• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 26
  • 11
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 136
  • 33
  • 24
  • 22
  • 22
  • 21
  • 20
  • 20
  • 17
  • 17
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Brain-Derived Neurotrophic Factor Mediates Recovery from Stress Urinary Incontinence

Balog, Brian Michael January 2020 (has links)
No description available.
112

Tracking the Progression of Defects at the Neuromuscular Junction in Huntington's Disease

Trittschuh, Katherine A. 08 May 2023 (has links)
No description available.
113

Contribution de l'activité muscarinique des cellules de Schwann périsynaptiques dans la vulnérabilité différentielle des jonctions neuromusculaires dans la sclérose latérale amyotrophique

Bord, Marine Angéline 06 1900 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie neurodégénérative qui affecte spécifiquement les motoneurones (MNs) supérieurs et inférieurs conduisant à une paralysie musculaire. La dénervation des jonction neuromusculaires (JNMs) se produit en amont de la mort des MNs de la moelle épinière chez les patients atteint de la SLA et dans de nombreux modèles murins de la maladie. Récemment, des chercheurs ont révélé une altération de la transmission synaptique, une instabilité morphologique, et une réparation inappropriée des JNMs dans le modèle de souris SOD1 en amont de l’apparition des désordres moteurs. Tandis que notre laboratoire a étudié les trois éléments synaptiques, ce mémoire porte une attention particulière aux cellules de Schwann périsynaptiques (CSPs), les cellules gliales à la JNM, considérant leurs rôles fondamentaux dans la régulation de la structure et la fonction de la JNM. Alors que de nombreuses études ont démontré une susceptibilité à la dénervation dépendante du type d’unité motrice, où certaines serait plus vulnérables au processus de dénervation que d’autres, les propriétés altérées des CSPs ont été généralisé à tous les types de JNMs étudiés. Notamment, des études réalisées dans le laboratoire ont rapporté une capacité inappropriée des CSPs à décoder l’information basée sur une augmentation de l’activation des récepteurs muscariniques (mAChRs). Les fonctions des mAChRs des CSPs sont d’une importance particulière puisque leur activité est essentielle à la stabilité des JNMs et à leur réparation et est régulé par l’activité synaptique. De manière importante, nous avons observé que la diminution chronique in vivo de l’activation des mAChRs des CSPs chez les souris SOD1G37R favorise la réparation de la JNM et améliore les fonctions motrices chez l’animal. Ainsi, la moindre altération dans les propriétés des CSPs pourrait contribuer directement à la vulnérabilité des NMJs dans la SLA. Considérant le rôle crucial des cellules gliales dans la maintenance et la réparation des JNMs, nous avons émis l’hypothèse que les CSPs contribuent à la différence de vulnérabilité observée dans la SLA. Nous avons postulé que l’hyperactivité muscarinique des CSPs contribue à l’instabilité des JNMs vulnérables, alors qu’une activité muscarinique normale contribue à la stabilité des JNMs résistantes. Pour mieux comprendre les différences dans les propriétés des CSPs contribuant à cette différence de vulnérabilité, nous avons étudié les propriétés fonctionnelles des CSPs par imagerie calcique afin de caractériser la signature muscarinique des CSPs aux JNMs d’un muscle vulnerable, l’extensor digitorum longus (EDL). Nous avons évalué l’intégrité des JNMs par un triple marquage immunohistochimique. De manière intéressante, nos résultats ont montré que L’utilisation d’un outil chémogénétique nous a permis d’augmenter l’excitabilité des AChRs des CSPs aux JNMs résistantes des MEOs. L’évaluation de l’intégrité des JNMs par un triple marquage immunohistochimique a montré que le traitement au CNO induit de l’instabilité au niveau des JNMs et nous avons observé des signes de dénervation. Établir un potentiel rôle des CSPs dans la résistance des JNMs a permis de souligner un nouveau facteur important dans la pathophysiologie de la SLA et a fourni des connaissances dans les mécanismes de résistance sélective/vulnérabilité à la dénervation. Cela permet d’ouvrir le champ à de nouvelles cibles thérapeutiques ciblant les cellules gliales à la JNM. De plus, ce nouveau contexte conceptuel de susceptibilité des JNMs peut être transposé à d’autres maladies neuromusculaires. / Amyotrophic lateral sclerosis (ALS) is a fatal late-onset neurodegenerative disease characterized by progressive loss of upper and lower motor neurons (MNs) leading to muscular paralysis. Denervation of the neuromuscular junction (NMJ) is an early pathological event that occurs before the loss of spinal cord MNs in ALS patients and various murine models of the disease. Recently, authors revealed an alteration of synaptic transmission, morphological instability, and inappropriate repair in NMJs of SOD1 mice model prior to motor impairments. While our laboratory studied all three synaptic elements, we put a particular attention to Perisynaptic Schwann cells (PSC), glial cells at the NMJ, owing to their fundamental roles in regulating NMJ structure and function. While numerous studies demonstrated a motor-unit type dependent susceptibility to denervation where some motor units (MUs) would be more vulnerable than others, altered PSC properties were generalized among all types of NMJ studied. Notably, studies performed in the laboratory reported an inappropriate PSC decoding capability based on an enhanced activation of mAChRs. PSC mAChR functions is of particular importance since it is essential for the management of NMJ stability and repair and is regulated by synaptic activity. Importantly, we observed that chronic in vivo dampening of PSC muscarinic activation in SOD1G37R fostered NMJ repair and improved motor function in the ALS mouse model. Hence, any alteration of PSC properties may directly contribute to NMJ vulnerability in ALS. Owing to the critical roles of glial cells for the maintenance and repair of NMJs, we hypothesized that PSC contribute to the differential vulnerability observed in ALS. We proposed that the hyperactive muscarinic excitation of PSCs contributes to NMJ instability at vulnerable NMJs while the normal muscarinic activity contributes to their stability in resistant ones. To better understand the distinctions in PSCs properties contributing to a difference in NMJ vulnerability, we studied the PSC functional properties by calcium imaging to characterize the muscarinic signature of PSCs at the NMJ of a vulnerable muscle, the extensor digitorum longus (EDL). We assessed the integrity of the NMJ by a triple immunostaining. Interestingly, our data revealed that altering PSC properties at resistant NMJs by enhancing the muscarinic excitation of PSCs using a viral strategy created NMJ instability with signs of denervation. Determining the potential role of PSC in the resistance of NMJs highlighted a novel important factor underlying the pathophysiology of ALS and provided significant insights into the mechanisms of selective resistance/vulnerability to denervation. This could pave the way to novel therapeutic targets and strategies targeting glial cells at the NMJ. Furthermore, this novel conceptual context may be carried over to NMJ susceptibility for other neuromuscular diseases.
114

