• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 49
  • 43
  • 21
  • 10
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 335
  • 63
  • 56
  • 55
  • 46
  • 33
  • 31
  • 30
  • 30
  • 28
  • 28
  • 27
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

L'exposition des astrocytes humains à l'interleukine-27 modifie leurs propriétés immunitaires et affecte le profil des lymphocytes T

Lemaitre, Florent 12 1900 (has links)
La sclérose en plaques (SEP) est une maladie neurodégénérative du système nerveux central (SNC) caractérisée par une démyélinisation, une perte axonale, une activation des cellules gliales et une accumulation de cellules immunitaires dans le parenchyme cérébral. Les lymphocytes T (LT) jouent un rôle clé dans la mise en place d’un tel environnement neuroinflammatoire. Notre compréhension des mécanismes impliqués dans le dialogue entre les LT et les astrocytes reste cependant incomplète. Les astrocytes représentent les premières cellules que rencontrent les LT lors de leur migration dans le parenchyme cérébral. Cette interaction est essentielle et peut être modulée par différents processus inflammatoires. Afin d’étudier comment l’inflammation modifie la rencontre des LT avec les cellules neurales, nous avons développé un modèle de co-culture de cellules neurales primaires humaines et de LT CD8+ humains permettant la visualisation de ces interactions par la microscopie en temps réel. Le suivi vidéo des LT a permis de montrer que la réponse des astrocytes et des neurones à la cytokine pro-inflammatoire IL-1β augmente la motilité des LT. L’analyse visuelle appuyée par une analyse statistique de différents paramètres spatiotemporels a montré que les LT adoptent des comportements différents associés à des interactions stables de type synapse ou dynamiques de type kinapse. Nous avons montré que l’inflammation des astrocytes affecte la dynamique de certains comportements et que l’expression des molécules du CMH de classe I par les astrocytes contribue à la mise en place des comportements de type synapse. Parmi les cytokines impliquées dans la physiopathologie de la SEP, l’interleukine-27 (IL-27) semble être associée à des effets bénéfiques en modulant l’activité des cellules immunitaires périphériques. Notre équipe a démontré que dans le cerveau des patients atteints de la SEP, des niveaux élevés d’IL-27 sont observés ainsi que la présence de son récepteur (IL-27R) sur des astrocytes et des lymphocytes T infiltrants. Afin d’évaluer l’impact de l’IL-27 sur les astrocytes humains, nous avons réalisé une analyse transcriptomique des astrocytes exposés à l’IL-27. Les astrocytes exposés à l’IL-27 augmentent l’expression de gènes impliqués dans la modulation de la réponse inflammatoire. La co-culture de ces cellules gliales avec des LT CD4+ et CD8+ a démontré que les astrocytes exposés à l’IL-27 modifient l’expression de facteurs de transcription impliqués dans la polarisation des LT, ainsi que l’expression de molécules impliquées dans la réponse immunitaire. Enfin, l’utilisation de notre modèle de microscopie sur cellules vivantes a révélé que les astrocytes exposés à l’IL-27 augmentent la motilité des LT CD8+ provenant de patients atteints de la SEP et de donneurs sains, mais que les LT provenant des patients présentent une motilité accrue comparés aux LT de donneurs sains. En conclusion, nos résultats fournissent de nouveaux éléments permettant de mieux comprendre l’interaction des LT avec des astrocytes et des neurones humains. Ces résultats soulignent l’importance de la réponse des astrocytes à différentes cytokines et leur implication dans la modulation de la réponse des LT dans des conditions physiologiques et pathologiques comme la SEP. / Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS) characterized by an important demyelination, axonal loss, glial activation and accumulation of immune cells in the brain parenchyma. Among immune infiltrating cells, T lymphocytes are key players of the neuroinflammatory processes observed in MS. Our understanding of the dialogue between T lymphocytes and astrocytes in this context of neuroinflammation is still incomplete. Upon their entry in the CNS, T lymphocytes come into close contact with astrocytes. This physical and molecular interaction can be modulated by the inflammatory context. In order to study how inflammatory context affects the interactions of human T lymphocytes with human neural cells, we have developed a co-culture model allowing the visualization of T lymphocytes interacting with primary human astrocytes and neurons using time lapse microscopy. Individual T lymphocyte tracking showed that astrocytes and neurons exposed to the pro-inflammatory cytokine IL-1β increase T lymphocyte motility. Visual interpretation supported by statistical analysis of T lymphocytes spatio-temporal variables allowed us to identify four different behaviors that can be associated to stable synapse-like interactions or dynamic kinapse-like interactions. Finally, we showed that inflammation of astrocytes specifically affects T cell behaviors and that MHC class I expression by inflamed astrocytes is implicated in synapse-like behaviors. Among the cytokines implicated in MS physiopathology, the interleukine-27 (IL-27) has been associated with beneficial effects by modulating peripheral immune cell activity. Our group has shown that IL-27 is elevated in the brain of MS patients and that both astrocytes and infiltrating T lymphocytes express the receptor of IL-27. To evaluate the impact of IL-27 on human astrocytes, we analyzed gene and protein expression of astrocytes exposed to IL-27. We found that most of the IL-27-induced differentially expressed genes in astrocytes are involved in immune responses and immune modulation. Moreover, IL-27-exposed astrocytes when co-cultured with CD4+ and CD8+ T lymphocytes specifically induce the expression of transcriptional factors involved in T lymphocytes polarization and surface molecules that can actively modulate immune processes. Finally, using our live imaging co-culture model, we showed that IL-27-treated astrocytes increase the motility of CD8+ T lymphocytes from healthy donors and MS patients. Notably, T lymphocytes form MS patients have an increased motility compared with those from healthy donors after contact with IL-27-treated astrocytes. In conclusion, our results provide a better understanding of the complex dialogue between human T lymphocytes and human astrocytes and neurons and highlight the role of neural cell responses to different cytokines in physiological and pathological conditions.
292

