Spelling suggestions: "subject:"neurodegenerative"" "subject:"eurodegenerative""
291 |
La régulation de G3BP1 par TDP-43 dans le contexte de la sclérose latérale amyotrophique et la démence fronto-temporaleSidibé, Hadjara 12 1900 (has links)
La sclérose latérale amyotrophique (SLA) et la démence fronto-temporale (DFT) sont des maladies neurodégénératives fatales, actuellement sans traitement. Ces maladies entrainent la dégénérescence des neurones moteurs et corticaux, engendrant des troubles moteurs et cognitifs et ultimement menant à la mort des patients souvent par détresse respiratoire trois à cinq ans après l’apparition des premiers symptômes. À l’échelle d’une vie, le risque de développer ces pathologies est de 1 pour 300-400 pour la SLA et 1 pour 742 pour la DFT, faisant de ces pathologies un risque majeur. Avec le vieillissement de la population que nous connaissons actuellement, il est évident que l’incidence de ces maladies deviendra de plus en plus élevée. Ainsi il est essentiel de comprendre les mécanismes moléculaires sous-jacents à ces pathologies dans le but de développer des thérapies effectives et prévenir l’impact de ces pathologies dans notre société. À ce jour, l’étiologie de la SLA-DFT est encore débattue, cependant la communauté scientifique s’accorde sur le fait que l’interaction entre la génétique et l’environnement joue un rôle essentiel dans le développement de ces maladies. La caractéristique moléculaire principale de ces pathologies est la localisation cytoplasmique de la protéine, normalement, nucléaire TDP-43. TDP-43 est un régulateur clef de l’homéostasie des ARNs. Parmi ces nombreuses fonctions, TDP-43 régule la formation des granules de stress, en régulant leur protéine régulatrice G3BP1. Ces granules formés d’ARN et de protéines se forment pour protéger les cellules durant une période de stress. Récemment, ces granules ont fait l’objet de nombreuses études et leurs dysfonctions ont été associées à la SLA-DFT. Dans cette thèse, nous avons approfondi l’étude de la régulation de TDP-43 sur G3BP1. Nous avons défini que TDP-43 stabilise les transcrits de G3BP1 de par une liaison forte à une séquence conservée à travers l’évolution se situant dans le 3’UTR de G3BP1. La perte de localisation nucléaire, la présence de mutations ou de TDP-35, une isoforme pathologique de TDP-43, sont associées à une diminution des niveaux de G3BP1. Également, d’un point de vue histopathologique, dans le cortex orbitofrontal des patients atteints de SLA-DFT, les neurones présentant une localisation cytoplasmique de TDP-43 ont une perte des niveaux transcriptionnels de G3BP1, associant alors directement G3BP1 à la maladie. Par la suite, nous avons défini que la perte de fonction en tant que stabilisateur, permet la liaison de microARNs sur les transcrits de G3BP1, engendrant leur dégradation. Le blocage de la liaison de microARNs sur G3BP1 empêche la dégradation des transcrits et restaure les fonctions de la protéine. Ainsi, nous avons déterminé un moyen de contrer la perte de fonction de TDP-43 sur G3BP1. De façon intéressante, en plus de la formation des granules de stress, G3BP1 est essentielle pour l’homéostasie neuronale et la survie neuronale post-stress. Par conséquent, la restauration de la protéine est potentiellement une avenue thérapeutique multi-approche pour le traitement de ces maladies. / Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two fatal neurodegenerative diseases, currently without cure. These diseases lead to the degeneration of motor and cortical neurons, causing motor and cognitive disorders and ultimately leading to death, often from respiratory distress three to five years after the onset. Over a lifetime, the risk of
developing these conditions is 1 in 300-400 for ALS and 1 in 742 for FTD, making these conditions a major risk. With the current aging of the population, it is evident that the incidence of these diseases will become increasingly high. It is therefore essential to understand the molecular mechanisms underlying these pathologies in order to develop effective therapies. To this day, the etiology of ALS-FTD is still debated. However, the scientific community agrees that the interaction between genetics and the environment play an essential role in the development of these diseases. The main molecular characteristic of these pathologies is the cytoplasmic localization of the normally nuclear protein TDP-43. TDP-43 is a key regulator of RNA homoeostasis. Among these many functions, TDP-43 regulates the formation of stress granules,
by regulating their nucleator protein G3BP1. These granules of RNA and protein form to protect cells during times of stress. Recently these granules have been the subject of several studies and their dysfunction has been associated with ALS-FTD.