Novel pathogenic mechanisms of myasthenic disorders and potential therapeutic approaches

Zoltowska, Katarzyna Marta January 2014 (has links)
Congenital myasthenic syndrome (CMS) and myasthenia gravis (MG) are, respectively, inherited or autoimmunological disorders caused by aberrant neuromuscular transmission, which manifests as fatiguable muscle weakness. A novel subtype of CMS, resulting from mutations in GFPT1 and characterised by a limb girdle pattern of muscle weakness, has been described. The gene encodes L glutamine:D fructose-6-phosphate amidotransferase 1 (GFAT1) – a key rate limiting enzyme in the hexosamine biosynthetic pathway, providing building blocks for glycosylation of proteins and lipids. The research focused on the molecular bases of the CMS resulting from mutations in the ubiquitously expressed gene, but with symptoms largely restricted to the neuromuscular junction (NMJ). The work has established a link between the NMJ and GFPT1 CMS by demonstrating that the AChR cell surface is decreased in GFPT1 patient muscle cells and in GFPT1-silenced cell lines. The decrease is likely to be caused by reduced steady-state levels of individual AChR α, δ and ε, but not β, subunits. To optimise treatment for myasthenic disorders, a comparative in vivo trial of therapy with pyridostigmine bromide and salbutamol sulphate, and pyridostigmine bromide alone, was conducted. Supplementation of the AChE inhibitor-based therapy with the β2-adrenergic receptor agonist had a beneficial effect. This offers promise for more effective treatments for CMS and MG affected individuals. Molecular causes of MG were also investigated. The search for novel antibody targets was conducted with the use of a designed cell-based assay for the detection of anti COLQ autoimmunoglobulins in MG patient sera. The antibodies were detected in 24 out of 418 analysed samples, but their pathogenicity has not been determined.
115

