Spelling suggestions: "subject:"neurala"" "subject:"rurala""
161 |
Physics-Informed Deep Learning for System Identification of Autonomous Underwater Vehicles : A Lagrangian Neural Network Approach / Fysikinformerad Djupinlärning för Systemidentifiering av Autonoma Undervattensfordon : Med Användning av Lagrangianska Neurala NätverkMirzai, Badi January 2021 (has links)
In this thesis, we explore Lagrangian Neural Networks (LNNs) for system identification of Autonomous Underwater Vehicles (AUVs) with 6 degrees of freedom. One of the main challenges of AUVs is that they have limited wireless communication and navigation under water. AUVs operate under strict and uncertain conditions, where they need to be able to navigate and perform tasks in unknown ocean environments with limited and noisy sensor data. A crucial requirement for localization and adaptive control of AUVs is having an accurate and reliable model of the system’s nonlinear dynamics while taking into account the dynamic environment of the ocean. Most of these dynamics models do not incorporate data. The collection of data for AUVs is difficult, but necessary in order to have more flexibility in the model’s parameters due to the dynamic environment of the ocean. Yet, traditional system identification methods are still dominant today, despite the recent breakthroughs in Deep Learning. Therefore, in this thesis, we aim for a data-driven approach that embeds laws from physics in order to learn the state-space model of an AUV. More precisely, exploring the LNN framework for higher-dimensional systems. Furthermore, we also extend the LNN to account for non-conservative forces acting upon the system, such as damping and control inputs. The networks are trained to learn from simulated data of a second-order ordinary differential equation of an AUV. The trained model is evaluated by integrating paths from different initial states and comparing them to the true dynamics. The results yielded a model capable of predicting the output acceleration of the state space model but struggled in learning the direction of the forward movement with time. / I den här uppsatsen utforskas Lagrangianska Neurala Nätverk (LNN) för systemidentifiering av Autonoma Undervattensfordon (AUV) med 6 frihetsgrader. En av de största utmaningarna med AUV är deras begränsningar när det kommer till trådlös kommunikation och navigering under vatten. Ett krav för att ha fungerande AUV är deras förmåga att navigera och utföra uppdrag under okända undervattensförhållanden med begränsad och brusig sensordata. Dessutom är ett kritiskt krav för lokalisering och adaptiv reglerteknik att ha noggranna modeller av systemets olinjära dynamik, samtidigt som den dynamiska miljön i havet tas i beaktande. De flesta sådana modeller tar inte i beaktande sensordata för att reglera dess parameterar. Insamling av sådan data för AUVer är besvärligt, men nödvändigt för att skapa större flexibilitet hos modellens parametrar. Trots de senaste genombrotten inom djupinlärning är traditionella metoder av systemidentifiering dominanta än idag för AUV. Det är av dessa anledningar som vi i denna uppsats strävar efter en datadriven metod, där vi förankrar lagar från fysik under inlärningen av systemets state-space modell. Mer specifikt utforskar vi LNN för ett system med högre dimension. Vidare expanderar vi även LNN till att även ta ickekonservativa krafter som verkar på systemet i beaktande, såsom dämpning och styrsignaler. Nätverket tränas att lära sig från simulerad data från en andra ordningens differentialekvation som beskriver en AUV. Den tränade modellen utvärderas genom att iterativt integrera fram dess rörelse från olika initialstillstånd, vilket jämförs med den korrekta modellen. Resultaten visade en modell som till viss del var kapabel till att förutspå korrekt acceleration, med begränsad framgång i att lära sig korrekt rörelseriktning framåt i tiden.
