Spelling suggestions: "subject:"neurala"" "subject:"rurala""
181 |
Neural Network Quantum State Ansatz for the Nuclear Pairing Problem / Neuralt Nätverks Kvanttillståndsansats för KärnparsproblemetBonnier, Isabelle January 2024 (has links)
As a degree project in Theoretical Physics, the variational MCMC-scheme aided by neural network quantum states was examined for the purpose ofsolving the nuclear pairing model. The method entailed minimization of the local energy sampled via the Born distribution obtained through the neural network output.Both the ground and excited states' energies were computed, where the latter case used an extended loss function which included the overlap to the former.The NNQS-ansatz worked well when emulating the ground state, in which case the Stochastic Reconfiguration optimization method was particularly effective. This optimization method resulted in relative fast convergence to low variance states, and did not require a large number of hyperparameter modifications. Ultimately, all resulting energy intervals encompassed the exact ground state solutions, and had relative errors equal to or near zero.For the excited states, the VMC-NNQS was less effective, as each individual occupation number state investigated required considerable hyperparameter testing before reasonably low lying energy eigenstates could be obtained. Moreover, the convergence properties were less distinguished than for the ground state, as the optimization struggled to maintain orthogonality to the ground state. Nonetheless, the final results included the nearest solutions of the first excited states for several systems and indicated correlation energies similar to those of the ground state. / Som examensarbete inom teoretisk fysik undersöktes den variationella MCMC-metoden tillsammans med neurala nätverk i syfte att lösa kärnparsmodellen. Metoden innebar minimering av den lokala energin som samplades via Born-fördelningen erhållen genom utdata från neurala nätverksapproximationer. Både grundtillståndets och exciterade tillstånds energier beräknades, där det senare fallet använde en utökad kostnadsfunktion som inkluderade överlappet med det förnämnda. NNQS-ansatsen fungerade väl vid emulering av grundtillståndet, i vilket fall optimeringsmethoden stokastisk omkonfigurering (Stochastic Reconfiguration) var särskilt effektivt. Denna optimeringsmetod resulterade i relativt snabb konvergens till lågvarianstillstånd och krävde inte ett stort antal hyperparametriska modifieringar. De slutliga energiintervallen innefattade de exakta lösningarna för grundtillstånden med en relativ felmarginal lika med eller nära noll. För exciterade tillstånd var VMC-NNQS mindre effektivt, eftersom varje enskilt ockupationstillstånd som undersöktes krävde en ansenlig mängd hyperparametrisk testning innan rimligt låga egentillstånd kunde erhållas. Dessutom var konvergensensegenskaperna mycket mindre särspäglade än för grundtillståndet, eftersom optimeringen inte fullt kunde upprätthålla ortogonaliteten mot grundtillståndet. Likväl inkluderade de slutliga resultaten de närmaste lösningarna av de första exciterade energierna för ett flertal system, och visade på korrelationsenergier liknande de för grundtillståndet.
|
182 |
Machine Learning for State Estimation in Fighter Aircraft / Maskininlärning för tillståndsestimering i stridsflygplanBoivie, Axel January 2023 (has links)
This thesis presents an estimator to assist or replace a fighter aircraft’s air datasystem (ADS). The estimator is based on machine learning and LSTM neuralnetworks and uses the statistical correlation between states to estimate the angleof attack, angle of sideslip and Mach number using only the internal sensorsof the aircraft. The model is trained and extensively tested on a fighter jetsimulation model and shows promising results. The methodology and accuracyof the estimator are discussed, together with how a real-world implementationwould work. The estimators presented should act as a proof of concept of thepower of neural networks in state estimation, whilst the report discusses theirstrengths and weaknesses. The estimators can estimate the three targets wellin a vast envelope of altitudes, speeds, winds and manoeuvres. However, thetechnology is quite far from real-world implementation as it lacks transparencybut shows promising potential for future development. / Det här examensarbetet presenterar en estimator för att hjälpa eller ersätta ettstridsflygplans luftdatasystem (ADS). Estimatorn är baserad på maskininlärningoch LSTM neurala nätverk och använder statistisk korrelation mellan tillstånd föratt uppskatta anfallsvinkeln, sidglidningsvinkel och Mach-tal endast med hjälpav flygplanets interna sensorer. Modellen är tränad och utförligt testad på ensimuleringsmodell för stridsflygplan och visar lovande resultat. Estimatornsmetodik och noggrannhet diskuteras, tillsammans med hur en implementeringi verkligheten skulle fungera. De presenterade estimatorerna bör fungera somett “proof of concept” för kraften hos neurala nätverk för tillståndsuppskattning,medan rapporten diskuterar deras styrkor och svagheter. Estimatorerna kanuppskatta de tre tillstånden väl i ett stort spektra av altituder, hastigheter, vindaroch manövrar. Tekniken är dock ganska långt ifrån en verklig implementeringeftersom den saknar transparens, men visar lovande potential för framtidautveckling.