Die Rolle von transformierenden Wachstumsfaktoren-beta (TGF-β) in der Entwicklung von Synapsen / The role of transforming growth factors-beta (TGF-β) in the development of synapses

Heupel, Katharina 03 May 2007 (has links)
No description available.
116

L’altération des interactions neurone-glie à la jonction neuromusculaire de souris âgées

Krief, Noam 12 1900 (has links)
Durant le vieillissement, l’ensemble des fonctions de l’organisme se détériore, que ce soit aussi bien au niveau moteur que cognitif. Le vieillissement s’accompagne d’une diminution de la force, ainsi que de la masse musculaire. Des études récentes tendent à montrer que cette perte de masse musculaire que l’on appelle sarcopénie aurait pour origine un dérèglement de la jonction neuromusculaire. Les changements au niveau du présynaptique et du post synaptiques lors du vieillissement normal font l’objet de plusieurs études, mais les changements relatifs aux cellules de Schwann périsynaptique sont très peu connus. Le but de cette étude est donc d’analyser les modifications des interactions neurone-glie à la jonction neuromusculaire. Dans cette étude, nous montrons que certaines fonctions des cellules gliales de la synapse âgée sont déréglées, en particulier, le type de récepteurs activés par une stimulation nerveuse à haute fréquence. D’autre part, nos résultats montrent que les mécanismes responsables de l’augmentation de la transmission synaptique suite à cette stimulation nerveuse à haute fréquence sont altérés à la synapse âgée. Enfin, outre les modifications de la terminaison axonale et de la fibre musculaire, les cellules gliales montrent des signes de réorganisation structurelle propre à une synapse en réparation. Ces résultats montrent que le fonctionnement de la jonction neuromusculaire et a fortiori les interactions neurones-glie sont altérées lors du vieillissement normal. / Aging comes with an alteration and organism functions including cognitive and motor functions. Major weakening of the neuromuscular system occurs which includes muscle weight loss, difficulties in initiating voluntary movement and reduced muscle strength. The possible role of the alteration of the neuromuscular junction has been examined but always only considering the pre- and postsynaptic elements. However, perisynaptic Schwann cells (PSCs), glial cells at the neuromuscular junction (NMJ), play fundamental roles in the regulation of the synaptic efficacy of the NMJ as well as in its maintenance and stability. Hence, we analysed NMJ properties and their glial cells in aging. This study shows that PSCs function at the old NMJ are dysregulated. Indeed, PSCs ability to detect synaptic transmission, determined using imaging of intracellular Ca2+, was maintained in PSCs at NMJs from old mice, but the contribution of the muscarinic component was greatly reduced. On the other hand, our results using synaptic recordings are showing that a number of synaptic plasticity events known to be regulated by PSCs are reduced at NMJs of old mice. Finally, morphological NMJ reorganisation and sprouting of PSCs were also observed. These data suggest that PSC properties are consistent with the repair of the NMJ that may also result in their reduced ability in regulating synaptic efficacy.
117

Régulation de l’activité et de la connectivité synaptique par les cellules gliales au cours du développement de la jonction neuromusculaire de mammifères

