• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 43
  • 19
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 186
  • 186
  • 42
  • 42
  • 41
  • 27
  • 25
  • 21
  • 19
  • 18
  • 18
  • 17
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Cellular regulation of molecular chaperones and identification of pathogenic pathways in polyglutamine disease. / CUHK electronic theses & dissertations collection

January 2006 (has links)
Polyglutamine disease is a class of neurodegenerative diseases, which is manifested by the atrophy of nervous system that results in dementia and/or motor dysfunction. The major pathological characteristics include progressive loss of neuronal cells as well as the appearance of insoluble nuclear inclusions in degenerating neuronal cells. Polyglutamine disease is caused by CAG triplet expansion in the genome. When translated, such expansion leads to the formation of expanded polyglutamine domain within the respective disease proteins and promotes abnormal protein conformational changes. Owing to their misfolded nature, the expanded polyglutamine proteins form insoluble nuclear inclusions. These insoluble nuclear inclusions are heterogeneous in nature, in which polyglutamine protein and molecular chaperones are the recruited components. All eukaryotic cells express molecular chaperones which function to mediate the proper folding of proteins. The recruitment of molecular chaperones into nuclear inclusions that contain misfolded triplet-expanded proteins strongly suggests the involvement of molecular chaperones in polyglutamine disease progression. It has been shown that over-expression of molecular chaperones in polyglutamine disease models can lead to a suppression of polyglutamine toxicity and a concomitant increase in the solubility of disease proteins, i.e. the solubility of polyglutamine disease protein is related to its toxicity. Intrigued by these observations, I aimed at elucidating the mechanism of polyglutamine disease pathogenesis by first studying the cellular regulation of endogenous chaperone expression in neurodegeneration in a transgenic Drosophila model of polyglutamine disease. A biphasic regulation of Hsp70 expression was observed, which the regulation was at the transcription level. Moreover, over-expression of Hsp70 could alter the endogenous Hsp70 protein and mRNA level of polyglutamine disease fly model. The study may help the understanding of how the chaperone expression is regulated under the effects of polyglutamine expression and thus to find out the mechanism of pathogenesis. In addition, cellular proteins that change in solubility other than disease protein will also be identified. Small heat shock proteins, glutathione S transferase and alpha 4 proteasome subunit, etc., showed change in solubility or expression by 2D gel electrophoresis analysis. Identifying the proteins that change in solubility or expression may help the finding of the interplay of proteins and thus the pathways involve in the mechanism of polyglutamine disease pathogenesis. Understanding pathogenic pathways can give ideas on how polyglutamine lead to the disease, up- or down-regulation of those protein interplays may provide direction and therapeutic candidates to suppress polyglutamine disease. / Huen Ngar Yee. / "September 2006." / Advisers: Ho Yin Chan; Siu Kai Kong. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1465. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 134-146). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
52

Regional-dependent, comprehensive characterization of miRNA signatures in sporadic Creutzfeldt-Jakob Disease and early Alzheimer’s Disease-type neuropathology

Thüne, Katrin 11 October 2018 (has links)
No description available.
53

Effects of Adoptive Transfer of Beta-Amyloid Sensitive Immune Cells in a Mouse Model for Alzheimer’s Disease

Shippy, Daniel 08 June 2005 (has links)
One major therapeutic target for preventing and treating Alzheimer's Disease (AD) is removal of excess β-amyloid (Aβ) from the brain. Both active and passive immunotherapies targeting Aβ have proven effective in reducing brain Aβ levels and improving cognitive function in mouse transgenic models of AD. However, these approaches can induce adverse neuropathologic effects and immunologic over-activation. Indeed, clinical trials of active Aβ immunotherapy in AD patients were halted due to development of meningoencephalitis, apparently resulting from wide-spread neuroinflammation. Here we show that a more restricted and specific immune re-activation through a single adoptive transfer of Aβ-specific T cells can provide long-term benefits to APPsw+PS1 transgenic mice that last at least 1 1/2 months. Aβ-sensitive splenocytes and lymphocytes were generated in normal mice, re-stimulated with Aβ in vitro, and then adoptively transferred into cognitively-impaired APPsw+PS1 mice. Compared to control transgenic mice through 1 1/2 month post-infusion, those mice that received Aβ-sensitive T cells exhibited a reversal of pre-infusion working memory impairment and demonstrated superior basic mnemonic processing. Step-wise forward Discriminant Function Analysis of behavioral results clearly demonstrated that T cell infused mice performed comparably to wild-type non-transgenics, further emphasizing the extent of cognitive benefit this therapeutic technique afforded. Importantly, a global inflammatory response did not accompany these benefits. Though no overall reductions in Aβ deposition were noted for T cell recipient mice, a subset of T cell infused mice that benefited most in cognitive function had reduced hippocampal burdens, suggesting that hippocampal Aβ burdes did play a role in determining performance capabilities of these mice. Since chronically high levels of beta-amy loid such as those found in APPsw+PS1 mice cause immune hypo-responsive/tolerance to Aβ, our results indicate that adoptive transfer of Aβ-sensitive T-cells can supercede such immune tolerance to Aβ, and may provide a safe, long-lasting therapy for AD.
54