|
183 |
Empirisk Modellering av Trafikflöden : En spatio-temporal prediktiv modellering av trafikflöden i Stockholms stad med hjälp av neurala nätverk / Empirical Modeling of Traffic Flow : A spatio-temporal prediction model of the traffic flow in Stockholm city using neural networksBjörkqvist, Niclas, Evestam, Viktor January 2024 (has links)
A better understanding of the traffic flow in a city helps to smooth transport resulting in a better street environment, affecting not only road users and people in proximity. Good predictions of the flow of traffic helps to control and further develop the road network in order to avoid congestion and unneccessary time spent while traveling. This study investigates three different machine learning models with the purpose of predicting traffic flow on different road types inurban Stockholm using loop sensor data between 2013 and 2023. The models used was Long short term memory (LSTM), Temporal convolutional network (TCN) and a hybrid model of LSTM and TCN. The results from the hybrid model indicates a slightly better mean absolute error than TCN suggesting that a hybrid model might be advantagous when predicting traffic flow using loop sensor data. LSTM struggled to capture the complexity of the data and was unable to provide a proper prediction as a result. TCN produced a mean absolute error slightly bigger than the hybrid model and was to an extent able to capture the trends of the traffic flow, but struggled with capturing the scale of the traffic flow suggesting the need for further data preprocessing. Furthermore, this study suggests that the loop sensor data was able to act as a foundation for predicting the traffic flow using machine learning methods. However, it suggest that improvements to the data itself such as incorporating more related parameters might be advantageous to further improve traffic flow prediction.
|
184 |
SU-MIMO Port Selection Using Convolutional Neural NetworksJonsson, Samuel January 2024 (has links)
Background: The exponential increase in user equipment (UE) units within mobile networks necessitates more efficient Massive MIMOalgorithms. To address this demand, integrating artificial intelligence (AI) into various network aspects is gaining traction. Goal: This thesis explores the feasibility of employing a lightweight convolutional neural network (CNN) to optimize port selection in single-usermultiple-input multiple-output (SU-MIMO) networks. Port selection, a critical component of all forms of MIMO networks, determines theoptimal ports on a UE for data transmission. The objective is to enhance selection speed, reduce computational complexity,and minimize memory consumption. Method: The methodology involves a quasi-experiment where a CNN model, trained on data transfer logs between a basestation and a UE, specifically a mobile phone, is compared with a self-implemented version of the port selection algorithm utilised in Ericssonbase stations. The evaluation criteria include time-, computational-, and spatial complexity. The accuracy of the port selection capabilities of themodels is also recorded. Results: Despite the complexity of the CNN models, the results indicate subpar performance and low test accuracies.This suggests that achieving satisfactory performance would either necessitate an increased model complexity and size or that a convolutionalneural network is not the correct choice for replacing the algorithm. Conclusion: In conclusion, the thesis finds that a lightweight CNN may not be the optimal solution for port selectionoptimization in SU-MIMO networks. However, it suggests potential avenues for further research to explore alternative approaches to this task. / Bakgrund: Den exponentiella ökningen av användarutrustning (UE-enheter) inom mobila nätverk kräver mer effektiva massive MIMO-algoritmer.För att möta detta behov har intresset för att integrera artificiell intelligens (AI) i olika delar av de modila nätverkan ökat mer och mer. Mål: Denna avhandling utforskar möjligheten att använda ett lättviktigt konvolutionellt neuralt nätverk för att optimera port selection i single usermultiple-input multiple-output (SU-MIMO) nätverk. Port selection, en viktig komponent i alla former av MIMO-nätverk, avgör de optimala portarna på enUE för dataöverföring. Det slutliga målet är att förbättra valhastigheten, minska beräkningskomplexiteten och minimeraminnesanvändningen, jämfört med den nuvarande algoritmen som används på Ericsson basstationer. Metod: Metodiken innefattar ett kvasiexperiment där en CNN-modell, tränad på dataöverföringsloggar mellan en basstation och en UE, specifikt enmobiltelefon, jämförs med en egenimplementerad version av portvalsalgoritmen som används i Ericssons basstationer. Utvärderingskriterierna inkluderartids-, beräknings- och rumskomplexitet. Även noggrannheten i portvalsmodellerna mätes. Resultat: Trots den komplexa naturen hos modellerna indikerar resultaten undermålig prestanda och låga testnoggrannheter.Detta antyder att för att uppnå tillfredsställande prestanda antinge skulle kräva en ökad modellkomplexitet och storlek, eller att ett konvolutionelltneuralt nätverk inte är den optimala lösningen för att ersätta den nuvarande algorithmen. Slutsats: Slutligen konstaterar avhandlingen att ett konvolutionellt neuralt nätverk inte är den optimala lösningen för optimering av port selectioni SU-MIMO-nätverk, då ett lättviktigt sådant inte kan uppnå en acceptabel prestanda. Dock föreslår den potentiella riktningar för vidare forskningför att utforska alternativa tillvägagångssätt för denna uppgift.
|
185 |
Makespan Estimation for Decreased Schedule Generation Time : Neural Network Job Shop Scheduling OptimisationHolm, Tobias, Waters, Phoebe January 2024 (has links)
Background: Optimal scheduling is a common practice in various industries, facili-tating efficient workflow management. Accelerating the generation of schedules while maintaining their optimality could encourage broader adoption of this approach inindustry settings. Previous work has aimed to estimate the makespan for the JobShop Scheduling Problem, showing promising results. Objectives: Given the increasing demand for AI and Machine Learning (ML) solutions across industries, this research aims to explore the integration of ML techniquesinto optimal scheduling processes. Specifically, the goal is to develop a faster scheduling solution without compromising the optimality of the generated schedules. The proposed approach combines the effectiveness and speed of ML with the optimal results obtained from mathematical scheduling models. Methods: This thesis focuses on the Job Shop Scheduling (JSS) Problem, where a mathematical scheduler is tasked with minimizing the makespan of a set of jobs while following a predefined set of rules. An initial investigation is performed to establish if there is potential in providing the scheduler with its optimal makespan to decrease the scheduling time. To generalize the application of the concept, the study investigates the potential efficiency acceleration achieved by providing the scheduler with a Machine Learning estimated makespan. This involves training a Neural Network(NN) to estimate the optimal makespan of job sets, which is then utilized to speedup the scheduling process. Results: The preliminary investigation demonstrates that providing the scheduler with the optimal makespan results in an average speed-up of schedule generationby 24%. The results of the scheduling time with the NN estimated makespan is on the other hand not as well performing. Despite achieving a level of accuracy in estimating the makespan, the resulting speed-up in the scheduler’s performance falls short. For the scheduler to benefit from being provided an estimated makespan it is therefore theorized to require a close-to-perfect estimation of the makespan, which was not achieved with the trained NN model. The trained NN reached an average accuracy of 95.75%. Conclusions: The study concludes that while ML models can accurately estimate makespan, the observed speed-up in scheduling performance is not as significant as anticipated. The correlation between well-estimated makespan and speed-up appearsto be inconsistent, indicating potential limitations in the current approach. Further investigation into the search algorithm employed by the scheduling tool Gurobi mayprovide insights into optimizing the scheduling process more effectively. In summary, while the integration of ML techniques shows promise in accelerating scheduling processes, a higher accuracy of the ML model would be required. Additional researchis needed to refine the approach and potentially bring a faster optimal scheduling solution into the future. / Bakgrund: Optimal schemaläggning är en vanlig implemetation inom flera olika branscher och underlättar hantering och effektiviserar arbetsflöden. Att påskynda genereringen av scheman samtidigt som den optimala aspekten av schemaläggning inte går till spillo, skulle kunna främja en bredare användning av optimal schemaläggning för fler brancher. Tidigare undersökningar har gjorts för att estimera "makespan" för Job Shop problemet inom schemaläggning och har visat lovande resultat. Syfte: Med den ökande efterfrågan på AI- och maskininlärnings lösningar inom olika branscher syftar denna forskning till att utforska integrationen av ML-tekniker i den optimala schemaläggningsprocessen. Målet är att utveckla en snabbare schemaläggningslösning utan att kompromissa med det genererade schemats optimalitet. Det föreslagna tillvägagångssättet kombinerar ML’s effektivitet och hastighet med de optimala resultaten som den matematiska schemaläggningsmodellen erbjuder. Metod: Forskningen fokuserar på problemet med schemaläggning för jobbshoppen(JSSP), där en matematisk schemaläggare har i uppgift att minimera makespan fören uppsättning jobb med hänsyn till ett par fördefinierade regler. En initial under-sökning görs, vilket visar att det finns potential i att tillhandahålla schemaläggarendess optimala makespan för att minska schemaläggningstiden. För att generalisera tillämpningen undersöker studien den potentiella accelerationen som uppnås genomatt tillhandahålla schemaläggaren ett maskininlärt uppskattat makespan. Detta medför att träna ett neuralt nätverk för att uppskatta det optimala makespanet för en mängd jobbuppsättningar, som sedan används för att påskynda schemaläggningsprocessen. Resultat: Den preliminära undersökningen visar att schemaläggaren resulterar i igenomsnittlig hastighetsökning av schemagenereringen med cirka 24% när den får tillgång till det optimala makespanet för de givna jobben. Resultaten av schemaläggningstiden med det neurala nätverkets uppskattade makespan är dock lägre än förväntat. Trots att en viss noggrannhetsnivå uppnås vid estimeringen av makespanet, når den resulterande hastighetsökningen i schemaläggarens prestanda inte upp tillförväntningarna. För att schemaläggaren ska dra nytta av att tillhandahålla ett uppskattad makespan krävs en nära perfekt uppskattning av makespan, vilket inte uppnåddes med det tränade neurala nätverket. Slutsatser: Studien drar slutsatsen att även om ML-modeller kan uppskatta makespan någorlunda noggrant, är den observerade hastighetsökningen i schemaläggningen inte lika betydande som förväntat. Korrelationen mellan väl uppskattad makespan och hastighetsökning verkar vara inkonsekvent, vilket indikerar potentiella begränsningar i det nuvarande tillvägagångssättet. Vidare undersökning av sökalgoritmen som används av schemaläggningsverktyget Gurobi kan ge insikter för att optimera schemaläggningsprocessen mer effektivt. Sammanfattningsvis visar integrationen av ML-tekniker lovande resultat för att accelerera schemaläggningsprocesser, men en bättre estimering av makespan skulle krävas. Ytterligare forskning behövs för att förbättra tillvägagångssättet och potentiellt introducera en snabbare optimal schemaläggningslösning för framtiden.
