• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 26
  • 11
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 33
  • 24
  • 22
  • 22
  • 21
  • 19
  • 19
  • 17
  • 17
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

A influencia da heparina em baixa concentração sobre a miotoxicidade do veneno de Bothrops jararacussu e bothropstoxina da heparina -I / The influence of heparin at a low concentration agaist the myotoxicity of Bothrops jararacussu and bothropstoxin-I

Ferreira, Sandro Rostelato, 1982- 27 July 2007 (has links)
Orientadores: Lea Rodrigues Simioni, Yoko Oshima Franco / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas / Made available in DSpace on 2018-08-09T01:04:42Z (GMT). No. of bitstreams: 1 Ferreira_SandroRostelato_M.pdf: 1413633 bytes, checksum: 6030097384697994f16895f8fb1a4c92 (MD5) Previous issue date: 2007 / Resumo: O veneno de Bothrops jararacussu (Bjssu) e sua miotoxina bothropstoxina-I (BthTX-I), induzem neurotoxicidade e miotoxicidade. Como o tratamento com o antiveneno é pouco eficaz contra a miotoxicidade, muitos estudos têm sido realizados utilizando substâncias que neutralizem a atividade miotóxica induzida pelo veneno, entre elas, a heparina. Os objetivos deste trabalho foram: 1) verificar o efeito da heparina sobre a miotoxicidade induzida pelo veneno e toxina, utilizando-se uma baixa concentração de heparina, porém capaz de impedir o bloqueio neuromuscular e, 2) esclarecer o papel protetor da heparina contra Bjssu. Controles foram realizados com antiveneno botrópico (AVB) comercial ou solução nutritiva de Tyrode ou salina. Para avaliar a neurotoxicidade empregou-se técnica miográfica convencional em preparações nervo frênico-diafragma de camundongos (in vitro) e nervo ciático poplíteo externo-tibial anterior de ratos (in vivo); para avaliar a miotoxicidade in vitro empregou-se a técnica histológica (microscopia óptica) e in vivo a dosagem bioquímica da creatinoquinase (CK); para avaliar o papel protetor da heparina empregou-se a protamina, um antagonista farmacológico. Os resultados obtidos in vitro mostraram que a resposta contrátil de 12 ± 2% (n=6) frente à incubação com Bjssu (40 µg/mL) por 120 min foi aumentada para 79,6 ± 5,9% (n=6) quando pré-incubado com heparina (5 UI/mL) e 68,3 ± 6,2% (n=6) quando pré-incubado com AVB (120 µL/mL); na mesma situação a BthTX-I (2,9 µM) passou de 5 ± 1,3% (n=8) para 78,8 ± 6,8% (n=8) com heparina e 62,3 ± 6,1% (n=6) com AVB. A média da quantificação do dano morfológico (leitura de três diferentes observadores) mostrou que o veneno provocou lesões de 27% e a toxina de 40%, que passaram para níveis de 5% e 9%, respectivamente, quando tratadas com heparina e 11% e 3% quando com AVB. Os pré-tratamentos não apresentaram diferença significativa em relação ao controle Tyrode. Os resultados in vivo (em ratos) mostraram que as mesmas concentrações de veneno e toxina utilizadas nos ensaios in vitro não provocaram alterações na resposta contrátil; contudo, quando injetados no músculo gastrocnêmio de camundongos, apresentaram níveis plasmáticos de CK (U/L) de: 1454 ± 185 (Bjssu, n=6) diminuindo (P<0,05) para 236 ± 40 (com heparina, n=6) e 47 ± 5 (com AVB, n=6); 1531 ± 166 (BthTX-I, n=5) diminuindo (P<0,05) para 900 ± 149 (com heparina, n=5) e 935 ±135 (com AVB, n=5). A adição de protamina (0,8 UI/mL) aos 15 minutos de incubação da mistura heparina + veneno causou o bloqueio neuromuscular característico do veneno em preparações in vitro. Conclui-se que a heparina é mais eficaz (mas pode ser totalmente bloqueada pela protamina) que o AVB quanto a sua capacidade de impedir a neurotoxicidade in vitro causada por Bjssu e BthTX-I, e que nas mesmas concentrações a heparina demonstrou nenhuma neurotoxicidade in vivo (ratos) e que ela é tão eficiente quanto o AVB na miotoxicidade in vitro, mas menos eficaz in vivo em relação ao veneno bruto / Abstract: Bothrops jararacussu venom (Bjssu) and its myotoxin bothropstoxin-I (BthTX-I) induce neurotoxicity and myotoxicity. Since the treatment with the antivenom is weakly efficient against the myotoxicity, many reports concentrate on studies utilizing substances that neutralize the myotixicity activity induced by the venom, including heparin. The objectives of this work were: 1) to examine the effect of heparin on the myotoxicity induced by venom and toxin, using a low heparin concentration, capable to prevent the neuromuscular blockade and, 2) to examine the protective role of heparin against Bjssu. Control experiments were performed with commercial bothropic antivenom (CBA), Tyrode solution or saline. To examine the neurotoxicity, a conventional myoghraphic technique was used in studies with mouse phrenic nerve-diaphragm preparations (in vitro) and rat popliteal external nerve/muscle anterior tibialis (in vivo). Histological technique (light microscopy) and biochemical measurement of creatine kinase (CK) were used to examine the myotoxicity in vitro e in vivo, respectively. Protamine (a pharmaceutical antagonist) was used to evaluate the protective role of heparin. The results in vitro showed that the twitch-tension of 12 ± 2% in the presence of Bjssu (40 µg/mL; n=6) after 120 min was increased to 79.6 ± 5.9% when preincubated with heparin (5 UI/ml; n=6) and 68.3 ± 6.2% when preincubated with CBA (120 µL/mL; n=6). Similarly, the BthTX-I (2.9 µM) - induced responses amounted to 5 ± 1.3% (n=8) and 78.8 ± 6.8% with heparin (n=8) and 62.3 ± 6.1% with CBA (n=6). The quantification of morphological changes showed that the venom induced a damage of 27% and the toxin of 40%, which were reduced to 5% and 9%, when treated with heparin and 11% and 3% with CBA, respectively. The pre-treatment did not cause significant differences compared to Tyrode solution. The results in vivo showed that the same concentrations of venom and toxin utilized in in vitro assays did not induce alteration in twitch-tension. However, when injected in mouse gastrocnemius muscle, plasma levels of CK (U/l) of 1454 ± 185 (in the presence of Bjssu, n=6) were decreased to 236 ± 40 (heparin, n=6) and 47 ± 5 (CBA, n=6). Similarly, a value of 1531 ± 166 in the presence of BthTX-I (n=5) was decreased to 900 ± 149 (heparin, n=5) and 935 ±135 (CBA, n=5). The addition of protamine (0.8 UI/ml) at 15 min incubation of the mixture heparin+venom, induced a neuromuscular blockade similar to the venom in in vitro preparations. We conclude that heparin is more efficient (although totally antagonized by protamine) than CBA with respect to the in vitro neurotoxicity induced by Bjssu and BthTX-I, which did not cause myotoxicity in vivo (rats). Heparin is as efficient as CBA in myotoxicity in vitro, but less efficient in vivo compared to the crude venom / Mestrado / Mestre em Farmacologia
102