|
162 |
Uncertainty Estimation for Deep Learning-based LPI Radar Classification : A Comparative Study of Bayesian Neural Networks and Deep Ensembles / Osäkerhetsskattning för LPI radarklassificering med djupa neurala nätverk : En jämförelsestudie av Bayesianska neurala nätverk och djupa ensemblerEkelund, Måns January 2021 (has links)
Deep Neural Networks (DNNs) have shown promising results in classifying known Low-probability-of-intercept (LPI) radar signals in noisy environments. However, regular DNNs produce low-quality confidence and uncertainty estimates, making them unreliable, which inhibit deployment in real-world settings. Hence, the need for robust uncertainty estimation methods has grown, and two categories emerged, Bayesian approximation and ensemble learning. As autonomous LPI radar classification is deployed in safety-critical environments, this study compares Bayesian Neural Networks (BNNs) and Deep Ensembles (DEs) as uncertainty estimation methods. We synthetically generate a training and test data set, as well as a shifted data set where subtle changes are made to the signal parameters. The methods are evaluated on predictive performance, relevant confidence and uncertainty estimation metrics, and method-related metrics such as model size, training, and inference time. Our results show that our DE achieves slightly higher predictive performance than the BNN on both in-distribution and shifted data with an accuracy of 74% and 32%, respectively. Further, we show that both methods exhibit more cautiousness in their predictions compared to a regular DNN for in-distribution data, while the confidence quality significantly degrades on shifted data. Uncertainty in predictions is evaluated as predictive entropy, and we show that both methods exhibit higher uncertainty on shifted data. We also show that the signal-to-noise ratio affects uncertainty compared to a regular DNN. However, none of the methods exhibit uncertainty when making predictions on unseen signal modulation patterns, which is not a desirable behavior. Further, we conclude that the amount of available resources could influence the choice of the method since DEs are resource-heavy, requiring more memory than a regular DNN or BNN. On the other hand, the BNN requires a far longer training time. / Tidigare studier har visat att djupa neurala nätverk (DNN) kan klassificera signalmönster för en speciell typ av radar (LPI) som är skapad för att vara svår att identifiera och avlyssna. Traditionella neurala nätverk saknar dock ett naturligt sätt att skatta osäkerhet, vilket skadar deras pålitlighet och förhindrar att de används i säkerhetskritiska miljöer. Osäkerhetsskattning för djupinlärning har därför vuxit och på senare tid blivit ett stort område med två tydliga kategorier, Bayesiansk approximering och ensemblemetoder. LPI radarklassificering är av stort intresse för försvarsindustrin, och tekniken kommer med största sannolikhet att appliceras i säkerhetskritiska miljöer. I denna studie jämför vi Bayesianska neurala nätverk och djupa ensembler för LPI radarklassificering. Resultaten från studien pekar på att en djup ensemble uppnår högre träffsäkerhet än ett Bayesianskt neuralt nätverk och att båda metoderna uppvisar återhållsamhet i sina förutsägelser jämfört med ett traditionellt djupt neuralt nätverk. Vi skattar osäkerhet som entropi och visar att osäkerheten i metodernas slutledningar ökar både på höga brusnivåer och på data som är något förskjuten från den kända datadistributionen. Resultaten visar dock att metodernas osäkerhet inte ökar jämfört med ett vanligt nätverk när de får se tidigare osedda signal mönster. Vi visar också att val av metod kan influeras av tillgängliga resurser, eftersom djupa ensembler kräver mycket minne jämfört med ett traditionellt eller Bayesianskt neuralt nätverk.