In this thesis, we have deepened the study of the regulation of TDP-43 on G3BP1. We have defined that TDP-43 stabilizes G3BP1 transcripts by strong binding to a sequence conserved through evolution located in the 3'UTR of G3BP1. Loss of nuclear localization, the presence of mutations or of TDP-35, a pathological isoform of TDP-43, are associated with decreased levels of G3BP1. Also, histopathologically, in the orbitofrontal cortex of patients with ALS-DFT, neurons with cytoplasmic localization of TDP-43 have a loss of transcriptional levels of G3BP1, directly associating G3BP1 with the disease. Subsequently, we defined that TDP-43 loss of function as a stabilizer allows the binding of two microRNAs on the G3BP1 transcripts, causing their degradation. Blocking the binding of these microRNAs to G3BP1 prevents the degradation
of the transcripts and restores the functions of the protein. Thus, we have determined a way to counter the loss of function of TDP-43 on G3BP1. Interestingly, in addition to the formation of stress granules, G3BP1 is essential for neuronal homoeostasis and post-stress neuronal survival. Therefore, the restoration of the protein is potentially a multi-approach therapeutic avenue for the treatment of these diseases.
|
292 |
<b>Charactering the impact of traumatic injury on neurodegenerative disease risk using engineered cell and tissue model</b>Junkai Xie (17130850) 12 October 2023 (has links)
<p dir="ltr">Neurotrauma encompasses a broad category of injuries affecting the central nervous system (CNS), which includes both the traumatic brain injury (TBI) and spinal cord injury (SCI). These injuries can result from various causes, including accidents, falls, sports-related incidents, and other traumatic events, affecting millions of individuals annually. Traumatic injuries are the leading cause of disability, and moreover are associated with elevated risk of developing cognitive impairments and neurodegenerative diseases (ND) such as Alzheimer’s Disease (AD) and Parkinson’s Disease (PD). The elevated ND risk arising from neurotrauma poses significant burdens on healthcare systems and affect life quality of affected individuals, emphasizing the critical need for research aimed at understanding the underlying mechanisms conferring ND risk from the lesion center to CNS. The goal of my thesis is to understand persistent molecular changes post SCI associated with ND using a combination of a rat animal model and neuronal cultures derived from human induced pluripotent stem cells.</p><p dir="ltr">I started with Sprague-Dawley rats with T10 spinal cord contusive injury; and assessed immediate and persistent changes in transcriptomic and epigenetic markers via next generation sequencing (NGS) at primary lesion site and distal spinal cord tissue. Along with global changes in chromatin arrangements and DNA methylation, we observed significant transcriptomic changes enriched for pathways of inflammatory responses, and synaptogenesis. These changes were further verified using immunohistochemistry and super resolution microscopy. To further understand the long-term brain abnormality linked to SCI, we investigated persistent alterations in the composition and molecular profiles of both the male and female motor cortex 30 days after injury. Immunohistochemistry revealed that SCI leads to neuronal loss and changes in synaptic density and morphology; and significant alterations in the neuron-astrocyte ratio and astrocyte morphology, in male motor cortex supporting our hypothesis that SCI may increase the risk of neurodegeneration by affecting the motor cortex. Comparison of transcriptomic data collected at a sub-acute stage in male rats, namely 7 days post injury, with 30 days post injury, identified persistent and de novo changes that occur primarily after recovery of spinal cord injury, which are enriched for neuronal and synaptic function related pathways. Interestingly, neuroendocrine-related pathways were prominently implicated at the chronic stage of SCI, with Esr1 identified as a major upstream regulator offering protective effects in females that did not exhibit significant alterations in cellular composition or morphology after SCI. Collectively, our study paved the way towards understanding sexual dimorphism in brains after spinal cord injury and provides a plausible connection between spinal cord injury and neurodegeneration later in life that were further investigated using a humanized culture model.