Collagen XIII as a neuromuscular synapse organizer:roles of collagen XIII and its transmembrane form, and effects of shedding and overexpression in the neuromuscular system in mouse models

Härönen, H. (Heli) 02 January 2018 (has links)
Abstract Collagen XIII is a transmembrane protein consisting of intracellular, transmembrane and extracellular domains. The latter can be cleaved by proteases of the furin family at the plasma membrane and in the trans-Golgi network. Both the transmembrane and shed collagen XIII are expressed at the neuromuscular junctions of mice and humans. Such motor synapse passes the contraction signal from the central nervous system to the muscles and brings about all voluntary movements. Loss of both forms of collagen XIII in mice and loss-of-function mutations in the COL13A1 gene in humans leads to congenital myasthenic syndrome characterized by decreased neuromuscular transmission and muscle weakness. To study the roles of the two collagen XIII forms, a novel mouse line was engineered to harbor only the transmembrane collagen XIII by mutating the furin cleavage site. Transmembrane collagen XIII was discovered to be sufficient to prevent adhesion defects, Schwann cell invagination, the ineffective vesicle accumulation and dispersion of both acetylcholinesterase and acetylcholine receptors, phenotypes seen in the complete lack of collagen XIII. On the other hand, lack of shedding led to acetylcholine receptor fragmentation, aberrantly increased neurotransmission and presynaptic complexity. Remarkably, in vivo and in vitro interaction of collagen XIII and acetylcholinesterase-anchoring ColQ was detected. Furthermore, muscle and neuromuscular junction phenotype in the lack of both forms of collagen XIII closely resembled those in the human patients harboring mutations in the COL13A1 gene and these mice were validated as a good model for studying the human disease. Misexpression of collagen XIII was studied with mice exhibiting transgenic overexpression of the protein. Overexpression of collagen XIII was detected to be mostly extrasynaptic in the muscles of such mice. Exogenous collagen XIII was found at the myotendinous junctions, tenocytes and fibroblast-like cells, in addition to some localization in the near vicinity of the neuromuscular junctions. Collagen XIII expression was found, for the most part, to be normal at the neuromuscular junctions, although some were devoid of collagen XIII. The neuromuscular junction phenotype resembled in many ways the findings made in the lack of collagen XIII. Furthermore, acetylcholine receptor and nerve pattern was discovered to be widened. / Tiivistelmä Kollageeni XIII on solukalvoproteiini, jonka rakenne koostuu solunsisäisestä, solukalvon läpäisevästä ja solun ulkoisesta osasta, joka pystytään entsymaattisesti irrottamaan solukalvoilta. Täten se esiintyy kahdessa eri muodossaan; solukalvomuotoisena ja soluvälitilan lihasperäisenä proteiinina hiirten ja ihmisten hermolihasliitoksessa. Tässä motorisessa synapsissa keskushermostosta peräisin oleva lihaksen supistumiskäsky välittyy lihakseen ja aikaan saa tahdonalaiset liikkeet. Molempien kollageeni XIII:n muotojen puute hiirillä ja COL13A1 geenin mutaatiot ihmisillä johtavat synnynnäiseen myasteeniseen oireyhtymään, jossa heikentynyt hermolihasliitoksen toiminta johtaa lihasheikkouteen. Kollageeni XIII:n eri muotojen hermolihasliitosvaikutusten selvittämiseksi luotiin hiirilinja, jossa kollageeni XIII ilmenee geneettisen manipulaation seurauksena ainoastaan solukalvomuodossaan. Tutkimukset osoittivat solukalvomuotoisen kollageeni XIII:n tarvittavan hermon ja lihaksen kiinnittymiseen toisiinsa, hermovälittäjäainerakkuloiden ankkuroimiseen hermopäätteeseen, estämään Schwannin solujen tunkeutuminen synapsirakoon, asetyylikoliiniesteraasin sitomiseen ja asetyylikoliinireseptorien vakaantumiseen. Soluvälitilan kollageeni XIII:n puutos puolestaan johti lihaksen puolen liitoksen pirstaloitumiseen sekä hermopäätteiden liialliseen kasvuun ja aktiivisuuteen. Kollageeni XIII todettiin sitoutuvan asetyylikoliiniesteraasia hermolihasliitokseen ankkuroivan kollageeni Q:n kanssa. Lisäksi molempien kollageeni XIII:n muotojen suhteen poistogeenisten hiirten hermolihas- ja lihaslöydökset todettiin muistuttavan COL13A1 geenin mutaatioista kärsivien ihmisten vastaavia löydöksiä todistaen nämä hiiret hyväksi tautimalliksi tulevaisuuden hoitomuotojen suunnitteluun. Kollageeni XIII:n ylimäärän vaikutusta hermolihasliitokseen ja lihaskudokseen tutkittiin kollageeni XIII:a ylenmäärin ilmentävillä hiirillä. Kollageeni XIII todettiin ilmentyvän ylenmäärin lihaksessa fibroblastinkaltaisissa soluissa, lihasjänneliitoksessa ja hermolihasliitoksen lähettyvillä, mutta ei hermolihasliitoksessa. Osa hermolihasliitoksista näissä hiirissä ilmensi jopa vähemmän kollageeni XIII:a kuin normaalisti. Asetyylikoliinireseptorien ja hermojen valtaama alue todettiin leventyneeksi ja hermolihasliitoslöydökset muistuttivat molempien kollageeni XIII:n muotojen suhteen poistogeenisien hiirten löydöksiä.
103