|
163 |
Stylometric Embeddings for Book Similarities / Stilometriska vektorer för likhet mellan böckerChen, Beichen January 2021 (has links)
Stylometry is the field of research aimed at defining features for quantifying writing style, and the most studied question in stylometry has been authorship attribution, where given a set of texts with known authorship, we are asked to determine the author of a new unseen document. In this study a number of lexical and syntactic stylometric feature sets were extracted for two datasets, a smaller one containing 27 books from 25 authors, and a larger one containing 11,063 books from 316 authors. Neural networks were used to transform the features into embeddings after which the nearest neighbor method was used to attribute texts to their closest neighbor. The smaller dataset achieved an accuracy of 91.25% using frequencies of 50 most common functional words, dependency relations, and Part-of-speech (POS) tags as features, and the larger dataset achieved 69.18% accuracy using a similar feature set with 100 most common functional words. In addition to performing author attribution, a user test showed the potentials of the model in generating author similarities and hence being useful in an applied setting for recommending books to readers based on author style. / Stilometri eller stilistisk statistik är ett forskningsområde som arbetar med att definiera särdrag för att kvantitativt studera stilistisk variation hos författare. Stilometri har mest fokuserat på författarbestämning, där uppgiften är att avgöra vem som skrivit en viss text där författaren är okänd, givet tidigare texter med kända författare. I denna stude valdes ett antal lexikala och syntaktiska stilistiska särdrag vilka användes för att bestämma författare. Experimentella resultat redovisas för två samlingar litterära verk: en mindre med 27 böcker skrivna av 25 författare och en större med 11 063 böcker skrivna av 316 författare. Neurala nätverk användes för att koda de valda särdragen som vektorer varefter de närmaste grannarna för de okända texterna i vektorrummet användes för att bestämma författarna. För den mindre samlingen uppnåddes en träffsäkerhet på 91,25% genom att använda de 50 vanligaste funktionsorden, syntaktiska dependensrelationer och ordklassinformation. För den större samlingen uppnåddes en träffsäkerhet på 69,18% med liknande särdrag. Ett användartest visar att modellen utöver att bestämma författare har potential att representera likhet mellan författares stil. Detta skulle kunna tillämpas för att rekommendera böcker till läsare baserat på stil.
|
164 |
Transformer decoder as a method to predict diagnostic trouble codes in heavy commercial vehicles / Transformer decoder som en metod för att förutspå felkoder i tunga fordonPoljo, Haris January 2021 (has links)
Diagnostic trouble codes (DTC) have traditionally been used by mechanics to figure out what is wrong with a vehicle. A vehicle generates a DTC when a specific condition in the vehicle is met. This condition has been defined by an engineer and represents some fault that has happened. Therefore the intuition is that DTC’s contain useful information about the health of the vehicle. Due to the sequential ordering of DTC’s and the high count of unique values, this modality of data has characteristics that resemble those of natural language. This thesis investigates if an algorithm that has shown to be promising in the field of Natural Language Processing can be applied to sequences of DTC’s. More specifically, the deep learning model called the transformer decoder will be compared to a baseline model called n-gram in terms of how well they estimate a probability distribution of the next DTC condition on previously seen DTC’s. Estimating a probability distribution could then be useful for manufacturers of heavy commercial vehicles such as Scania when creating systems that help them in their mission of ensuring a high uptime of their vehicles. The algorithms were compared by firstly doing a hyperparameter search for both algorithms and then comparing the models using the 5x2 cross-validation paired t-test. Three metrics were evaluated, perplexity, Top- 1 accuracy, and Top-5 accuracy. It was concluded that there was a significant difference in the performance of the two models where the transformer decoder was the better method given the metrics that were used in the evaluation. The transformer decoder had a perplexity of 22.1, Top-1 accuracy of 37.5%, and a Top-5 accuracy of 59.1%. In contrast, the n-gram had a perplexity of 37.6, Top-1 accuracy of 7.5%, and a Top-5 accuracy of 30%. / Felkoder har traditionellt använts av mekaniker för att ta reda på vad som är fel med ett fordon. Ett fordon genererar en felkod när ett visst villkor i fordonet är uppfyllt, detta villkor har definierats av en ingenjör och representerar något fel som har skett. Därför är intuitionen att felkoder innehåller användbar information om fordonets hälsa. På grund av den sekventiella ordningen av felkoder och det höga antalet unika värden, har denna modalitet av data egenskaper som liknar de för naturligt språk. Detta arbete undersöker om en algoritm som har visat sig vara lovande inom språkteknologi kan tillämpas på sekvenser av felkoder. Mer specifikt kommer den djupainlärnings modellen som kallas Transformer Decoder att jämföras med en basmodell som kallas n- gram. Med avseende på hur väl de estimerar en sannolikhetsfördelning av nästa felkod givet tidigare felkoder som har setts. Att uppskatta en sannolikhetsfördelning kan vara användbart för tillverkare av tunga fordon så som Scania, när de skapar system som hjälper dem i deras uppdrag att säkerställa en hög upptid för sina fordon. Algoritmerna jämfördes genom att först göra en hyperparametersökning för båda modellerna och sedan jämföra modellerna med hjälp av 5x2 korsvalidering parat t-test. Tre mätvärden utvärderades, perplexity, Top-1 träffsäkerhet och Top-5 träffsäkerhet. Man drog slutsatsen att det fanns en signifikant skillnad i prestanda för de två modellerna där Transformer Decoder var den bättre metoden givet mätvärdena som användes vid utvärderingen. Transformer Decoder hade en perplexity på 22.1, Top-1 träffsäkerhet på 37,5% och en Top-5 träffsäkerhet på 59,1%. I kontrast, n-gram modellen hade en perplexity på 37.6, Top-1 träffsäkerhet på 7.5% och en Top-5 träffsäkerhet på 30%.