</p><p dir="ltr">We established the feasibility of using hiPSC derived neurons to examine long term neurotoxic mechanism using lead (Pb) as a model chemical with strong associations with elevated AD risks later in life. A similar culture system was then used to assess persistent neurotoxicity of acrolein, a chemical that is known to emerge in brains post traumatic injury. We found that acrolein induced alterations in neuronal network morphology, synaptic density, and excitability. Furthermore, acrolein exposure negatively impacted mitochondrial function and persistently altered neuronal resilience towards a secondary stressor of mitochondria, namely MPP+. Acrolein exposure also alters the expression of tau and tau phosphorylation which collectively result in increased cellular vulnerability toward paired helical filament (PHF-tau) seeding, a known neurotoxin associated with ND. These findings collectively provide molecular insights as to how acrolein can partake alterations in neural function and resilience to stressors; and relay ND risks in neurotrauma patients later in life.</p><p dir="ltr">In conclusion, our comprehensive investigation employing both rat and hiPSC models uncovers plausible molecular pathways connecting SCI to neurodegenerative diseases, providing insights into the enduring consequences of these injuries on affected patients.</p>
|
293 |
Characterizing Stress Granule Regulation by PAS Kinase, Ataxin-2 and Ptc6 and Investigating the Lifespan of Covid-19 Virus on CurrencyNewey, Colleen R 07 December 2023 (has links) (PDF)
The protein Ataxin-2 is a known positive regulator of stress granules in humans, mice and yeast (known as yeast PBP1). Due to the role that stress granules play in diseases including Amyotrophic Lateral Sclerosis (ALS) and cancer, this thesis investigates the role of Ataxin-2 and its protein binding partners in stress granule development and its effects on various metabolic phenotypes of the cell. PAS kinase is a sensory protein kinase, conserved from yeast to man, which regulates respiration and lipid biosynthesis. Our lab discovered that PAS kinase phosphorylates and activates Ataxin-2 in yeast, and that PAS kinase overexpression enhances localization of Ataxin-2 to stress granules. Our preliminary results from yeast show that PAS kinase positively regulates stress granule formation in response to metabolic stress. Ataxin-2 normally functions to promote stress granule formation and it has been specifically shown to sequester and inhibit mammalian target of rapamycin complex I (mTORC1), a major player in the regulation of cell growth, to stress granules in both yeast and mammalian cells. To build upon this knowledge we performed a large-scale yeast interactome to identify Pbp1 binding partners through yeast-two hybrid and mass spectrometry. We identified 32 novel putative binding partners. A protein of note was Ptc6, a known regulator of mitophagy with human homolog PPM1K, which is not known to be involved in stress granules. Through colocalization with Ppb1 we determined that Ptc6 is sequestered to stress granules under glucose depravation. Under Pbp1 overexpression, Ptc6 was shown to increase localization to a stress granule marker, Pab1, showing that Pbp1 may be actively promoting Ptc6 to stress granules. We investigated the effects of eliminating Pbp1 and Ptc6 in yeast cells, including on mitophagy, mitochondrial quantification, whole cell respiration and mitochondrial reactive oxidative species. In a separate project, due to the outbreak of a worldwide pandemic and early concerns that currency could be a potential SARS-CoV-2 fomite, we investigated whether the virus could survive on varying types of currency. We conducted environmental studies and found no viable virus on bank notes or money cards. In vitro studies with live virus suggested SARS-CoV-2 was highly unstable on banknotes, however SARS-CoV-2 displayed increased stability on money cards with live virus detected after 48 hours.