Analysis of static and dynamic distribution of voltage-dependent calcium channels at nanoscale resolution in Caenorhabditis elegans / Analyse des distributions dynamiques et statiques de canaux calciques voltage-dépendants à la résolution du nanomètre chez Caenorhabditis elegans

Zhan, Hong 08 September 2014 (has links)
Dans les synapses chimiques, des canaux calciques voltage-dépendants (VDCC) provoquent la fusion des vésicules synaptiques (SV) au niveau de la zone active. L’efficacité et la rapidité de la transmission synaptique dépendent de la distribution relative entre les VDCCs et les SVs prêtes à fusion. Cependant, les modalités d’interaction entre les VDCCs et les SVs ne sont pas connues. Afin de localiser les VDCCs à l’échelle nanométrique j’ai developpé une nouvelle approche chez Caenorhabditis elegans combinant le marquage in vivo des VDCCs, grâce à l’expression d’un épitope extracellulaire, et la microscopie électronique (EM). J’ai généré un transgene GFP::unc-36 qui code la seule sous-unité α2-δ qui s’associe à fois avec les sous-unités formant le pore α1 neuronal (UNC-2) et musculaire (EGL-19) chez C.elegans. J'ai ensuite utilisé des quantum dots conjugués avec l’anticorps anti-GFP, fluorescents et denses au électrons, pour localiser des VDCCs à haute résolution au niveau de la jonction neuromusculaire (NMJ) par EM. En parallèle, j'ai utilisé la technique de CALM (complementation activated light microscopy) pour étudier la dynamique des VDCC dans des vers vivants. Nos résultats montrent que les VDCCs diffusent à l’échelle de nanodomaines sur la membrane musculaire. De plus leur diffusion est modulée en réponse à la tension musculaire. La dystrophine participe au couplage électro-mécanique au niveau du sarcolemme en modulant la taille du domaine de confinement des VDCCs. Enfin, nous avons mis en evidence le rôle de RIM/UNC-10 dans la régulation de la mobilité latérale des VDCCs dans les neurones, probablement via son interaction avec les VDCCs et les SVs. / At chemical synapse voltage-dependent calcium channels (VDCC) trigger synaptic vesicles (SV) fusion at the active zone in response to depolarization stimuli. Intracellular Ca2+ influx forms a nanodomain around individual VDCC. Fast and efficient synaptic transmissions appear to be tightly coupled with the relative distribution between the VDCCs and SVs fusion sites. However, the connection between VDCCs and docked SVs at a few nanometer scales remain enigmatic. To localize VDCCs in nanometer resolution I developed a novel approach combining in vivo labeling of VDCCs via genetically-encoded extracellular epitope tags and electron microscopy (EM). I engineered a GFP/split-GFP tag fused at the extracellular N-terminal of UNC-36, the only C. elegans VDCC α2δ subunit associating with both neuronal (UNC-2) and muscular (EGL-19) VDCC pore-forming α1 subunit. I then used quantum dot (QD) conjugated antibodies as both fluorescent and electron dense probes to localize VDCCs at C. elegans neuromuscular junction (NMJ) by in vivo QD-antibodies labeling and EM. In parallel, I applied in vivo complementation activated light microscopy to study VDCC dynamics in live worms. I discovered that VDCCs diffuse within nanodomains at sarcomeric membrane and their nanoscale diffusion behavior is modulated in response to muscle tension. In addition, we found that dystrophin participates in electro-mechanical coupling at the sarcolemma by modulating the confinement size of VDCCs. Meanwhile, we discovered lateral mobility of N-type VDCC at NMJs, and that RIM/UNC-10 seems involved in regulation of VDCC dynamics via its interaction with VDCC and SVs.
104