Darabid, Houssam 12 1900 (has links)
Le système nerveux est composé de milliards de connexions synaptiques qui forment des réseaux complexes à la base de la communication dans le cerveau. Dès lors, contrôler la localisation, le type et le nombre des synapses est un défi considérable au cours du développement du système nerveux. Étonnamment, la production de connexions synaptiques est démesurée de façon à ce que beaucoup plus de synapses soient formées au cours du développement que ce qui est maintenu chez l’adulte. Ces connexions surnuméraires sont en compétition pour l’innervation d’une même cellule cible ce qui mène au maintien de certaines terminaisons nerveuses et à l’élimination de d’autres. Ces processus de compétition et d’élimination sont grandement façonnés par l’activité du système nerveux et l’expérience sensorielle de manière à ce que les terminaisons qui montrent la meilleure activité sont favorisées alors que les synapses mal adaptées sont éliminées. Jusqu’à récemment, les mécanismes et les types cellulaires responsables de l’élimination synaptique étaient inconnus. Les études de la dernière décennie montrent que les cellules gliales jouent un rôle clé dans l’élimination de synapses. Cependant, il demeure inconnu si les cellules gliales peuvent décoder les niveaux d’activité des terminaisons en compétition, ce qui est un déterminant majeur de l’issue de la compétition synaptique. De plus, il n’est pas connu si les cellules gliales sont capables de réguler l’activité synaptique des terminaisons, ce qui pourrait influencer l’issue de l’élimination synaptique. Ceci est d’un intérêt particulier puisqu’il est connu que les cellules gliales interagissent activement avec les neurones, détectent et modulent leur activité dans plusieurs régions du système nerveux mature. Par conséquent, l'objectif de cette thèse était d'étudier la capacité des cellules gliales à interagir avec les terminaisons nerveuses en compétition pour l'innervation d’une même cellule cible. Nous avons donc analysé la capacité des cellules gliales à décoder l’activité des terminaisons, à réguler leur activité synaptique et à influencer le processus de l’élimination synaptique au cours du développement du système nerveux. Pour cette fin, nous avons profité de la jonction neuromusculaire, un modèle simple et le bien caractérisé, et nous avons combiné l’imagerie Ca2+ des cellules gliales, un rapporteur fiable de leur activité avec des enregistrements synaptiques de jonctions neuromusculaires poly-innervées de souriceaux. Dans la première étude, nous montrons que les cellules gliales détectent et décodent l'efficacité synaptique des terminaisons nerveuses en compétition. L’activité des cellules gliales reflète la force synaptique de chaque terminaison nerveuse et l'état de la compétition synaptique. Ce décodage est médié par des récepteurs purinergiques gliaux fonctionnellement distincts et les propriétés intrinsèques des cellules gliales. Nos résultats indiquent que les cellules gliales décodent la compétition synaptique et, par conséquent, sont favorablement positionnées pour influencer son issue. Dans la seconde étude, nous montrons que les cellules gliales régulent différemment la plasticité synaptique de terminaisons en compétition. De manière dépendante du Ca2+, les cellules gliales induisent une potentialisation persistante de l’activité de la terminaison forte alors qu’elles n’ont que peu d’effets sur la terminaison faible. Bloquer l'activité gliale altère la plasticité des terminaisons in situ et se traduit par un retard de l'élimination des synapses in vivo. Ainsi, nous décrivons un nouveau mécanisme par lequel les cellules gliales, non seulement renforcent activement la terminaison forte, mais influencent aussi la compétition et l'élimination. Dans l'ensemble, ces études sont les premières à démontrer que les cellules gliales sont activement impliquées dans la modulation de l'activité synaptique des terminaisons en compétition ainsi que dans la régulation de l'élimination synaptique et la connectivité neuronale. / The nervous system is composed of billions of synaptic connections forming complex networks that define the basis of neuronal communication in the brain. The control of the localization, type and number of synapses is a considerable challenge during development of the nervous system. Surprisingly, there is an excessive production of synaptic connections so that many more synapses are formed during developmental stages than what is maintained in the adult. A process of competition and elimination then occurs during which connections are in competition for the innervation of the same target cell. These processes of competition and elimination are greatly shaped by activity and sensory experience. Nerve terminals that show the best activity are favoured, while weak and poorly adapted synapses are eliminated. Until recently, the mechanisms and the cell types responsible for the elimination of supernumerary connections were unknown. Studies from the last decade identified glial cells as major players in synapse elimination. However, it remains unknown whether glial cells are able to decode the levels of synaptic activity of competing terminals, which is a major determinant of the outcome of synaptic competition. Moreover, it is unknown whether glial cells are able to regulate synaptic activity, which could influence the outcome of synapse elimination. This is especially relevant because it is known that glial cells actively interact with neurons, detect and modulate their activity in many regions of the nervous system. Therefore, the goal of this thesis was to study the ability of glial cells to interact with terminals competing for the innervation of the same target cell. We tested the ability of glial cells to decode the activity nerve terminals, regulate their synaptic activity and influence the process of synapse elimination during development of the nervous system. For this purpose, we took advantage of the neuromuscular junction, a simple and well-characterized model, and used simultaneous Ca2+-imaging of glial cells, a reliable reporter of their activity and synaptic recordings of dually-innervated neuromuscular junctions from newborn mice. In the first study, we report that single glial cells detect and decode the synaptic efficacy of competing nerve terminals. Activity of single glial cells reflects the synaptic strength of each competing nerve terminal and the state of synaptic competition. This deciphering is mediated by functionally segregated purinergic receptors and intrinsic properties of glial cells. Our results indicate that glial cells decode ongoing synaptic competition and, hence, are poised to influence its outcome. In the second study, we show that glial cells differentially regulate the synaptic plasticity of competing terminals. In a Ca2+-dependent manner, glial cells induce a long lasting synaptic potentiation of strong but not weak terminals. Preventing glial activity alters the plasticity of terminals in situ and delays synapse elimination in vivo. Thus, we describe a novel mechanism by which glial cells, not only actively reinforce the strong input but regulate synapse competition and elimination. As a whole, these studies are the first to demonstrate that glial cells are actively involved in the modulation of synaptic activity of competing terminals as well as in the regulation of synapse elimination and neuronal connectivity.
118