|
294 |
ANALYSES OF THE DEVELOPMENT AND FUNCTION OF STEM CELL DERIVED CELLS IN NEURODEGENERATIVE DISEASES.pdfSailee Sham Lavekar (14152875) 03 February 2023 (has links)
<p>Human pluripotent stem cells (hPSCs) are an attractive tool for the study of different neurodegenerative diseases due to their potential to form any cell type of the body. Due to their versatility and self-renewal capacity, they have different applications such as disease modeling, high throughput drug screening and transplantation. Different animal models have helped answer broader questions related to the physiological functioning of various pathways and the phenotypic effects of a particular neurodegenerative disease. However, due to the lack of success recapitulating some targets identified from animal models into successful clinical trials, there is a need for a direct translational disease model. Since their advent, hPSCs have helped understand various disease effectors and underlying mechanisms using genetic engineering techniques, omics studies and reductionist approaches for the recognition of candidate molecules or pathways required to answer questions related to neurodevelopment, neurodegeneration and neuroregeneration. Due to the simplified approach that iPSC models can provide, some <em>in vitro</em> approaches are being developed using microphysiological systems (MPS) that could answer complex physiological questions. MPS encompass all the different <em>in vitro</em> systems that could help better mimic certain physiological systems that tend to not be mimicked by <em>in vivo</em> models. In this dissertation, efforts have been directed to disease model as well as to understand the intrinsic as well as extrinsic cues using two different MPS. First, we have used hPSCs with Alzheimer’s disease (AD)-related mutations to differentiate into retinal organoids and identify AD related phenotypes for future studies to identify retinal AD biomarkers. Using 5 month old retinal organoids from AD cell lines as well as controls, we could identify retinal AD phenotypes such as an increase in Aβ42:Aβ40 ratio along with increase in pTau:Tau. Nanostring analyses also helped in identification of potential target genes that are modulated in retinal AD that were related to synaptic dysfunction. Thus, using retinal organoids for the identification of retinal AD phenotypes could help delve deeper into the identification of future potential biomarkers in the retina of AD patients, with the potential to serve as a means for early identification and intervention for patients. The next MPS we used to serve to explore non-cell autonomous effects associated with glaucoma to explore the neurovascular unit. Previous studies have demonstrated the degeneration of RGCs in glaucoma due to a point mutation OPTN(E50K) that leads to the degeneration of RGCs both at morphological and functional levels. Thus, using the previous studies as a basis, we wanted to further unravel the impact of this mutation using the different cell types of the neurovascular unit such as endothelial cells, astrocytes and RGCs. Interestingly, we observed the barrier properties being impacted by the mutation present in both RGCs and astrocytes demonstrated through TEER, permeability and transcellular transport changes. We also identified a potential factor TGFβ2 that was observed to be overproduced by the OPTN E50K astrocytes to demonstrate similar effects with the exogenous addition of TGFβ2 on the barrier. Furthermore, the inhibition of TGFβ2 helped rescue some of the barrier dysfunction phenotypes. Thus, TGFβ2 inhibition can be used as a potential candidate that can be used to further study its impact in <em>in vivo</em> models and how that can be used in translational applications. Thus, MPS systems have a lot of applications that can help answer different physiologically relevant questions that are hard to approach using <em>in vivo</em> models and the further development of these systems to accentuate the aspects of neural development and how it goes awry in different neurodegenerative diseases. </p>
|
295 |
P2X7 Receptors Amplify CNS Damage in Neurodegenerative DiseasesIlles, Peter 05 February 2024 (has links)
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of
ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane.
Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of
Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is
supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions
and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase
enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also
at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor
leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory
cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic
glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful
events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases
(neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral
sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue.
This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence,
blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability
are possible therapeutic agents for these diseases. The aim of this review article is to summarize
our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative
illnesses endangering especially the life quality and duration of the aged human population.
|
296 |
Instability at Trinucleotide Repeat DNAsGadgil, Rujuta Yashodhan 30 August 2016 (has links)
No description available.
|
297 |
Oral hälsa hos individer med Parkinson sjukdom : En allmän litteraturstudie / Oral health in individuals with Parkinson's diseaseIsaac, lulia, Shemoun, Mariam January 2022 (has links)
Syfte: Studiens syfte var att beskriva oral hälsa hos individer med Parkinson sjukdom (PS). Metod:Studiedesignen var i form av allmän litteraturstudie där tre databaser användes för sökning efter vetenskapliga artiklar (DOSS, CINAHL och MEDLINE). Efter tillämpning av inklusions-, exklusionskriterier, passande sökord samt genomförande av kvalitetsgranskning, valdes totalt 19 vetenskapliga artiklar. Resultat: Oral hygien tenderade till att vara sämre hos individer med PS. Resultatet visade att xerostomi och hyposalivation var vanligt förkommande hos individer med PS. Karies, gingivit och parodontit visades även hos individer med PS där bland annat parodontala mätningar visades vara högre till andel hos dessa individer. Andra orala tillstånd som visades bland individer med PS var dregling, dysfagi, halitosis och angulär cheilit. Slutsats: Hos individer med PS visades orala hälsan var sämre jämfört med individer utan PS. Risken att utsättas för orala sjukdomar exempelvis karies, gingivit och parodontit var högre hos individer med PS, där både läkemedelsintag och nedsatt motorik har en inverkan. / Aim: The aim was to describe oral health in individuals with Parkinson's disease (PD). Method: The study design was a general literature study where three databases were used to search for scientific articles (DOSS, CINAHL and MEDLINE). After applying inclusion, exclusion criteria, proper keywords and conducting a quality review, a total of 19 scientific articles were selected. Result: Oral hygiene tended to be worse in patients with PD. The results showed that xerostomia and hyposalivation are common in patients with PD. Caries, gingivitis and periodontitis were also shown among patients with PD where, among other things, periodontal measurements were shown to be higher in proportion in these individuals. Other oral conditions that were shown among individuals with PD were drooling, dysphagia, halitosis and angular cheilitis. Conclusion: Oral health was shown to be worse among individuals with PD compared to individuals without PD. The risk of being exposed to oral diseases such as caries, gingivitis and periodontitis was higher among these individuals where both drug intake and impaired motor skills have an effect.