Effets de la régulation de la protéostasie sur la jonction neuromusculaire dans un modèle de sclérose latérale amyotrophique

Fiore, Frédéric 12 1900 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie neurodégénérative caractérisée par la mort des neurones moteurs. La perte de ces neurones entraîne une faiblesse musculaire qui évolue progressivement vers la paralysie et mène invariablement au décès des personnes atteintes en quelques années seulement. L’hétérogénéité et la complexité des mécanismes qui sous-tendent les déficits moteurs chez ces patients ralentissent considérablement la découverte de nouveaux médicaments. Toutefois, certains de ces mécanismes semblent jouer un rôle particulièrement important dans le déclenchement et la progression de la maladie, et constituent ainsi des cibles thérapeutiques de choix. C’est le cas notamment de l’agrégation protéique, omniprésente chez les patients, qui trahit un dérèglement global de l’homéostasie des protéines dans la SLA. Nous avons donc émis l’hypothèse qu’un traitement visant à réguler la gestion des protéines permettrait, en réduisant l’agrégation protéique, de diminuer la mort des motoneurones et de prévenir ainsi l’apparition des symptômes moteurs caractéristiques de la maladie chez des souris porteuses de la mutation SOD1G93A. Nous avons analysé l’impact de ce traitement sur la fonction motrice, la contraction musculaire et l’intégrité de la jonction neuromusculaire (JNM), la synapse entre les neurones moteurs et les muscles. Son administration au stade présymptomatique de la maladie s’est avérée moins efficace que prévu : on ne note pas d’améliorations significatives des déficits moteurs ou de l’intégrité de la JNM. Cependant, les résultats obtenus sont encourageants et laissent croire que ce traitement pourrait être encore plus efficace à l’apparition des symptômes, ce qui lui confère un grand potentiel thérapeutique. / Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of motor neurons. The loss of these neurons causes muscle weakness, which evolves to paralysis and invariably leads to the death of those affected in just a few years. The heterogeneity and complexity of the mechanisms underlying motor deficits in these patients significantly slow the discovery of new efficient drugs. However, some of these mechanisms seem to play a particularly important role in the onset and progression of the disease, and thus constitute a preferred therapeutic target. This is the case with protein aggregation, which is omnipresent in patients and betrays a global disruption of protein homeostasis in ALS. We therefore hypothesized that a treatment aimed at regulating protein management would, by reducing protein aggregation, prevent the death of motor neurons and the appearance of the motor symptoms characteristic of ALS in mutant SOD1G93A mice. We analyzed the impact of this treatment on motor function, muscle contraction and on the structural integrity of the neuromuscular junction (NMJ), the synapse between motor neurons and muscles. Overall, administration of our treatment at the presymptomatic stage of the disease was less effective than expected: neither motor deficits nor NMJ integrity were significantly improved. However, these results remain very encouraging: the trends seem to indicate a positive effect of the treatment, which even slightly improves the strength generated by muscle contractions. Our data suggests that this treatment could be even more effective at the symptoms onset, which grants it great therapeutic potential.
105

Analyse comparative pour comprendre la résistance des jonctions neuromusculaires des muscles extraoculaires dans la sclérose latérale amyotrophique