|
165 |
Mixed Precision Quantization for Computer Vision Tasks in Autonomous Driving / Blandad Precisionskvantisering för Datorvisionsuppgifter vid Autonom KörningRengarajan, Sri Janani January 2022 (has links)
Quantization of Neural Networks is popular technique for adopting computation intensive Deep Learning applications to edge devices. In this work, low bit mixed precision quantization of FPN-Resnet18 model trained for the task of semantic segmentation is explored using Cityscapes and Arriver datasets. The Hessian information of each layer in the model is used to determine the bit precision for each layer and in some experiments the bit precision for the layers are determined randomly. The networks are quantization-aware trained with bit combinations 2, 4 and 8. The results obtained for both Cityscapes and Arriver datasets show that the quantization-aware trained networks with the low bit mixed precision technique offer a performance at par with the 8-bit quantization-aware trained networks and the segmentation performance degrades when the network activations are quantized below 8 bits. Also, it was found that the usage of the Hessian information had little effect on the network’s performance. / Kvantisering av Neurala nätverk är populär teknik för att införa beräknings-intensiva Deep Learning -applikationer till edge-enheter. I detta arbete utforskas låg bitmixad precisionskvantisering av FPN-Resnet18-modellen som är utbildad för uppgiften för semantisk segmentering med hjälp av Cityscapes och Arriverdatauppsättningar. Hessisk information från varje lager i modellen, används för att bestämma bitprecisionen för respektive lager. I vissa experiment bestäms bitprecision för skikten slumpmässigt. Nätverken är kvantiserings medvetna utbildade med bitkombinationer 2, 4 och 8. Resultaten som erhållits för både Cityscapes och Arriver datauppsättningar visar att de kvantiserings medvetna utbildade nätverken med lågbit blandad precisionsteknik erbjuder en prestanda i nivå med 8-bitars kvantiseringsmedvetna utbildade nätverk och segmenteringens prestationsgrader när nätverksaktiveringarna kvantiseras under 8 bitar. Det visade sig också att användningen av hessisk information hade liten effekt på nätets prestanda.
|
166 |
Route Planning of Transfer Buses Using Reinforcement Learning / Ruttplanering av Transferbussar med FörstärkningsinlärningHolst, Gustav January 2020 (has links)
In route planning the goal is to obtain the best route between a set of locations, which becomes a very complex task as the number of locations increase. This study will consider the problem of transfer bus route planning and examines the feasibility of applying a reinforcement learning method in this specific real-world context. In recent research, reinforcement learning methods have emerged as a promising alternative to classical optimization algorithms when solving similar problems. This due to their positive properties in terms of scalability and generalization. However, the majority of said research has been performed on strictly theoretical problems, not using real-world data. This study implements an existing reinforcement learning model and adapts it to fit the realms of transfer bus route planning. The model is trained to generate optimized routes in terms of time and cost consumption. Then, routes generated by the trained model are evaluated by comparing them to corresponding manually planned routes. The reinforcement learning model produces routes that outperforms manually planned routes with regards to both examined metrics. However, due to delimitations and assumptions made during the implementation, the explicit differences in consumptions are considered promising but cannot be taken as definite results. The main finding is the overarching behavior of the model, implying a proof of concept; reinforcement learning models are usable tools in the context of real-world transfer bus route planning. / Inom ruttplanering är målet att erhålla den bästa färdvägen mellan en uppsättning platser, vilket blir en mycket komplicerad uppgift i takt