|
186 |
Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets / En metod baserad på djupa neurala nätverk för att modellera regleringen av Alternativ SplicingLinder, Johannes January 2015 (has links)
This paper investigates the use of deep Convolutional Neural Networks for modeling the intronic regulation of Alternative Splicing on the basis of DNA sequence. By training the CNN on massively parallel synthetic DNA libraries of Alternative 5'-splicing and Alternatively Skipped exon events, the model is capable of predicting the relative abundance of alternatively spliced mRNA isoforms on held-out library data to a very high accuracy (R2 = 0.77 for Alt. 5'-splicing). Furthermore, the CNN is shown to generalize alternative splicing across cell lines efficiently. The Convolutional Neural Net is tested against a Logistic regression model and the results show that while prediction accuracy on the synthetic library is notably higher compared to the LR model, the CNN is worse at generalizing to new intronic contexts. Tests on non-synthetic human SNP genes suggest the CNN is dependent on the relative position of the intronic region it was trained for, a problem which is alleviated with LR. The increased library prediction accuracy of the CNN compared to Logistic regression is concluded to come from the non-linearity introduced by the deep layer architecture. It adds the capacity to model complex regulatory interactions and combinatorial RBP effects which studies have shown largely affect alternative splicing. However, the architecture makes interpreting the CNN hard, as the regulatory interactions are encoded deep within the layers. Nevertheless, high-performance modeling of alternative splicing using CNNs may still prove useful in numerous Synthetic biology applications, for example to model differentially spliced genes as is done in this paper. / Den här uppsatsen undersöker hur djupa neurala nätverk baserade på faltning ("Convolutions") kan användas för att modellera den introniska regleringen av Alternativ Splicing med endast DNA-sekvensen som indata. Nätverket tränas på ett massivt parallelt bibliotek av syntetiskt DNA innehållandes Alternativa Splicing-event där delar av de introniska regionerna har randomiserats. Uppsatsen visar att nätverksarkitekturen kan förutspå den relativa mängden alternativt splicat RNA till en mycket hög noggrannhet inom det syntetiska biblioteket. Modellen generaliserar även alternativ splicing mellan mänskliga celltyper väl. Hursomhelst, tester på icke-syntetiska mänskliga gener med SNP-mutationer visar att nätverkets prestanda försämras när den introniska region som används som indata flyttas i jämförelse till den relativa position som modellen tränats på. Uppsatsen jämför modellen med Logistic regression och drar slutsatsen att nätverkets förbättrade prestanda grundar sig i dess förmåga att modellera icke-linjära beroenden i datan. Detta medför dock svårigheter i att tolka vad modellen faktiskt lärt sig, eftersom interaktionen mellan reglerande element är inbäddat i nätverkslagren. Trots det kan högpresterande modellering av alternativ splicing med hjälp av neurala nät vara användbart, exempelvis inom Syntetisk biologi där modellen kan användas för att kontrollera regleringen av splicing när man konstruerar syntetiska gener.
|
187 |
Low-power Implementation of Neural Network Extension for RISC-V CPU / Lågeffektimplementering av neural nätverksutvidgning för RISC-V CPULo Presti Costantino, Dario January 2023 (has links)
Deep Learning and Neural Networks have been studied and developed for many years as of today, but there is still a great need of research on this field, because the industry needs are rapidly changing. The new challenge in this field is called edge inference and it is the deployment of Deep Learning on small, simple and cheap devices, such as low-power microcontrollers. At the same time, also on the field of hardware design the industry is moving towards the RISC-V micro-architecture, which is open-source and is developing at such a fast rate that it will soon become the standard. A batteryless ultra low power microcontroller based on energy harvesting and RISC-V microarchitecture has been the final target device of this thesis. The challenge on which this project is based is to make a simple Neural Network work on this chip, i.e., finding out the capabilities and the limits of this chip for such an application and trying to optimize as much as possible the power and energy consumption. To do that TensorFlow Lite Micro has been chosen as the Deep Learning framework of reference, and a simple existing application was studied and tested first on the SparkFun Edge board and then successfully ported to the RISC-V ONiO.zero core, with its restrictive features. The optimizations have been done only on the convolutional layer of the neural network, both by Software, implementing the Im2col algorithm, and by Hardware, designing and implementing a new RISC-V instruction and the corresponding Hardware unit that performs four 8-bit parallel multiply-and-accumulate operations. This new design drastically reduces both the inference time (3.7 times reduction) and the number of instructions executed (4.8 times reduction), meaning