Provost, Frédéric 04 1900 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie touchant spécifiquement les motoneurones (MN) qui se caractérise par la perte précoce des jonctions neuromusculaires (JNMs) et menant à une paralysie musculaire. La dénervation des JNMs des muscles squelettiques se produit en amont de la mort des MN de la moelle épinière. Des études récentes publiées ont révélé une altération de la transmission synaptique, une instabilité de la morphologie des JNMs ainsi que des mécanismes de réparations de la JNMs inappropriés dans le modèle SOD1, et ce avant l’apparition des symptômes moteurs. De manière intéressante, ces mécanismes sont régulés par les cellules de Schwann périsynaptiques (CSPs), la cellule gliale présente à la JNM suggérant ainsi que l’altération des fonctions des CSPs peut contribuer à la vulnérabilité des JNMs. Tandis que de nombreuses études ont démontré une susceptibilité à la dénervation qui est dépendante du type d’unité motrice (UM), l’innervation des muscles extraoculaires (EOMs) montre une importante résistance à la progression de la maladie. Afin d’investiguer les distinctions dans les JNMs des EOMs menant à cette résistance, nous avons procédé à une analyse de la morphologie des JNMs via microscopie confocale, nous avons étudié les propriétés fonctionnelles des CSPs par imagerie calcique ainsi qu’effectuer une analyse différentielle du protéome entre les JNMs résistantes de l’EOM et les JNMs vulnérables du soleus (SOL) ou de l’extensor digitorum longus (EDL) dans la souris SOD1G37R. Peu de dénervation des JNMs et aucune altération des JNMs sont observées dans l’EOM à un stade tardif de la maladie. Contrairement aux muscles vulnérables, la sensibilité des CSPs suite à l’application locale d’ATP et de muscarine n’est pas altérée dans les EOM. L’analyse du protéome entre l’EDL et l’EOM au stade symptomatique démontre des fonctions cellulaires distinctes. Dans l’EDL, au stade symptomatique, les cascades cellulaires catabolique et reliée au protéosome sont augmentées : reflétant le processus de dénervation en cours dans ce muscle. Dans l’EOM, une diminution de l’expression de SOD1 muté, une augmentation des processus d’oxydoréductions, des protéines importantes pour maintien du repliement des protéines, des neurofilaments ainsi qu’une expression distincte des enzymes régulant les neurotransmetteurs est observée dans les JNMs résistantes. Ainsi, comprendre les fonctions des CSPs ainsi que les profils d’expression protéomique distincte entre les JNMs vulnérables et résistantes durant la progression de la maladie peut nous fournir des informations sur les mécanismes impliqués durant la dénervation et aider à identifier les protéines potentielles qui peut favoriser la réparation et l’intégrité des JNMs. Ainsi, cette étude peut mener à l’identification de biomarqueur musculaire et de cible thérapeutique potentielle pour des perspectives curatives futures. / Amyotrophic lateral sclerosis (ALS) is a motor neuron (MNs) disease characterized by the precocious loss of neuromuscular junctions (NMJs) and muscular paralysis. The denervation of NMJs at striated muscles is an early event that occurs before the loss of spinal cord MNs. Recent data revealed an alteration of synaptic transmission, morphological instability and inappropriate repair in NMJs of SOD1 mice model prior to motor symptoms. Interestingly, these mechanisms are known to be regulated by Perisynaptic Schwann cells (PSCs), glial cells at NMJs, suggesting that the alteration of PSC functions may contribute to NMJ vulnerability. While numerous studies demonstrated a motor unit type-dependent susceptibility to denervation, the extraocular muscles (EOM) innervation shows a prominent resistance to disease progression. We hypothesized that PSCs functions and intrinsic properties at extraocular NMJs contribute to the resistance of the disease progression. NMJ morphological analysis by immunostaining and confocal imaging, functional properties of PSCs by calcium imaging and a differential proteomic analysis using Tandem Mass Tags coupled to quantitative mass spectrometry was performed between the resistant EOM and the vulnerable, soleus (SOL) or Extensor digitorum longus (EDL) muscles in SOD1G37R mice. Fewer denervated NMJs and no alteration of NMJ integrity was observed in the EOM in comparison to the EDL. Sensitivity of EOM PSC to local application of ATP and muscarine are not altered in the EOM SOD1G37R in comparison to WT suggesting an adequate decoding of synaptic activity of PSC. Proteomics analysis between EDL and EOM at symptomatic stage demonstrates distinct cellular pathway. In the EDL, at symptomatic stage, catabolism and proteasome cellular pathways are upregulated reflecting the undergoing denervation processes observed. In the EOM, overall lower expression of SOD1, up-regulation of oxidoreduction process, of mechanism against protein unfolding, of neurofilament and distinct expression of enzymes regulating neurotransmitter homeostasis is observed in the resistant NMJ. Understanding PSC functions and investigating the distinctive protein expression profile between vulnerable and resistant NMJs during disease progression will help provide insights into the denervation mechanisms involved and help identify potential proteins that could favor NMJ repair and integrity. Also, this study may lead to the identification of muscle biomarkers and potential therapeutic targets moving toward curative perspectives.
106