med att antalet platser ökar. Denna studie kommer att behandla problemet gällande ruttplanering av transferbussar och undersöker genomförbarheten av att tillämpa en förstärkningsinlärningsmetod på detta verkliga problem. I nutida forskning har förstärkningsinlärningsmetoder framträtt som ett lovande alternativ till klassiska optimeringsalgoritmer för lösandet av liknande problem. Detta på grund utav deras positiva egenskaper gällande skalbarhet och generalisering. Emellertid har majoriteten av den nämnda forskningen utförts på strikt teoretiska problem. Denna studie implementerar en befintlig förstärkningsinlärningsmodell och anpassar den till att passa problemet med ruttplanering av transferbussar. Modellen tränas för att generera optimerade rutter, gällande tids- och kostnadskonsumtion. Därefter utvärderas rutterna, som genererats av den tränade modellen, mot motsvarande manuellt planerade rutter. Förstärkningsinlärningsmodellen producerar rutter som överträffar de manuellt planerade rutterna med avseende på de båda undersökta mätvärdena. På grund av avgränsningar och antagandet som gjorts under implementeringen anses emellertid de explicita konsumtionsskillnaderna vara lovande men kan inte ses som definitiva resultat. Huvudfyndet är modellens övergripande beteende, vilket antyder en konceptvalidering; förstärkningsinlärningsmodeller är användbara som verktyg i sammanhanget gällande verklig ruttplanering av transferbussar.
|
167 |
Predicting Purchase of Airline Seating Using Machine Learning / Förutsägelse på köp av sätesreservation med maskininlärning.El-Hage, Sebastian January 2020 (has links)
With the continuing surge in digitalization within the travel industry and the increased demand of personalized services, understanding customer behaviour is becoming a requirement to survive for travel agencies. The number of cases that addresses this problem are increasing and machine learning is expected to be the enabling technique. This thesis will attempt to train two different models, a multi-layer perceptron and a support vector machine, to reliably predict whether a customer will add a seat reservation with their flight booking. The models are trained on a large dataset consisting of 69 variables and over 1.1 million historical recordings of bookings dating back to 2017. The results from the trained models are satisfactory and the models are able to classify the data with an accuracy of around 70%. This shows that this type of problem is solvable with the techniques used. The results moreover suggest that further exploration of models and additional data could be of interest since this could help increase the level of performance. / Med den fortsatta ökningen av digitalisering inom reseindustrin och det faktum att kunder idag visar ett stort behov av skräddarsydda tjänster så stiger även kraven på företag att förstå sina kunders beteende för att överleva. En uppsjö av studier har gjorts där man försökt tackla problemet med att kunna förutse kundbeteende och maskininlärning har pekats ut som en möjliggörande teknik. Inom maskininlärning har det skett en stor utveckling och specifikt inom området djupinlärning. Detta har gjort att användningen av dessa teknologier för att lösa komplexa problem spritt sig till allt fler branscher. Den här studien implementerar en Multi-Layer Perceptron och en Support Vector Machine och tränar dessa på befintliga data för att tillförlitligt kunna avgöra om en kund kommer att köpa en sätesreservation eller inte till sin bokning. Datat som användes bestod av 69 variabler och över 1.1 miljoner historiska bokningar inom tidsspannet 2017 till 2020. Resultaten från studien är tillfredställande då modellerna i snitt lyckas klassificera med en noggrannhet på 70%, men inte optimala. Multi-Layer Perceptronen presterar bäst på båda mätvärdena som användes för att estimera prestandan på modellerna, accuracy och F1 score. Resultaten pekar även på att en påbyggnad av denna studie med mer data och fler klassificeringsmodeller är av intresse då detta skulle kunna leda till en högre nivå av prestanda.