Undefined myasthenias : clinical and molecular characterisation and optimised therapy

Cruz, Pedro M. Rodríguez January 2017 (has links)
Congenital myasthenic syndromes (CMS) are a group of heterogeneous disorders caused by mutations in genes encoding for proteins that are essential for neuromuscular transmission. All CMS share the clinical feature of fatigable muscle weakness. The differential diagnosis of CMS is wide, with a range of diseases going from autoimmune myasthenia gravis to muscle disorders. In this thesis, it was shown that measuring antibodies to clustered acetylcholine receptors (AChRs) by cell-based assay is helpful in the differential diagnosis of CMS. The findings of the current investigations showed that mutations in COL13A1, encoding the Collagen Type XIII α1 chain, were responsible for the symptoms of several patients with previously undefined myasthenias. In addition, this work described the clinical and complementary features of a novel CMS subtype due to mutations in the glycosylation pathway gene GMPPB. Investigations on a novel MUSK missense mutation (p.Ala617Val) uncovered previously unrecognised mechanisms of how levels of MuSK phosphorylation are critical to maintain synaptic structure, and guided suitable treatment for the patient. The study on the clinical and molecular basis of stridor, a novel clinical feature recently identified in patients with DOK7-CMS, prompted the identification of a novel DOK7 isoform, which warrants further investigation to elucidate its role in AChR clustering. Finally, the therapy of patients with severe AChR-deficiency was optimised thanks to a case series study that showed a robust improvement following the addition of β2-adrenergic agonists to their long-term treatment regime that included pyridostigmine.
119

Impact de l’activité postsynaptique sur le développement et le maintien de la jonction neuromusculaire de C. elegans / Impact of postsynaptic activity on the development and maintenance of the neuromuscular junction of C. elegans