TGF-beta signaling at the cellular junctions

Dudu, Veronica 08 June 2005 (has links)
During cell communication, cells produce secreted signals termed morphogens, which traffic through the tissue until they are received by target, responding cells. Using the fruit fly Drosophila melanogaster as a model organism, I have studied transforming growth factor-beta (TGF-beta) signal from the secreting to the receiving cells in the developing wing epithelial cells and at the neuromuscular junctions. Cell culture studies have suggested that cells modulate morphogenetic signaling by expressing the receptors and secreting the ligand in spatially defined areas of the cell. Indeed, I have found that TGF-beta ligands, receptors and R-Smads show a polarized distribution both in the epithelial cells and at the synapses. My results indicate that the cellular junctions define a signaling domain within the plasma membrane, to which TGF-beta signaling machinery is targeted. In the context of epithelial cells, the junctions play a role in TGF-beta signaling regulation through their component beta-cat. A complex forms between beta-cat and the R-Smad Mad, but the mechanism by which beta-cat modulates signaling is not yet understood. At the synapse, the sub-cellular localization of TGF-beta pathway components indicates the occurrence of an anterograde signal. Moreover, my results suggest a scenario in which TGF-beta signaling is coupled with synaptic activity: quanta of growth factor, released upon neurostimulation together with neurotransmitter quanta, could modulate therefore the development and the function of the synapse.
107

Autoregulatory and Paracrine Control of Synaptic and Behavioral Plasticity by Dual Modes of Octopaminergic Signaling: A Dissertation

Koon, Alex C. 28 October 2011 (has links)
Synaptic plasticity—the ability of a synapse to change—is fundamental to basic brain function and behavioral adaptation. Studying the mechanisms of synaptic plasticity benefits our understanding of the formation of neuronal connections and circuitry, which has great implications in the field of learning and memory and the studies of numerous human diseases. The Drosophila larval neuromuscular junction (NMJ) system is a powerful system for studying synaptic plasticity. The NMJ consists of at least two different types of motorneurons innervating the body wall muscles. Type I motorneurons controls muscle contraction using glutamate as the neurotransmitter, while type II are modulatory neurons that contain octopamine. Octopamine is a potent modulator of behavior in invertebrates. Nevertheless, its function at the synapse is poorly understood. In my thesis research, I investigated the role of octopamine in synaptic plasticity using the Drosophila NMJ system. Preliminary observations indicate that increased larval locomotion during starvation results in an increase of filopodia-like structures at type II terminals. These structures, which we termed as “synaptopods” in our previous studies, contain synaptic proteins and can mature into type II synapses. I demonstrated that this outgrowth of type II terminals is dependent on activity and octopamine. Mutations and genetic manipulations affecting the production of octopamine decrease synaptopods, whereas increase of type II activity or exogenous application of octopamine increase synaptopods. Interestingly, I found that the type II octopaminergic neurons have an absolute dependence on activity for their innervation of the muscles. Blocking activity in these neurons throughout development results in no type II synapses at the NMJ, whereas blocking activity after the formation of synapses results in gradual degradation of type II terminals. Next, I examined the autoregulatory mechanism underlying the octopamine-induced synaptic growth in octopaminergic neurons. I discovered that this positive-feedback mechanism depends on an octopamine autoreceptor, Octß2R. This receptor in turn activates a cAMP- and CREB-dependent pathway that is required in the octopamine-induction of synaptopods. Furthermore, I demonstrated that this octopaminergic autoregulatory mechanism is necessary for the larva to properly increase its locomotor activity during starvation. Thirdly, I investigated the possibility that type II innervation might regulate type I synaptic growth through octopamine. We found that ablation, blocking of type II activity, or the absence of octopamine results in reduced type I outgrowth, and this paracrine signaling is mediated by Octß2R which is also present in type I motorneurons. Lastly, the function of another octopamine receptor, Octß1R, was examined. In contrast to Octß2R, Octß1R is inhibitory to synaptic growth. I demonstrated that the inhibitory effect of this receptor is likely accomplished through the inhibitory G-protein Goα. Similar to Octß2R, Octß1R also regulates the synaptic growth of both type I and type II motorneurons in a cell-autonomous manner. The inhibitory function of this receptor potentially breaks the positive feedback loop mediated by Octß2R, allowing the animal to reset its neurons when the environment is favorable. In summary, the research presented in this thesis has unraveled both autoregulatory and paracrine mechanisms in which octopamine modulates synaptic and behavior plasticity through excitatory and inhibitory receptors.
108