Role of a Novel Probiotic in Immune Homeostasis, Microbiome and MicroRNAs' Modulation at the Gut and Brain Levels

Yahfoufi, Nour 22 November 2022 (has links)
Numerous studies have focused on identifying novel probiotic-based treatment options for immune homeostasis maintenance and favorable modulation of the gut microbiota which acts as a key regulator of the gut-brain axis. Recently, probiotics interventions are gaining interest as effective approaches to treat neuropsychiatric disorders through the gut-brain axis. However, there is limiting knowledge about probiotics' effects during puberty on the developing brain and immune responses. Probiotic intake could offer a strategy to counteract the immune, microbial and behavioral disturbances induced by inflammatory LPS. Thus, we hypothesized that the intake of a novel probiotic bacterium Rouxiella badensis subsp. acadiensis would modulate the immune response and that pubertal administration could mitigate LPS- induced inflammation and prevent enduring behavioral changes later in life. We investigated the interaction of the probiotic with the intestinal mucosa and its ability of modulating the gut mucosal immunity (Article 1). Next, we examined the ability of pubertal treatment with R. badensis subsp. acadiensis to alleviate LPS-induced anxiety-like and depression-like behaviors in adult male and female mice and to affect the expression of 5HT1A receptors in specific brain areas of adult mice (Article 2). We finally studied the ability of R. badensis subsp. acadiensis treatment during puberty to mitigate the effects of LPS on the immune system and on the gut microbiome composition (Article 3). These studies have demonstrated the ability of R. badensis subsp. acadiensis to survive the gastrointestinal conditions, interact with the gut epithelium and modulate the intestinal homeostasis. Pubertal use of the bacterium was associated with sex-specific effects on the acute immune response, microbiome structure, enduring neurobehavioral outcomes and the expression of 5HT1A receptors in specific brain areas, later in life. This dissertation emphasizes on the importance of puberty as a window of opportunities during which probiotic use can alleviate the long-term neural, behavioral, immunological and microbiome alterations induced by stress.
293

Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS

Illes, Peter, Rubini, Patrizia, Ulrich, Henning, Zhao, Yafei, Tang, Yong 17 April 2023 (has links)
Microglial cells, the resident macrophages of the central nervous system (CNS), exist in a process-bearing, ramified/surveying phenotype under resting conditions. Upon activation by cell-damaging factors, they get transformed into an amoeboid phenotype releasing various cell products including pro-inflammatory cytokines, chemokines, proteases, reactive oxygen/nitrogen species, and the excytotoxic ATP and glutamate. In addition, they engulf pathogenic bacteria or cell debris and phagocytose them. However, already resting/surveying microglia have a number of important physiological functions in the CNS; for example, they shield small disruptions of the blood–brain barrier by their processes, dynamically interact with synaptic structures, and clear surplus synapses during development. In neurodegenerative illnesses, they aggravate the original disease by a microglia-based compulsory neuroinflammatory reaction. Therefore, the blockade of this reaction improves the outcome of Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. The function of microglia is regulated by a whole array of purinergic receptors classified as P2Y12, P2Y6, P2Y4, P2X4, P2X7, A2A, and A3, as targets of endogenous ATP, ADP, or adenosine. ATP is sequentially degraded by the ecto-nucleotidases and 5′-nucleotidase enzymes to the almost inactive inosine as an end product. The appropriate selective agonists/antagonists for purinergic receptors as well as the respective enzyme inhibitors may profoundly interfere with microglial functions and reconstitute the homeostasis of the CNS disturbed by neuroinflammation.
294

P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases

Illes, Peter 05 February 2024 (has links)
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
295

Microglia and calcium dysregulation during chronic neuroinflammation and aging:causes and consequences

Hopp, Sarah Christine January 2014 (has links)
No description available.
296

PREVENTING STRESS SIGNALING AND INCREASED NEUROINFLAMMATION ALLEVIATES ALZHEIMER’S-LIKE PATHOLOGY IN MICE OVEREXPRESSING THE APP INTRACELLULAR DOMAIN (AICD)

Margevicius, Daniel Robert 03 September 2015 (has links)
No description available.
297

Immune-to-brain communication driven by sterile lung injury

Litvin, David Gregory, Litvin 31 August 2018 (has links)
No description available.
298

Toll-like receptors in spinal cord derived neural precursor cells: implications on spinal cord injury and cell transplantation