Weinreb, Alexis 11 September 2018 (has links)
Au cours du développement du système nerveux, l'activité des cibles post-synaptiques permet le raffinement du nombre et de la force des connexions neuronales. En employant la jonction neuromusculaire de Caenorhabditis elegans comme système modèle, nous avons étudié deux aspects de la mise en place de ces connexions. D'une part, nous montrons que le nombre de récepteurs présents à la jonction neuromusculaire est contrôlé par l'activité musculaire : une augmentation de l'activation synaptique entraîne une régulation différentielle des trois types de récepteurs présents à la jonction neuromusculaire. D'autre part, nous avons étudié les changements de la morphologie de certains motoneurones de la tête du ver, appelés neurones SAB, en fonction de l’activité musculaire. Une diminution de l’activité musculaire durant une période critique du développement entraîne une surcroissance axonale des neurones SAB. À travers différentes approches, nous avons pu identifier la suppression de la surcroissance axonale dans des mutants où la biosynthèse des neuropeptides est perturbée. Enfin, nous avons mis en évidence que la surcroissance axonale apparait également lors de perturbations plus générales de la physiologie cellulaire, telles qu'un choc thermique ou la surexpression d'un transgène, ce qui suggère que le système SAB est plastique et particulièrement sensible au cours du développement / Throughout nervous system development, activity of the post-synaptic targets can regulate the connectivity of neural networks, affecting both the number and strength of synapses. Using the neuromuscular junction of Caenorhabditis elegans as a model system, we studied two processes displaying such plasticity. First, we show that the number of receptors present at the neuromuscular synapse is regulated by muscle activity: an increase in synaptic activity can lead to a differential regulation of the three types of receptors present at the neuromuscular junction. Second, we studied the activity-dependent morphological changes of one type of motor neurons in the worm’s head, called the SAB neurons. A decrease of muscle activity during a critical developmental phase leads to SAB axonal overgrowth. Using several approaches, we were able to observe suppression of SAB axonal overgrowth in mutants with a disruption of neuropeptides biosynthesis. Finally, we give evidence that axonal overgrowth also occurs following more general disruptions of cell physiology, such as a heat-shock or transgene overexpression, which suggest that the SAB system is plastic and sensitive during development
120

Regulatory Effects of the Actin-binding Proteins Moesin and MyosinII on Synaptic Activity at the Drosophila Neuromuscular Junction

Seabrooke, Sara 23 February 2011 (has links)
The nervous system is made up of specialized cells which receive and respond to environmental stimuli. Intercellular communication in the nervous system is achieved predominantly through chemical synaptic transmission. Within the chemical synapse, the actin cytoskeleton plays a major role in regulating synaptic activities, although the extent and clarity in our understanding of these processes is still limited. Using the genetically pliable model, Drosophila melanogaster, this thesis begins to unravel contributions of actin binding proteins to synaptic development and physiology at the larval neuromuscular junction (NMJ). Two actin binding proteins, Moesin and Nonmuscle Myosin II (NMMII) were selected for study based on previous studies implicating them in synaptic development. Combining genetics, fluorescent imaging and electrophysiological recordings this thesis unveils previously unidentified functions for Moesin and NMMII in morphology and physiology of the Drosophila NMJ. Moesin was found to help restrain synaptic growth but did not affect synaptic physiology. By correlating morphological and electrophysiological measurements in Moesin mutants, it was determined that physiology and morphology can be independently regulated at the NMJ. NMMII was used to investigate a role for actin binding proteins in physiology at the Drosophila NMJ. By using the fluorescent imaging technique, FRAP, this becomes the first research to implicate NMMII in unstimulated synaptic vesicle mobility. FRAP indicated that vesicle mobility was highly dependent on the expression level of NMMII. Electrophysiological analysis of NMMII indicated distinct mechanisms for spontaneous and evoked vesicle release. NMMII expression exhibited a positive correlation with basal synaptic transmission and was important in mobilizing vesicles for synaptic potentiation. In addition, NMMII was found to be involved in a high frequency dependent low frequency depression. This work begins to identify how vesicles traverse within boutons and suggests differential mechanisms of synaptic release, both of which are partially dependent of NMMII expression. Studying Moesin and NMMII have revealed a complex interplay between the actin cytoskeleton and synaptic function and together this research furthers our understanding of how the actin cytoskeleton regulates synaptic activity.

Page generated in 0.0785 seconds