lower overall power consumption. This kind of application on this type of chip can open the doors to a whole new market, giving the possibility to have thousands small, cheap and self-sufficient chips deploying Deep Learning applications to solve simple everyday life problems, even without network connection and without any privacy issue. / Deep Learning och neurala nätverk har studerats och utvecklats i många år fram till idag, men det finns fortfarande ett stort behov av forskning på detta område, eftersom industrins behov förändras snabbt. Den nya utmaningen inom detta område kallas edge inferens och det är implementeringen av Deep Learning på små, enkla och billiga enheter, såsom lågeffektmikrokontroller. Samtidigt, även på området hårdvarudesign, går industrin mot RISC-V-mikroarkitekturen, som är öppen källkod och utvecklas i så snabb takt att den snart kommer att bli standarden. En batterilös mikrokontroller med ultralåg effekt baserad på energiinsamling och RISC-V-mikroarkitektur har varit den slutliga målenheten för denna avhandling. Utmaningen som detta projekt är baserat på är att få ett enkelt neuralt nätverk att fungera på detta chip, det vill säga att ta reda på funktionerna och gränserna för detta chip för en sådan applikation och försöka optimera så mycket som möjligt ström- och energiförbrukningen. För att göra det har TensorFlow Lite Micro valts som referensram för Deep Learning, och en enkel befintlig applikation studerades och testades först på SparkFun Edge-kortet och portades sedan framgångsrikt till RISC-V ONiO.zero-kärnan, med dess restriktiva funktioner. Optimeringarna har endast gjorts på det konvolutionerande skikt av det neurala nätverket, både av mjukvara, implementering av Im2col-algoritmen, och av hårdvara, design och implementering av en ny RISC-V-instruktion och motsvarande hårdvaruenhet som utför fyra 8-bitars parallella multiplikation -och-ackumulationsoperationer. Denna nya design minskar drastiskt både slutledningstiden (3,7 gånger kortare) och antalet utförda instruktioner (4.8 gånger färre), vilket innebär lägre total strömförbrukning. Den här typen av applikationer på den här typen av chip kan öppna dörrarna till en helt ny marknad, vilket ger möjlighet att ha tusentals små, billiga och självförsörjande chip som distribuerar Deep Learning-applikationer för att lösa enkla vardagsproblem, även utan nätverksanslutning och utan någon integritetsproblematik.
|
188 |
Reliable Detection of Water Areas in Multispectral Drone Imagery : A faster region-based CNN model for accurately identifying the location of small-scale standing water bodies / Tillförlitlig detektering av vattenområden i multispektrala drönarbilder : En snabbare regionbaserad CNN-modell för noggrann identifiering av var småskaliga stående vattenförekomster finnsShangguan, Shengyao January 2023 (has links)
Dengue and Zika are two arboviral viruses that affect a significant portion of the world population. The principal vector species of both viruses are Aedes aegypti and Aedes albopictus mosquitoes. They breed in very slow flowing or standing pools of water. It is important to reduce and control such potential breeding grounds to contain the spread of these diseases. This thesis investigates a model for the detection of water bodies using high-resolution images collected by Unmanned Aerial Vehicles (UAVs) in tropical countries, exemplified by Sri Lanka, and their multispectral information to help detect water bodies where larvae are most likely to breed quickly and accurately. Although machine learning has been studied in previous work to process multispectral image information to obtain the location of water bodies, different machine learning methods have not been compared, only random forest algorithms have been used. Because Convolutional Neural Networks (CNNs) are known to provide advanced classification performance for visual recognition tasks, in this thesis, faster region-based CNNs are introduced to perform fast and accurate identification of water body locations. In order to better evaluate the experimental results, this thesis introduces Intersection over Union (IoU) as a criterion for evaluating the results. On the one hand, IoU can judge the success rate of the model for water region recognition, and on the other hand, analysis of the model recall rate under different IoU values can also evaluate the model’s ability to detect the range of water regions. Meanwhile, the basic CNN network and random forest algorithm in the previous work are also implemented to compare the results of faster region-based CNNs. In conclusion, the faster region-based CNN model achieves the best results with a 98.33% recognition success rate for water bodies in multispectral images, compared to 95.80% for the CNN model and 95.74% for the random forest model. In addition, the faster region-based CNN model significantly outperformed the CNN model and the random forest model for training speed. / Dengue och zika är två arbovirala virus som drabbar en stor del av världens befolkning. De viktigaste vektorerna för båda virusen är myggorna Aedes aegypti och Aedes albopictus. De förökar sig i mycket långsamt rinnande eller stående vattensamlingar. Det är viktigt att minska och