Sánchez Petidier, Marina 11 February 2022 (has links)
[ES] Los receptores tipo Toll, TLR, son receptores clave en la defensa contra los patógenos capaces de iniciar la respuesta inmunitaria innata para proteger al huésped. Su papel no solo se relega a responder a estímulos foráneos, sino que también pueden detectar daños en los tejidos o células lesionadas induciendo su respuesta a lo que se conoce como "inflamación estéril". Las células del sistema inmunitario no son las únicas que presentan TLR; también se encuentran en células de la glía, neuronas y precursores neurales (NPC). Concretamente, TLR2 y TLR4 en NPC en cerebro contribuyen a la determinación del destino celular y plasticidad neuronal durante el desarrollo. Sin embargo, sus funciones en la fisiología y patología de la médula espinal no están bien definidas, así como en procesos críticos como la neurogénesis, autorrenovación o proliferación. Esta tesis doctoral, distribuida entre tres capítulos, se ha centrado 1) en el estudio del papel de TLR2 y TLR4 en precursores derivados de medula espinal neonatal (Capítulo 1); 2) en evaluar el papel de ambos, TLR2 y TLR4 en el proceso de regeneración espontánea o tras trasplante ectópico de NPC, en un modelo de lesión medular inducida (Capítulo 2); 3) en el estudio del papel de TLR4 en la modulación del fenotipo inflamatorio en respuesta al proteoglicano condroitín sulfato (CSPG) secretado tras la lesión medular con actividad inhibitoria del recrecimiento axonal tras lesión medular (Capítulo 3). / [CA] Els receptors tipus Toll, TLR, són receptors clau en la defensa contra els patògens capaços d'iniciar la resposta immunitària innata per a protegir l'hoste. El seu paper no sols es relega a respondre a estímuls forans, sinó que també poden detectar danys en els teixits o cèl·lules lesionades induint la seua resposta al que es coneix com a "inflamació estèril". Les cèl·lules del sistema immunitari no són les úniques que presenten TLR; també es troben en cèl·lules de la glia, neurones i precursors neurals (NPC). TLR2 i TLR4 en NPC en cervell contribueixen a la determinació del destí cel·lular i plasticitat neuronal. No obstant això, les seues funcions en la fisiopatologia de la medul·la espinal no estan ben definides, així com en processos crítics com la neurogènesi, autorenovació o proliferació. Aquesta tesi doctoral, distribuïda entre tres capítols, s'ha centrat: 1) En l'estudi del paper de TLR2 i TLR4 en precursors derivats de medul·la espinal neonatal (Capítol 1); 2) A avaluar el paper de tots dos, TLR2 i TLR4, en el procés de regeneració espontània o després de trasplantament ectòpic de NPC, en un model de lesió medul·lar induïda (Capítol 2); 3) En l'estudi del paper de TLR4 en la modulació del fenotip inflamatori en resposta al proteoglicà condroití sulfat (CSPG) secretat després de la lesió medul·lar amb activitat inhibitòria del recreixement axonal després de lesió medul·lar (Capítol 3). / [EN] Toll-like receptors, TLRs, are key receptors in the defence against pathogens capable of initiating the innate immune response to protect the host. Their role is not only limited to responding to foreign stimuli, but they can also detect damage to injured tissues or cells, inducing their response to what is known as 'sterile inflammation'. Immune system cells are not the only cells that display TLRs; they are also found in glial cells, neurons and neural precursors cells (NPCs). TLR2 and TLR4 NPCs from brain contribute to cell fate determination and neuronal plasticity. However, their roles in spinal cord pathophysiology and in critical processes such as neurogenesis, self-renewal or proliferation are not well defined. This doctoral thesis, distributed among three chapters, has focused: 1) on the study of the role of TLR2 and TLR4 in neonatal spinal cord-derived precursors (Chapter 1); 2) on evaluating the role of both TLR2 and TLR4 in the process of spontaneous regeneration or after ectopic transplantation of NPC, in a model of induced spinal cord injury (Chapter 2); 3) to study the role of TLR4 in modulating the inflammatory phenotype in response to chondroitin sulphate proteoglycan (CSPG) secreted after spinal cord injury with inhibitory activity on axonal regrowth after spinal cord injury (Chapter 3). / The student has been granted with a PhD fellowship from a predoctoral program at the CIPF and with International Research and Training Exchange Programme at the CIPF. This work has been supported by the Spanish Ministry of Economy and Competitiveness (projects RTI2018-095872-B-C21; MAT2015-66666-C3-R; SAF2015-69187R) and Spanish Ministry of Heath, PNSD2018 I003. / Sánchez Petidier, M. (2022). Toll-like receptors in spinal cord derived neural precursor cells: implications on spinal cord injury and cell transplantation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180753
299

Understanding the Role of Nrg1 Signaling Upon Brain Damage: Novel Models of Cortical Regeneration