Neurofilament light as a marker for neurodegenerative diseases

Norgren, Niklas January 2004 (has links)
Neurofilaments are the main cytoskeletal constituents in neuronal cells. They are belived to be important for maintaining the structural integrity and calibre of axons and dendrites thereby influencing the conduction velocity of nerve impulses.The neurofilament chains are divided into three groups according to their molecular size, neurofilament light (NF-L), neurofilament medium (NF-M) and neurofilament heavy (NF-H). The neurofilaments are obligate heteropolymers in vivo in which NF-L forms the backbone to which the heavier chains copolymerize to form the 10 nm neurofilament fibre. Different degenerative processes in the brain raise significant interest owing to the increasing mean age in the western world. Such diseases include amyotrophic lateral sclerosis, vascular dementia, frontal lobe dementia, progressive supra-nuclear paralysis, multiple system atrophy, low pressure hydrocephalus, and multiple sclerosis (MS). We have been able to generate six highly specific monoclonal antibodies for NF-L, and four independent epitopes were elucidated using Biacore and V8 protease degradation. Antibody 2:1 and 47:3 were selected components in a two-site ELISA assay for detection of NF-L in body fluids owing to their outstanding abililty to bind the antigen. The assay has a least detectable dose of 60 ng/l and a standard range of 60 to 64 000 ng/l. The assay was validated on its ability to detect changes of NF-L levels in CSF in patients with different neurological diseases. These were cerebral infarction, amyotrophic lateral sclerosis, relapsing remitting MS, extrapyramidal symptoms, and late onset Alzheimer’s disease. All the patient groups displayed significantly elevated NF-L levels as compared to the controls. We also tested the assay’s ability to monitor the amount of axonal breakdown in an animal model of MS. The NF-L levels were found to be elevated in rodents with chronic experimental autoimmune encephalomyelitis, giving a possible tool for monitoring new treatment strategies for axonal protection in MS. When studying a large population based MS material, we found axonal breakdown to be present early in the disease course and the breakdown was observed both in active relapse and clinically stable disease, indicative of ongoing neurodegeneration. NF-L levels were correlated to progression index, that is, high NF-L levels detected early in disease predict a fast progression of the disease. The amount of glial fibrillary acidic protein, a cytoskeletal protein found in astrocytes, was also quantified and was shown to be a good marker for the more progressive MS subtypes, that is, primary progressive and secondary progressive disease, indicating formation of astrocytic scars and activation of astrocytes. The test dealt with in this thesis has the potential to identify the slow chronic degenerative diseases with progressive disappearance of nerve cells and their large myelinated axons. There is a significant need clinically to be able to quantify such types of cell degeneration in relation to the progressive disappearance of nerve functions and to relate these different conditions to treatment regimens, disease progress, and prognosis.
55

AMPc i neuroinflamació: Identificació de proteïnes implicades en la regulació dels nivells d’AMPc en l’encefalomielitis autoimmune experimental