|
298 |
Génération de modèles cellulaires pour étudier l'impact du vieillissement sur la microglie humaineArmanville, Sandrine 08 1900 (has links)
Les microglies sont les cellules immunitaires du système nerveux central. Elles sont essentielles pour son bon fonctionnement et son homéostasie. Avec l’âge, elles adoptent une morphologie dystrophique accompagnée d’un dérèglement de leurs fonctions homéostatiques. Le dysfonctionnement microglial associé au vieillissement est soupçonné de contribuer à la progression de maladies neurodégénératives. Cependant, la cause de ces changements phénotypiques est peu connue, d’autant plus chez l’humain compte tenu du manque d’accessibilité des microglies humaines âgées vivantes pour le travail moléculaire in vitro. Les travaux présentés dans ce mémoire visent donc le développement d’un modèle cellulaire qui permettrait d’étudier l’impact du vieillissement cellulaire sur la microglie humaine. Dans ce mémoire, nous formulons l’hypothèse que l’induction chimique de la sénescence dans les microglies humaines induira rapidement des caractéristiques associées au vieillissement cellulaire alors que la reprogrammation microgliale directe à partir de cellules de peau d’individus âgés maintiendra la signature associée au vieillissement cellulaire de manière physiologique. Les résultats démontrent que les microglies dans lesquelles la sénescence est chimiquement induite présentent des caractéristiques phénotypiques de vieillissement cellulaire et un dérèglement de leurs fonctions homéostatiques. De plus, les produits cellulaires obtenus par la reprogrammation microgliale directe adoptent plusieurs caractéristiques clés de la microglie, mais certaines conditions de reprogrammation directe doivent encore être déterminées afin d’obtenir un produit cellulaire authentique. Ces techniques fourniront une source renouvelable de microglies humaines âgées pouvant être dérivée de patients, afin d’étudier l’impact du vieillissement sur leurs fonctions physiologiques et sur leur interaction avec les cellules du cerveau dans les maladies neurodégénératives. / Microglia are the resident immune cells of the central nervous system (CNS). They are essential for brain functioning and cerebral homeostasis. With age, they adopt a dystrophic morphology and a disruption of their homeostatic functions occurs. Microglial dysfunction associated with aging is believed to contribute to the progression of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. However, how aging confers to microglia this change in phenotype is still unknown, especially in human given the lack of accessibility of live human aged microglia for in vitro molecular work. As such, the work presented in this Master’s thesis aims the development of a cellular model in which the effect of aging on microglial function can be studied in human microglia. In this paper, we formulate the hypothesis that chemical induction of senescence in human microglia rapidly induces phenotypic characteristics of cellular aging, whereas direct microglial reprogramming from fibroblasts of elderly individuals will maintain the aging signature following cellular conversion. The results obtained show that microglia in which senescence is chemically induced show phenotypic characteristics of cellular aging as well as disruption of their homeostatic functions. On the other hand, cellular product obtained from microglial reprogramming adopt several key features of human microglia, but some direct microglial reprogramming conditions still need to be determined in order to obtain a cell product closely resembling human microglia. These two methods will provide a renewable source of patient-derived aged microglia to study the impact of aging on their physiological functions and on their interaction with other CNS cells in neurodegenerative diseases.