González Manteiga, Ana 27 November 2023 (has links)
[ES] El daño cerebral es la mayor causa de discapacidad en la etapa adulta, particularmente afectando a la población anciana. Independientemente de la causa, los diferentes tipos de daño cerebral comparten eventos fisiopatológicos similares. Hasta ahora, la mayoría de los estudios se enfocaron en estudiar las respuestas inmediatas tras la lesión, mientras que los mecanismos que subyacen bajo los procesos de plasticidad y regeneración cortical aún son desconocidos. Neuregulina 1 (Nrg1) es una proteína esencial en el desarrollo de los circuitos corticales que se ha asociado a diferentes trastornos psiquiátricos, como la esquizofrenia. En las últimas décadas, varios trabajos proponen a Nrg1 como un factor neuroprotector emergente en el ámbito de lesión. No obstante, la mayoría de las investigaciones se centran en estudiar la respuesta temprana de la forma soluble de Nrg1 tras el daño, mediada por la activación de los receptores ErbB, la cual no recapitula totalmente la compleja señalización de Nrg1. De este modo, nuestro laboratorio ha demostrado previamente que la señalización intracelular de Nrg1 se activa en situaciones de hipoxia, promoviendo la supervivencia neuronal tras ictus. El principal objetivo de esta tesis es estudiar el papel de la señalización de Nrg1 en la regeneración y plasticidad cortical tras daño cerebral. Para ello, hemos desarrollado nuevos modelos para 1) ofrecer una metodología que permita estudiar la regeneración axonal in vitro e in vivo y 2) específicamente estudiar el papel de la señalización intracelular de Nrg1 en el ámbito de daño cortical. Primero, desarrollamos un nuevo modelo in vitro de lesión axonal en cultivos de neuronas corticales, utilizando técnicas de electroporación para marcar un número limitado de neuronas, combinado con una posterior lesión física basada en una transección mecánica de los axones. En este modelo, también se realizaron estudios de ganancia y pérdida de función para comprender el papel de Nrg1 en el crecimiento axonal. Nuestros resultados mostraron que Nrg1, y específicamente la activación de su vía intracelular, potencia el crecimiento axonal tras daño. Posteriormente, diseñamos una metodología novedosa en ratones para estudiar la regeneración cortical, combinando técnicas de trazado de conexiones cortico-corticales con una lesión focal y mecánica en la corteza primaria motora. Se realizó una extensa caracterización funcional empleando diversas pruebas comportamentales específicas para detectar déficits motores en lesiones unilaterales como la ofrecida en este modelo. Gracias al procesamiento del tejido cerebral en series flotantes, se combinaron diferentes tinciones para realizar reconstrucciones 3D del cerebro y, así, ofrecer un estudio completo incluyendo medidas volumétricas y un análisis de diferentes poblaciones celulares y estructuras subcelulares. Como ejemplo, se investigó la correlación entre la eliminación de redes perineuronales y la activación de células microgliales en la zona adyacente a la lesión. Esta metodología de lesión cortical in vivo se utilizó en innovadores modelos genéticos de ratón en esta tesis para entender el papel de Nrg1 tras daño cortical. Así, se eliminó la expresión del gen de Nrg1 en ratonas jóvenes y maduras previamente a la lesión, observando que la ausencia de Nrg1 promueve la respuesta neuroinflamatoria y una preservación axonal limitada, conllevando una menor recuperación motora espontánea tras la lesión. Finalmente, para ofrecer una visión mecanicista del papel de la señalización intracelular de Nrg1, su dominio intracelular se expresó específicamente en neuronas corticales, observando que la activación de esta vía de señalización reduce la respuesta inflamatoria tras lesión cortical. En conclusión, estos resultados señalan que Nrg1, y específicamente la activación de su vía