Sanabra Palau, Cristina 04 July 2011 (has links)
L'AMPc té un paper clau com a missatger intracel.lular regulant la transmissió dels senyals extracel•lulars en diferents teixits i controlant múltiples processos cel lulars. Els nivells intracel.lulars d'AMPc es controlen mitjançant la seva síntesi, catalitzada per l'enzim adenilat ciclasa, i mitjançant la seva degradació a través de l'acció de les fosfodiesterases (PDE) de nucleòtids cíclics. Hi ha 11 famílies de PDEs. La PDE4 representa a una família de fosfodiesterases específiques d'AMPc formada per quatre gens paràlegs (PDE4-D), cadascun dels quals és capaç de generar múltiples variants d’splicing. La PDE4A, la PDE4B i la PDE4D es troben expressades en diferents tipus de cèl lules inflamatòries on tenen un important paper com reguladores dels processos inflamatoris. La inhibició selectiva, tant in vitro com in vivo, de PDEs ha demostrat tenir diferents efectes antiinflamatoris. En aquest treball es mostra la implicació de la isoforma PDE4B, i en concret la seva variant de splicing PDE4B2, durant el procés neuroinflamatori del model animal d’Esclerosis Múltiple, l’Encefalomielitis Autoimmune Experimental (d’EAE). Els resultats mostren un augment de l’expressió de l’ARNm de PDE4B2 a la medul•la espinal de ratolins EAE que correlaciona amb l’expressió d’alguns marcadors inflamatoris de forma dependent a la simptomatologia clínica dels animals. També s’observa que l’enzim PDE4B es trova localitzat principalment en cèl•lules presentadores d’antigen (APCs) com les cèl•lules dendrítques i els macròfags/micròglia. A més, els ratolins PDE4B-/- mostren una aparició temprana dels símptomes clínics en comparació amb els ratolins wildtype, amb alteracions en l’expressió de l’ARNm d’algunes citocines. L’alteració selectiva de la PDE4B2 en el model d’EAE en ratolí i la seva participació en el desenvolupament de la malaltia com s’ha observat en els animals PDE4B-/- presenta noves possibilitats sobre l’ús d’inhibidors selectius per les diverses isoformes (i variants d’splicing) tant per aplicacions terapèutiques com per investigar mecanismes d’inflamació en malalties neurodegeneratives. / Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis that courses with neuroinflammation, axonal damage and demyelination. The model is characterized by T- and B-cell responses to myelin oligodendrocyte glycoprotein which produce a wide range of pro- and anti-inflammatory cytokines. The modulation of cAMP levels through pharmacological manipulation of phosphodiesterases (PDEs) provokes profound anti-inflammatory responses. In the EAE model, amelioration of the clinical signs and delayed onset is observed after PDE4 inhibition and the PDE4B gene has been related to the inflammatory immune response in mice. Here we analyzed post-immunization changes in the expression of mRNA coding for the PDE4B2 splice variant by semiquantitative real-time PCR and in situ hybridization. The results showed an upregulation of PDE4B2 mRNA in the spinal cord of EAE mice which correlates with FoxP3 and TGF-β mRNAs expression in a score-dependent manner. We also found that PDE4B enzyme is mainly localized in antigen-presenting cells (APCs) such as dendritic cells and microglia/macrophages. PDE4B-/- mice show an earlier onset of the disease compared to wildtype mice, with alterations in some cytokine mRNA expression. The results point to a protective role of the PDE4B enzyme and PDE4B2 splice variant in particular, during EAE pathogenesis by modulating cAMP levels in APCs and controlling the cytokine environment for T-cell differentiation.
56

Dissecting out the contribution of cognitive, social, and physical activities to environmental enrichment's ability to protect Alzheimer's mice against cognitive impairment