kontrollera sådana potentiella grogrunder för att begränsa spridningen av dessa sjukdomar. I denna avhandling undersöks en modell för att upptäcka vattenområden med hjälp av högupplösta bilder som samlas in av Unmanned Aerial Vehicles (UAV) i tropiska länder, exemplifierat av Sri Lanka, och deras multispektrala information för att hjälpa till att upptäcka vattenområden där larverna sannolikt förökar sig snabbt och noggrant. Även om maskininlärning har studerats i tidigare arbeten för att bearbeta multispektral information från bilder för att få fram platsen för vattenförekomster, har olika metoder för maskininlärning inte jämförts, utan endast random forest-algoritmer har använts. Eftersom Convolutional Neural Networks (CNN) är kända för att erbjuda avancerade klassificeringsprestanda för visuella igenkänningsuppgifter i denna avhandling introduceras snabbare regionbaserade CNN för att utföra snabb och exakt identifiering av vattenkropparnas läge. För att bättre kunna utvärdera de experimentella resultaten införs i denna avhandling Intersection over Union (IoU) som ett kriterium för utvärdering av resultaten. Å ena sidan kan IoU bedöma modellens framgång för igenkänning av vattenområden, och å andra sidan kan analysen av modellens återkallningsfrekvens under olika IoU-värden också utvärdera modellens förmåga att upptäcka olika vattenområden. Samtidigt genomförs även det grundläggande CNN-nätverket och algoritmen för slumpmässig skog i det tidigare arbetet för att jämföra resultaten av Faster regionbaserad CNN. Sammanfattningsvis ger den snabbare regionbaserade CNN-modellen de bästa resultaten med 98,33% av alla igenkänningsresultat för vattenkroppar i multispektrala bilder, jämfört med 95,80% för CNN-modellen och 95,74% för modellen med slumpmässig skog. Dessutom överträffade den snabbare regionbaserade CNN-modellen CNN-modellen och random forest-modellen avsevärt när det gäller träningshastighet.
|
189 |
Combined Actuarial Neural Networks in Actuarial Rate Making / Kombinerade aktuariska neurala nätverk i aktuarisk tariffanalysGustafsson, Axel, Hansén, Jacob January 2021 (has links)
Insurance is built on the principle that a group of people contributes to a common pool of money which will be used to cover the costs for individuals who suffer from the insured event. In a competitive market, an insurance company will only be profitable if their pricing reflects the covered risks as good as possible. This thesis investigates the recently proposed Combined Actuarial Neural Network (CANN), a model nesting the traditional Generalised Linear Model (GLM) used in insurance pricing into a Neural Network (NN). The main idea of utilising NNs for insurance pricing is to model interactions between features that the GLM is unable to capture. The CANN model is analysed in a commercial insurance setting with respect to two research questions. The first research question, RQ 1, seeks to answer if the CANN model can outperform the underlying GLM with respect to error metrics and actuarial model evaluation tools. The second research question, RQ 2, seeks to identify existing interpretability methods that can be applied to the CANN model and also showcase how they can be applied. The results for RQ 1 show that CANN models are able to consistently outperform the GLM with respect to chosen model evaluation tools. A literature search is conducted to answer RQ 2, identifying interpretability methods that either are applicable or are possibly applicable to the CANN model. One interpretability method is also proposed in this thesis specifically for the CANN model, using model-fitted averages on two-dimensional segments of the data. Three interpretability methods from the literature search and the one proposed in this thesis are demonstrated, illustrating how these may be applied. / Försäkringar bygger på principen att en grupp människor bidrar till en gemensam summa pengar som används för att täcka kostnader för individer som råkar ut för den försäkrade händelsen. I en konkurrensutsatt marknad kommer försäkringsbolag endast vara lönsamma om deras prissättning är så bra som möjligt. Denna uppsats undersöker den nyligen föreslagna Combined Actuarial Neural Network (CANN) modellen som bygger in en Generalised Linear Model (GLM) i ett neuralt nätverk, i en praktiskt och kommersiell försäkringskontext med avseende på två forskningsfrågor. Huvudidén för en CANN modell är att fånga interaktioner mellan variabler, vilket en GLM inte automatiskt kan göra. Forskningsfråga 1 ämnar undersöka huruvida en CANN modell kan prestera bättre än en GLM med avseende på utvalda statistiska prestationsmått och modellutvärderingsverktyg som används av aktuarier. Forskningsfråga 2 ämnar identifiera några tolkningsverktyg som kan appliceras på CANN modellen samt demonstrera hur de kan användas. Resultaten för Forskningsfråga 1 visar att CANN modellen kan prestera bättre än en GLM. En literatursökning genomförs för att svara på Forskningsfråga 2, och ett antal tolkningsverktyg identifieras. Ett tolkningsverktyg föreslås också i denna uppsats specifikt för att tolka CANN modellen. Tre av tolkningsverktygen samt det utvecklade verktyget demonstreras för att visa hur de kan användas för att tolka CANN modellen.