intracelular, podría ser una diana molecular prometedora en el contexto de neuroprotección, regeneración y recuperación cortical tras daño cerebral. / [CA] El dany cerebral és la major causa de discapacitat en l'etapa adulta, particularment en la població anciana. Independentment de la causa, els diferents tipus de dany cerebral comparteixen esdeveniments fisiopatològics similars. Fins ara, la majoria dels estudis es van enfocar a estudiar les respostes immediates després de la lesió, mentre que els mecanismes que subjauen sota els processos de plasticitat i regeneració cortical encara són desconeguts. Neuregulina 1 (Nrg1) és una proteïna essencial en el desenvolupament dels circuits corticals que s'ha associat a diferents trastorns psiquiàtrics, com l'esquizofrènia. En les últimes dècades, diversos treballs proposen a Nrg1 com un factor neuroprotector emergent en l'àmbit de lesió. No obstant això, la majoria de les investigacions se centren en estudiar la resposta primerenca de la forma soluble de Nrg1 després del mal, mediada per l'activació dels receptors ErbB, la qual no recapitula totalment la complexa senyalització de Nrg1. D'aquesta manera, el nostre laboratori ha demostrat prèviament que la senyalització intracel·lular de Nrg1 s'activa en situacions d'hipòxia, promovent la supervivència neuronal després de l'ictus. El principal objectiu d'aquesta tesi és estudiar el paper de la senyalització de Nrg1 en la regeneració i plasticitat cortical després de dany cerebral. Per a això, hem desenvolupat nous models per a 1) oferir una metodologia que permeta estudiar la regeneració axonal in vitro i in vivo i 2) específicament estudiar el paper de la senyalització intracel·lular de *Nrg1 en l'àmbit de mal cortical. Primer, desenvolupem un nou model in vitro de lesió axonal en cultius de neurones corticals, utilitzant tècniques de electroporació per a marcar un nombre limitat de neurones, combinat amb una posterior lesió física basada en una secció mecànica dels axons. En aquest model, també es van realitzar estudis de guany i pèrdua de funció per a comprendre el paper de Nrg1 en el creixement axonal. Aquests resultats van mostrar que Nrg1, i específicament l'activació de la seua via intracel·lular, potència el creixement axonal després de mal. Posteriorment, dissenyem una metodologia nova en ratolins per a estudiar la regeneració cortical, combinant tècniques de traçat de connexions cortico-corticals amb una lesió focal i mecànica en l'escorça primària motora. Es va realitzar una extensa caracterització funcional emprant diverses proves comportamentals específiques per a detectar dèficits motors en lesions unilaterals com l'oferida en aquest model. Gràcies al processament del teixit cerebral en sèries flotants, es van combinar diferents tincions per a realitzar reconstruccions 3D del cervell i, així, oferir un estudi complet incloent mesures volumètriques i una anàlisi de diferents poblacions cel·lulars i estructures subcel·lulars. Com a exemple, es va investigar la correlació entre l'eliminació de xarxes perineuronals i l'activació de cèl·lules microglials en la zona adjacent a la lesió. Aquesta metodologia de lesió cortical in vivo es va utilitzar en innovadors models genètics de ratolí per a entendre el paper de Nrg1 després de mal cortical. Es va eliminar l'expressió del gen de Nrg1 en ratolins joves i madurs prèviament a la lesió, observant que l'absència de Nrg1 promou la resposta neuroinflamatoria i una preservació axonal limitada, el que comporta una menor recuperació motora espontània després de la lesió. Finalment, per a oferir una visió mecanicista del paper de la senyalització intracel·lular de Nrg1, el seu domini intracel·lular es va expressar específicament en neurones corticals, observant que l'activació d'aquesta via de senyalització redueix la resposta inflamatòria després de lesió cortical. En conclusió, aquests