Cracchiolo, Jennifer R 01 June 2005 (has links)
Retrospective studies suggest that lifestyle activities may provide protection against Alzheimer s Disease (AD). However, such studies can be inaccurate and prospective longitudinal studies investigating lifestyle protection against AD are both impractical and impossible to control for. Transgenic (Tg+) AD mice offer a model in a well controlled environment for testing the potential for environmental factors to impact AD development. In an initial study, Tg+ and non-transgenic (Tg-) mice were housed in either environmentally enriched (EE) or standard housing (SH) from 2-6 months of age, with a behavioral battery given during the last 5 weeks of housing. In the Morris maze, platform recognition, and radial arm water maze tasks, Tg+/EE mice were completely protected from cognitive impairment present in Tg+/SH mice and comparable to control Tg-/SH mice in cognitive performance. The current study utilized the same cognitive-based behavioral battery and multimetric statis statistical analysis to investigate the protective effects of "complete" environment enrichment (EE) versus several of its components (physical activity, social interactions) in AD transgenic mice. The AD transgenic mice utilized develop beta-amyloid (AB) deposition and cognitive impairment by 6-7 months of age. Similar to our initial study, results show that "complete" EE (physical, social, and cognitive activities) from 2 to 8 months of age completely protected AD transgenic mice from cognitive impairment in tasks representing different cognitive domains - working memory, reference learning, and search/recognition. In strong contrast, Tg+ mice reared in environments that included physical activity and social interaction, or only social interaction, were not protected from cognitive impairment in adulthood -- enhanced cognitive activity was required over and above that present in these other environments. Through use of discriminant function analysis, EE and/or NT mice were consistently discriminated from the poorer performing other housing groups. The cognitive benefits observed in EE-housed Tg+ mice occurred without significant changes in cortical AB levels, plasma cytokine levels, or plasma corticosterone levels, suggesting involvement of mechanisms independent of these endpoints. However, EE-housed Tg+ mice did have decreased dendritic length of neurons in the parietal cortex (but not hippocampus). Noteworthy is that plasma cytokine levels and hippocampal dendritic length consistently correlated with cognitive measures, suggesting their involvement in underlying mechanisms of cognitive performance. The present work provides the first evidence that "complete" EE (including enhanced cognitive activity) is needed to provide cognitive protection against AD in a Tg+ model of the disease, while the physical and social activity components of EE do not alone lead to protection. These results suggest that humans desiring to gain maximal environmental protection against AD should live a lifestyle high in cognitive, social, and physical activities together.
57

Mass Spectrometry of Non-protein Amino Acids : BMAA and Neurodegenerative Diseases

Jiang, Liying January 2015 (has links)
Neurodegenerative diseases have been shown to correlate positively with an ageing population. The most common neurodegenerative diseases are amyotrophic lateral sclerosis (ALS), Parkinson’s disease and Alzheimer’s disease. The cause of these diseases is believed to be the interaction between genetic and environmental factors, synergistically acting with ageing. BMAA (β-methylamino-L-alanine) is one kind of toxin present in our environment and might play an important role in the development of those diseases. BMAA was initially isolated from cycad seeds in Guam, where the incidence of ALS/Parkinsonism-dementia complex among the indigenous people was 50 – 100 times higher than the rest of the world in the 1950’s. BMAA can induce toxic effects on rodents and primates. Furthermore, it can potentiate neuronal injury on cell cultures at concentrations as low as 10 µM. BMAA was reported to be produced by cyanobacteria, and could bio-magnify through the food chain. In this thesis, work was initially focused on the improvement of an existing analytical method for BMAA identification and quantification using liquid chromatography coupled with tandem mass spectrometry.  Subsequently, the refined method was applied to environmental samples for probing alternative BMAA producer(s) in nature and to seafood samples for estimation of human exposure to this toxin. In Paper I, a systematic screening of the isomers of BMAA in a database was performed and seven potential isomers were suggested. Three of them were detected or suspected in natural samples. In Paper II, a deuterated internal standard was synthesized and used for quantifying BMAA in cyanobacteria. In Paper III, Diatoms were discovered to be a BMAA producer in nature. In Paper IV, ten popular species of seafood sold in Swedish markets were screened for BMAA. Half of them were found to contain BMAA at a level of 0.01 – 0.90 µg/g wet weight. In Future perspectives, the remaining questions important in this field are raised.
58

Treatment of prion diseases with camelid antibodies

Jones, Daryl Rhys January 2013 (has links)
No description available.
59

Prevalencia, fenotipo clínico y neuropatológico del parkinsonismo asociado a mutaciones en el gen LRRK2