|
299 |
CRMP1 protein complexes modulate polyQ-mediated Htt aggregation and toxicity in neuronsBounab, Yacine 25 August 2010 (has links)
Chorea Huntington (HD) ist eine neurodegenerative Erkrankung, die durch Ablagerungen von N-terminal Polyglutamin-reichen Huntingtin (Htt) -Fragmenten in den betroffenen Neuronen charakterisiert ist. Das mutierte Htt (mHtt) Protein wird ubiquitär exprimiert. Das zellspezifische Absterben von „medium-sized spiny neurons“ (MSN) wird jedoch im Striatum von HD Patienten verursacht (Albin, 1995). Es wird angenommen, dass Striatum-spezifische Proteine, die mit Htt interagieren, eine wichtige Rolle in der Pathogenese von HD spielen (Ross, 1995). Protein-Protein-Interaktionsstudien haben gezeigt, dass einige der Htt-Interaktionspartner mit unlöslichen Htt-Ablagerungen in den Gehirnen von HD-Patienten kolokalisieren und die Bildung von Protein-Aggregaten beeinflussen (Goehler, 2004). Kürzlich wurde durch die Integration von Genexpressions- und Interaktionsdaten ein Striatum-spezifisches Protein-Interaktionsnetzwerk erstellt (Chaurasia, unveröffentlichte Daten). Eines der identifizierten Proteine ist CRMP1 (collapsin response mediator protein 1), das spezifisch in Neuronen exprimiert wird und möglicherweise eine wichtige Rolle bei der Pathogenese von HD spielt. Experimentelle Untersuchungen mithilfe eines Filter-Retardationsassays zeigten, dass CRMP1 die Anordnung von Htt zu fibrillären, SDS-unlöslichen Aggregaten verringert. Durch Rasterkraftmikroskopie wurde der direkte Effekt von CRMP1 auf den Aggregationsprozess von Htt bestätigt. Ko-Immunopräzipitationsstudien zeigten, dass CRMP1 und Htt in Säugerzellen unter physiologischen Bedingungen miteinander interagieren. Es wurde nachgewiesen, dass CRMP1 die Polyglutamin-abhängige Aggregation und Toxizität von Htt in Zell- und Drosophila-Modellen von HD moduliert. Außerdem konnte CRMP1 in neuronalen Ablagerungen in R6/2 Mäusegehirnen und dessen selektive Spaltung durch Calpaine gezeigt werden. Diese Ergebnisse deuten darauf hin, dass die Lokalisation und Funktion von CRMP1 bei der Krankheitsentstehung verändert werden. / Huntington’s disease (HD) is a neurodegenerative disorder characterized by the accumulation of N-terminal polyglutamine (polyQ)-containing huntingtin (Htt) fragments in affected neurons. The mutant Htt (mHtt) protein is ubiquitously expressed but causes specific dysfunction and death of striatal medium-sized spiny neurons (MSNs) (Albin, 1995). It is assumed that striatum specific proteins interacting with Htt might play an important role in HD pathogenesis (Ross, 1995). Previous protein-protein interaction (PPI) studies demonstrated that many Htt-interacting proteins colocalize with insoluble Htt inclusions in HD brains and modulate the mHtt phenotype (Goehler 2004). A striatum-specific, dysregulated PPI network has been created recently by integrating PPI networks with information from gene expression profiling data (Chaurasia, unpublished data). One of the identified dysregulated proteins potentially involved in HD pathogenesis was the neuron-specific collapsin response-mediator protein 1 (CRMP1). Here, I show that CRMP1 reduces the self-assembly of SDS-insoluble mHtt protein aggregates in vitro, indicating a direct role of CRMP1 on the mHtt aggregation process. Coimmunoprecipitation studies showed that CRMP1 and Htt associate in mammalian cells under physiological conditions. In addition, CRMP1 localizes to abnormal neuronal inclusions and efficiently modulates polyQ-mediated Htt aggregation and toxicity in cell and Drosophila models of HD. This suggests that dysfunction of the protein is crucial for disease pathogenesis. Finally, I observed that CRMP1 localizes to neuronal inclusions and is selectively cleaved by calpains in R6/2 mouse brains, indicating that its distribution and function are altered in pathogenesis. In conclusion, this study presents new findings on the function of CRMP1 and its role in the pathogenesis of HD. The protein interacts with Htt and modulates its aggregation and toxicity, in this way influencing the molecular course of the disease.
|
300 |
Einfluss des Proteinaggregationshemmstoffs anle138b auf Beginn und Verlauf der Amyotrophen Lateralsklerose im transgenen hSOD1-Mausmodell / Influence of the protein aggregation inhibitor anle138b on the beginning and progression of amyotrophic lateral sclerosis in the transgenic hSOD1 mouse modelThyssen, Stella 24 June 2014 (has links)
No description available.
|
Page generated in 0.0819 seconds