|
190 |
Combined Actuarial Neural Networks in Actuarial Rate Making / Kombinerade aktuariska neurala nätverk i aktuarisk tariffanalysGustafsson, Axel, Hansen, Jacob January 2021 (has links)
Insurance is built on the principle that a group of people contributes to a common pool of money which will be used to cover the costs for individuals who suffer from the insured event. In a competitive market, an insurance company will only be profitable if their pricing reflects the covered risks as good as possible. This thesis investigates the recently proposed Combined Actuarial Neural Network (CANN), a model nesting the traditional Generalised Linear Model (GLM) used in insurance pricing into a Neural Network (NN). The main idea of utilising NNs for insurance pricing is to model interactions between features that the GLM is unable to capture. The CANN model is analysed in a commercial insurance setting with respect to two research questions. The first research question, RQ 1, seeks to answer if the CANN model can outperform the underlying GLM with respect to error metrics and actuarial model evaluation tools. The second research question, RQ 2, seeks to identify existing interpretability methods that can be applied to the CANN model and also showcase how they can be applied. The results for RQ 1 show that CANN models are able to consistently outperform the GLM with respect to chosen model evaluation tools. A literature search is conducted to answer RQ 2, identifying interpretability methods that either are applicable or are possibly applicable to the CANN model. One interpretability method is also proposed in this thesis specifically for the CANN model, using model-fitted averages on two-dimensional segments of the data. Three interpretability methods from the literature search and the one proposed in this thesis are demonstrated, illustrating how these may be applied. / Försäkringar bygger på principen att en grupp människor bidrar till en gemensam summa pengar som används för att täcka kostnader för individer som råkar ut för den försäkrade händelsen. I en konkurrensutsatt marknad kommer försäkringsbolag endast vara lönsamma om deras prissättning är så bra som möjligt. Denna uppsats undersöker den nyligen föreslagna Combined Actuarial Neural Network (CANN) modellen som bygger in en Generalised Linear Model (GLM) i ett neuralt nätverk, i en praktiskt och kommersiell försäkringskontext med avseende på två forskningsfrågor. Huvudidén för en CANN modell är att fånga interaktioner mellan variabler, vilket en GLM inte automatiskt kan göra. Forskningsfråga 1 ämnar undersöka huruvida en CANN modell kan prestera bättre än en GLM med avseende på utvalda statistiska prestationsmått och modellutvärderingsverktyg som används av aktuarier. Forskningsfråga 2 ämnar identifiera några tolkningsverktyg som kan appliceras på CANN modellen samt demonstrera hur de kan användas. Resultaten för Forskningsfråga 1 visar att CANN modellen kan prestera bättre än en GLM. En literatursökning genomförs för att svara på Forskningsfråga 2, och ett antal tolkningsverktyg identifieras. Ett tolkningsverktyg föreslås också i denna uppsats specifikt för att tolka CANN modellen. Tre av tolkningsverktygen samt det utvecklade verktyget demonstreras för att visa hur de kan användas för att tolka CANN modellen.
|
Page generated in 0.0522 seconds