Gaig Ventura, Carles 25 March 2011 (has links)
Las mutaciones en el gen LRRK2, en especial la G2019S, parecen ser una causa relativamente frecuente de enfermedad de Parkinson (EP).Mutaciones en este gen se detectan en el 5-6% de los casos con EP familiar y en el 1-2 % de los casos esporádicos de diferentes poblaciones occidentales. La mutación R1441G del gen LRRK2 también es una causa frecuente de parkinsonismo en el País Vasco. Las hipótesis del presente trabajo son: 1) En Cataluña las mutaciones G2019S y R1441G del gen LRRK2 son causa de parkinsonismo tanto familiar como esporádico, 2) Las manifestaciones clínicas motoras y no motoras del parkinsonismo asociado a mutaciones en el gen LRRK2 son heterogéneas, y 3) El sustrato neuropatológico del parkinsonismo asociado a mutaciones en el gen LRRK2 es heterogéneo y determina el fenotipo clínico. En relación a estas hipótesis, los objetivos son: 1) Determinar la frecuencia de las mutaciones G2019S y R1441G del gen LRRK2 en pacientes con diagnóstico clínico de EP en un hospital terciario de Barcelona, 2) Definir el fenotipo clínico de los pacientes con EP portadores de una mutación en el gen LRRK2, y 3) Determinar la presencia de las mutaciones G2019S y R1441G del gen LRRK2 en cerebros diagnosticados de EP, de parkinsonimo degenerativo, o de degeneración lobar frontotemporal, y estudiar las características clínicas y patológicas de los casos portadores de una mutación en este gen. Los resultados y conclusiones son: 1) La frecuencia de mutaciones en el gen LRRK2 en pacientes con EP que atienden a una consulta especializada en un hospital terciario de Barcelona es del 5,3%, siendo la mutación G2019S la más frecuente (el 4,3% de los pacientes son portadores). La mutación R1441G es más infrecuente (0,7%). 2) Las mutaciones en el gen LRRK2 son más frecuentes en casos familiares de EP (un 9,6% de los casos son portadores) que en casos esporádicos (un 3,4% son portadores). Hasta en un 43,7% de los pacientes con mutaciones en el gen LRRK2 no existen antecedentes familiares de parkinsonismo. 3) Las características clínicas de los síntomas motores y no motores del parkinsonismo asociado a mutaciones en el gen LRRK2 es indistinguible de los observados en la EP clásica. 4) Las alteraciones neuropatológicas del parkinsonismo asociado a la mutación G2019S del gen LRRK2 son heterogéneas. Si bien el sustrato neuropatológico más frecuente es la patología tipo Lewy, describimos un caso que confirma que uno de los fenotipos neuropatológicos asociados a la mutación G2019S es la degeneración nigral inespecífica sin inclusiones distintivas. 5) No hemos detectado mutaciones en el gen LRRK2 en cerebros asociados a otro tipo de enfermedad neurodegenerativa diferente a la EP, como la demencia por cuerpos de Lewy, la parálisis supranuclear progresiva o la atrofia multisistémica. Su existencia habría que considerarla probablemente excepcional o coincidental. / LRRK2 G2019S mutation is a frequent cause of Parkinson’s disease (PD). This mutation is present in 5-6% of familial PD cases and 1-2 % of sporadic PD patients. LRRK2 R1441G is frequent in PD patients from the Basque country. We hypothesize that 1) In Catalonia, the G2019S and R1441G mutations are frequent in patients with familial as well as sporadic parkinsonism. 2) Clinical features in LRRK2-related parkinsonism are heterogeneous 3) The neuropathological substrate of LRRK2-related parkinsonism is pleomorphic and determines the clinical phenotype. We aim to assess 1) The frequency of the G2019S and R1441G mutations in patients with a clinical diagnosis of PD in Barcelona 2) The clinical phenotype of PD patients carrying a LRRK2 mutation, and 3) The presence of LRRK2 G2019S and R1441G mutations in brains diagnosed of PD, other neurodegenerative parkinsonism, as well as frontotemporal lobar degeneration, and assess the clinical and neuropathological features of those cases carrying a LRRK2 mutation. Results and conclusions: 1) LRRK2 mutations are frequent in PD patients from Barcelona (5.3% of them). The G2019S mutation is more frequent (4.3%) than the R1441G mutation (0.7%). 2) LRRK2 mutations are more frequent in familial PD cases (9.6% of them) than in sporadic cases (3.4%). Family history of parkinsonism is absent in up to 43.7% of patients with LRRK2 mutations. 3) Clinical features of motor and non-motor symptoms of LRRK2-related parkinsonism is indistinguishable from those of classical PD. 4) The neuropathological phenotype of LRRK2 G2019S-related parkinsonism is heterogeneous. Although the most frequent neuropathological substrate is Lewy boby type pathology, we describe a patient with non-specific nigral degeneration and the G2019S mutation. 5) We have not been able to identify LRRK2 mutations in brains of a neurodegenerative disease other than PD (e.g Lewy bodies dementia, Progressive supranuclear palsy or Multiple system atrophy). Presence of LRRK2 mutations in these neurodegenerative diseases would be exceptional or coincidental.
60

Genetic regulation of nerve injury-induced neurodegeneration and inflammation /

Swanberg, Maria, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.

Page generated in 0.2073 seconds