resultats assenyalen que la senyalització de Nrg1, i específicament l'activació de la seua via intracel·lular, podria ser una diana molecular prometedora en el context de neuroprotecció, regeneració i recuperació cortical després de dany cerebral. / [EN] Brain damage is the leading cause of disability in adults, particularly in the elderly population. Regardless of the cause, different types of brain injury share similar physiopathological events. Most studies to date have focused on the immediate post-injury response, whereas less is known about cortical regeneration and plasticity after brain injury. Neuregulin 1 (Nrg1) is essential for the development of cortical circuits and has been implicated in several psychiatric disorders, such as schizophrenia. In the last decades, several works proposed Nrg1 signaling as an emergent modulator of neuroprotection upon damage. However, most research has focused on the early response of Nrg1 diffusible isoforms mediated by ErbB receptor activation after injury, which does not fully recapitulate the complexity of Nrg1 signaling. In this context, we have previously shown that Nrg1 intracellular signaling is activated under hypoxic conditions and promotes neuronal survival after cortical stroke. The overall goal of this dissertation is to investigate the role of Nrg1 signaling in cortical regeneration and plasticity after cortical damage. To achieve this goal, we developed novel, refined models to 1) provide new methodological approaches to study axonal regeneration in vitro and in vivo and 2) specifically target Nrg1 signaling and particularly investigate the role of Nrg1 intracellular pathway upon cortical injury. First, we developed a novel in vitro model of axonal injury in cortical neuron cultures. Specifically, we performed sparse labeling of the cultures by electroporation techniques and induced physical injury by mechanical transection of the axons. In this model, we also performed gain- and loss-of-function approaches to investigate the role of Nrg1 in axonal outgrowth. Our results showed that Nrg1, and specifically the activation of its intracellular signaling, potentiates axonal outgrowth upon injury. Second, we developed a novel methodology in mice that combines cortico-cortical projection tracing with focal mechanically controlled cortical damage (CCD) to study cortical regeneration. We performed extensive functional characterization of the model and provided meaningful behavioral tasks to detect motor impairment in unilateral focal injuries. Since tissue processing is performed in serial floating sections, we combined different immunolabeling and 3D brain reconstruction to evaluate stereological measurements and analysis of axonal projections and different cell populations. As a biological result, we showed a correlation between perineuronal nets (PNNs) disruption and microglial activation in the perilesional region. Later, we applied the CCD methodology in novel genetic mouse models to better understand the role of Nrg1 signaling in vivo after cortical injury. We induced acute Nrg1 deletion prior to injury in young and aged mice and observed that Nrg1 deletion promoted neuroinflammatory response and limited axonal preservation and spontaneous motor recovery after cortical injury. Finally, we specifically expressed Nrg1-ICD to provide a mechanistic perspective and observed that activation of this intracellular pathway decreased the neuroinflammatory response. Collectively, our results shed light on Nrg1 signaling, and specifically the activation of its intracellular pathway, as a promising molecular target in neuroprotection, cortical regeneration, and recovery after brain injury. / González Manteiga, A. (2023). Understanding the Role of Nrg1 Signaling Upon Brain Damage: Novel Models of Cortical Regeneration [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/200224
300

