to the resource prediction challenge; we propose a novel layered multi-dimensional hidden Markov model (LMD-HMM) framework for managing time-bounded BDSAs and a layered multi-dimensional hidden semi-Markov model (LMD-HSMM) to address unbounded BDSAs. Second, we present a container resource allocation mechanism (CRAM) for optimal workload distribution to meet the real-time demands of competing containerized BDSAs. We formulate the problem as an n-player non-cooperative game among a set of heterogeneous containerized BDSAs. Finally, we incorporate a dynamic incentive-compatible pricing scheme that coordinates the decisions of self-interested BDSAs to maximize the CSB’s surplus. Experimental results demonstrate the effectiveness of our approaches.

Page generated in 0.1028 seconds