|
168 |
Comparing Machine Learning Estimation of Fuel Consumption of Heavy-duty Vehicles / En jämförelse av maskininlärningsalgoritmers estimering av bränsleförbrukning för tunga fordonBodell, Victor January 2020 (has links)
Fuel consumption is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefor request an estimate of the fuel consumption of a given vehicle. Scania uses modular design when constructing heavy-duty vehicles. The modular design allows a customer to specify which building blocks to use when constructing the vehicle, such as gear box, engine and chassis type. The many possible combinations means that the same vehicle is rarely sold twice, which can make fuel consumption measurements unfeasible. This study investigates the accuracy of machine learning algorithms in predicting fuel consumption for heavy-duty vehicles. The study is conducted at Scania. Scania has also provided the data used in the study. This study also examines the prediction power of different parameters. Performance is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of Linear regression (LR), K-nearest neighbor (KNN) and Artificial neural networks (ANN) is compared using statistical hypothesis testing. It is found that using Country as an input parameter yields a performance increase in all the algorithms. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The performance of the final models is comparable to models of previous studies in both the simulated and operational estimation scenarios. / Bränsleförbrukning utgör en av nyckelfaktorerna för att avgöra hur mycket det kostar att använda tunga lastbilar. En köpare av en tung lastbil kan därmed begära en uppskattning av hur mycket bränsle ett givet fordon förbrukar. Scania använder sig av en modulär designprincip vid fordonskonstruktion, vilket ger kunden möjlighet att bestämma vilka byggnadsblock som ska utgöra ett for- don. Detta gör att det kan vara omöjligt att mäta förbrukningen av ett tidigare icke-producerat fordon. Den här studien undersöker exaktheten av maskininlärningsalgoritmer för att estimera bränsleförbrukning av tunga lastbilar. Studien genomförs vid Scania, som även tillhandahåller data. Användbarheten av olika in-parametrar undersöks. Algoritmernas prestanda utvärderas genom att rapportera det kvadrerade felvärdet uppmätt mellan det riktiga uppmätta värdet och det av algoritmen uppskattade värdet. Bränsleförbrukning estimeras för simulerad data och för uppmätta värden från fordon i bruk. Tre kategorier av algoritmer undersöks: Artificiella neurala nätverk, linjär regression och K-nearest neighbor. Jämförelsen mellan algoritmer använder statistisk hypotes-testning. Resultatet visar att parametern som beskriver vilket land fordonet registrerats i förbättrar samtliga algoritmers estimering. Den statistiska utvärderingen finner att artificiella neurala nätverk ger det lägsta felet av de tre kategorierna av algoritmer i estimering av simulerade och uppmätta värden. De slutgiltiga modellernas exakthet är jämförbar med resultat från tidigare studier.
|
169 |
Real-time Human Detection using Convolutional Neural Networks with FMCW RADAR RGB data / Upptäckt av människor i real-tid med djupa faltningsnät samt FMCW RADAR RGB dataPhan, Anna, Medina, Rogelio January 2022 (has links)
Machine learning has been employed in the automotive industry together with cameras to detect objects in surround sensing technology. You Only Look Once is a state-of-the-art object detection algorithm especially suitable for real-time applications due to its speed and relatively high accuracy compared to competing methods. Recent studies have investigated whether radar data can be used as an alternative to camera data with You Only Look Once, seeing as radars are more robust to changing environments such as various weather and lighting conditions. These studies have used 3D data from radar consisting of range, angle, and velocity, transformed into a 2D image representation, either in the Range-Angle or Range-Doppler domain. Furthermore, the processed radar image can use either a Cartesian or a polar coordinate system for the rendering. This study will combine previous studies, using You Only Look Once with Range-Angle radar images and examine which coordinate system of Cartesian or polar is most optimal. Additionally, evaluating the localization and classification performance will be done using a combination of concepts and evaluation metrics. Ultimately, the conclusion is that the Cartesian coordinate system prevails with asignificant improvement compared to polar. / Maskininlärning har sedan länge använts inom fordinsindustrin tillsammans med kameror för att upptäcka föremål och få en ökad överblick över omgivningar. You Only Look Once är en toppmodern objektdetekteringsalgoritm särskilt lämplig för realtidsapplikationer tack vare dess hastighet och relativt höga noggrannhet jämfört med konkurrerande metoder. Nyligen genomförda studier har undersökt om radardata kan användas som ett alternativ till kameradata med You Only Look Once, eftersom radar är mer robusta för ändrade miljöer så som olika väder- och ljusförhållanden. Dessa studier har utnyttjat 3D data från radar bestående av avstånd, vinkel och hastighet, som transformerats till en 2D bildrepresentation, antingen i domänen Range-Angle eller Range-Doppler. Vidare kan den bearbetade radarbilden använda antingen ett kartesiskt eller ett polärt koordinatsystem för framställningen. Denna studie kommer att kombinera tidigare studier om You Only Look Once med Range-Angle radarbilder och undersöka vilket koordinatsystem, kartesiskt eller polärt, som är mest optimalt att använda för människodetektering med radar. Dessutom kommer en utvärdering av lokaliserings- och klassificeringsförmåga att göras med hjälp av en blandning av koncept och olika mått på prestanda. Slutsatsen gjordes att det kartesiska koordinatsystemet är det bättre alternativet med en betydligt högre prestanda jämfört med det polära koordinatsystemet.