Le rôle de l’inflammation dans le développement des complications neurologiques associées à l’insuffisance hépatique aiguë chez la souris

Chastre, Anne 12 1900 (has links)
L’insuffisance hépatique aiguë (IHA) se caractérise par la perte soudaine de la fonction hépatique résultant de la nécrose massive des hépatocytes en l’absence de pathologie hépatique préexistante. L’IHA s’accompagne de perturbations métaboliques et immunologiques qui peuvent entraîner l’apparition de complications périphériques et cérébrales telles qu’un syndrome de réponse inflammatoire systémique (SIRS), une encéphalopathie hépatique (EH), un œdème cérébral, une augmentation de la pression intracrânienne, et la mort par herniation du tronc cérébral. Les infections sont une complication fréquente de l’IHA et elles sont associées à un risque accru de développer un SIRS et une aggravation subséquente de l’EH avec un taux de mortalité augmenté. L’ammoniaque joue un rôle majeur dans les mécanismes physiopathologiques qui mènent au développement de l’EH et de l’œdème cérébral, et des études récentes suggèrent que les cytokines pro-inflammatoires sont également impliquées. Le but de cette thèse est d’étudier le rôle des cytokines pro-inflammatoires circulantes et cérébrales dans le développement de l’EH et de l’œdème cérébral lors d’IHA. Dans l’article 1, nous démontrons que l’inhibition périphérique du facteur de nécrose tumorale-α (TNF-α) par l’etanercept retarde la progression de l’EH en diminuant le dommage hépatocellulaire, réduisant l’inflammation périphérique et centrale ainsi que le stress oxydatif/nitrosatif hépatique et cérébral associé chez la souris avec une IHA induite par l’azoxyméthane (AOM). Ces résultats démontrent un rôle important du TNF-α dans la physiopathologie de l’EH lors d’IHA d’origine toxique et suggèrent que l’etanercept pourrait constituer une approche thérapeutique dans la prise en charge des patients en attente de transplantation hépatique. Dans l’article 2, nous simulons la présence d’une infection chez la souris avec une IHA induite par l’AOM pour mettre en évidence une éventuelle augmentation de la réponse inflammatoire. Nous démontrons que l’endotoxémie induite par le lipopolysaccharide (LPS) précipite la survenue du coma et aggrave la pathologie hépatique. Les cytokines pro-inflammatoires systémiques et cérébrales sont augmentées de façon synergique par le LPS lors d’IHA et résultent en une activation accrue de la métalloprotéinase matricielle-9 cérébrale qui s’accompagne d’une extravasation d’immunoglobulines G (IgG) dans le parenchyme cérébral. Ces résultats démontrent une augmentation majeure de la perméabilité de la barrière hémato-encéphalique (BHE) qui contribue à la pathogenèse de l’EH lors d’IHA en condition infectieuse. Les résultats de l’article 3 démontrent que l’augmentation de la perméabilité de la BHE lors d’IHA induite par l’AOM en condition non infectieuse ne résulte pas de l’altération de l’expression des protéines constitutives de la BHE. Dans l’article 4, nous démontrons que l’exposition d’astrocytes en culture à des concentrations physiopathologiques d’ammoniaque ou d’interleukine-1β résulte en l’altération de gènes astrocytaires impliqués dans la régulation du volume cellulaire et dans le stress oxydatif/nitrosatif. Un effet additif est observé dans le cas d’un traitement combiné au niveau des gènes astrocytaires impliqués dans le stress oxydatif/nitrosatif. L’ensemble des résultats de cette thèse démontre un rôle important de l’inflammation périphérique et cérébrale dans la survenue des complications neurologiques lors d’IHA et une meilleure compréhension des mécanismes physiopathologiques impliqués pourrait contribuer à la mise en place de stratégies thérapeutiques chez les patients atteints d’IHA en attente de transplantation. / Acute liver failure (ALF) is the clinical manifestation of an abrupt loss of hepatic function resuting from a massive hepatocyte necrosis in a patient with no preexisting liver disease. ALF is associated with metabolic and immunological disturbances that may lead to peripheral and cerebral complications such as systemic inflammatory response syndrome (SIRS), hepatic encephalopathy (HE), brain edema, increased intracranial pressure (ICP) and ultimately death by cerebral herniation. ALF is frequently complicated by infections, which are known to increase the risk of developing a SIRS with a subsequent worsening of HE and higher mortality rates. Ammonia plays a pivotal role in the pathophysiological mechanisms leading to HE and brain edema, and recent studies suggest that pro-inflammatory cytokines may also be involved. The aim of this thesis is therefore to investigate the role of circulating and cerebral pro-inflammatory cytokines in the setting of HE and brain edema during ALF. In article No. 1, we demonstrated that peripheral inhibition of tumor necrosis factor-alpha (TNF-α) by etanercept delays the progression of HE by reducing hepatocellular damage, decreasing peripheral and cerebral inflammation as well as associated oxidative/nitrosatif stress in mice with ALF induced by azoxymethane (AOM). These findings demonstrate an important role of TNF-α in the pathophysiology of HE during toxic liver injury and suggest that etanercept may provide a therapeutic approach in the management of patient awaiting liver transplantation. In article No. 2, we mimicked infection in mice with AOM-induced ALF in order to better understand the effects of an increased inflammatory response. We demonstrated that endotoxemia induced by lipopolysaccharide (LPS) precipitates the onset of coma and worsens the liver pathology. Peripheral and brain pro-inflammatory cytokines are synergistically raised by LPS during ALF and result in a large increase in cerebral matrix metalloprotease-9 (MMP-9) activity that was associated with immunoglobulin G (IgG) extravasation in the brain parenchyma. These results demonstrate a major increase of blood-brain barrier (BBB) permeability that contributes to the pathogenesis of HE during ALF with superimposed infection. Results from article No. 3 demonstrate that increase of BBB permeability during AOM-induced ALF without superimposed infection is not due to alteration of BBB constitutive proteins. In article No. 4, we demonstrated that exposure of cultured astrocytes to pathophysiological concentrations of ammonia or interleukin-1β results in an alteration of the expression of astrocytic genes implicated in cell volume regulation and oxidative/nitrosative stress. An additive effect on astrocytic genes implicated in oxidative/nitrosative was made evident in case of co-treatment. Taken together, results of the present thesis demonstrate a major role of peripheral and cerebral inflammation in the onset of neurological complications during ALF and a better understanding of the pathophysiological mechanisms implicated may contribute to new therapeutic strategies for ALF patients awaiting transplantation.

Page generated in 0.1097 seconds