|
170 |
Short-term Forecasting of EV Charging Stations Power Consumption at Distribution Scale / Korttidsprognoser för elbils laddstationer Strömförbrukning i distributionsskalaClerc, Milan January 2022 (has links)
Due to the intermittent nature of renewable energy production, maintaining the stability of the power supply system is becoming a significant challenge of the energy transition. Besides, the penetration of Electric Vehicles (EVs) and the development of a large network of charging stations will inevitably increase the pressure on the electrical grid. However, this network and the batteries that are connected to it also constitute a significant resource to provide ancillary services and therefore a new opportunity to stabilize the power grid. This requires to be able to produce accurate short term forecasts of the power consumption of charging stations at distribution scale. This work proposes a full forecasting framework, from the transformation of discrete charging sessions logs into a continuous aggregated load profile, to the pre-processing of the time series and the generation of predictions. This framework is used to identify the most appropriate model to provide two days ahead predictions of the hourly load profile of large charging stations networks. Using three years of data collected at Amsterdam’s public stations, the performance of several state-of-the-art forecasting models, including Gradient Boosted Trees (GBTs) and Recurrent Neural Networks (RNNs) is evaluated and compared to a classical time series model (Auto Regressive Integrated Moving Average (ARIMA)). The best performances are obtained with an Extreme Gradient Boosting (XGBoost) model using harmonic terms, past consumption values, calendar information and temperature forecasts as prediction features. This study also highlights periodical patterns in charging behaviors, as well as strong calendar effects and an influence of temperature on EV usage. / På grund av den intermittenta karaktären av förnybar energiproduktion, blir upprätthållandet av elnäts stabilitet en betydande utmaning. Dessutom kommer penetrationen av elbilar och utvecklingen av ett stort nät av laddstationer att öka trycket på elnätet. Men detta laddnät och batterierna som är anslutna till det utgör också en betydande resurs för att tillhandahålla kompletterande tjänster och därför en ny möjlighet att stabilisera elnätet. För att göra sådant bör man kunna producera korrekta kortsiktiga prognoser för laddstationens strömförbrukning i distributions skala. Detta arbete föreslår ett fullständigt prognos protokoll, från omvandlingen av diskreta laddnings sessioner till en kontinuerlig förbrukningsprofil, till förbehandling av tidsserier och generering av förutsägelser. Protokollet används för att identifiera den mest lämpliga metoden för att ge två dagars förutsägelser av timförbrukning profilen för ett stort laddstation nät. Med hjälp av tre års data som samlats in på Amsterdams publika stationer utvärderas prestanda för flera avancerade prognosmodeller som är gradient boosting och återkommande neurala nätverk, och jämförs med en klassisk tidsseriemodell (ARIMA). De bästa resultaten uppnås med en XGBoost modell med harmoniska termer, tidigare förbrukningsvärden, kalenderinformation och temperatur prognoser som förutsägelse funktioner. Denna studie belyser också periodiska mönster i laddningsbeteenden, liksom starka kalendereffekter och temperaturpåverkan på elbilar-användning.
|
Page generated in 0.0491 seconds