The Role of Cell Adhesion, the Cytoskeleton, and Membrane Trafficking during Synapse Outgrowth: A Dissertation

Ashley, James A. 13 September 2006 (has links)
The synapse, the minimal element required for interneuronal communication in the nervous sytems, is a structure with a great deal of plasticity, capable of undergoing changes that alter transmission strength, and even forming new connections. This property has great implications for a number of processes, including circuit formation and learning and memory. However, the proteins behind this synaptic plasticity are still not fully understood. To uncover and characterize the proteins that regulate the plastic nature of the synapse, I turned to the Drosophilalarval neuromuscular junction (NMJ), a powerful and accessible model system. I began by examining synaptic cell adhesion, as Cell Adhesion Molecules (CAMs) have long been implicated in synaptic outgrowth as well as learning and memory. CAMs have traditionally been thought of as molecules that mediate cell adhesion between the pre- and postsynaptic membrane. However, through the course of the studies presented here I demonstrate a CAM function that goes beyond simple cell adhesion, acting as a receptor that transduces adhesive signals to the intracellular space. In particular, I have demonstrated a role for the Drosophila CAM, Fasciclin II(FasII), in a signaling complex involving the Amyloid Precursor Protein-Like (APPL) and the Drosophila homolog of X11/MINT/Lin-10 (dX11). Further results show that deletion of either APPL or dX11 inhibits the FasII mediated outgrowth. These studies show that during NMJ expansion the transinteraction between FasII molecules in the pre- and postsynaptic membrane results in the recruitment of APPL and dX11 to the presynaptic cell surface, and the initiation of a signaling cascade that leads to bouton outgrowth. The next question addressed here was regarding the cytoskeletal changes that must occur during synapse remodeling. In particular I centered on the evolutionarily conserved cell polarity complex aPKC-Par3-Par6, which is know to regulate axon growth, the cell cytoskeleton during polarized cell division, and learning and memory. To understand the role of the cytoskeleton during NMJ expansion, I examined the organization of microtubules and actin during this process. Further, I identified atypical protein kinase C (aPKC) as a regulator of microtubule dynamics. I found that aPKC is required for regulating the degree of stabilization of synaptic microtubules. This stabilization requires the Microtubule Associated Protein-1B (MAP1B) homolog Futsch, which I demonstrated was required for aPKC to associate with and stabilize the microtubule cytoskeleton. The process of synaptic expansion not only requires modifications to the presynapse, but to the postsynapse as well. Previous work demonstrates that levels of the scaffolding proteins DrosophilaMembrane Associated Guanlyate Kinase (MAGUK) protein Discs-large (DLG), as well as the vertebrate homolog Postsynaptic Density-95 (PSD-95), which are concentrated at synapses, determine the size of postsynaptic membranes. To identify the underlying mechanisms of the regulation of postsynaptic size, we performed a yeast two hybrid screen, searching for DLG interacting proteins. We found a novel interaction between DLG, and a t-SNARE, GUK-interacting Syntaxin (Gtaxin; GTX), and went on to demonstrate that this interaction is required for proper postsynaptic membrane addition. Strong hypomorphic mutations in either dlg or gtx show a dramatic reduction in postsynaptic expansion. Overexpression of DLG produces an increase of synaptic GTX, as well as an increase in postsynaptic size, and an increased formation of GTX positive SNARE complexes. Taken together, these observations suggest that the MAGUK DLG regulates postsynaptic membrane addition by modulating the formation of a SNARE complex of the t-SNARE Gtaxin, and by targeting GTX to sites of postsynaptic membrane addition. In summary, the studies performed in this thesis probe a trans-synaptic adhesion based signaling complex required for presynaptic expansion, a specific pathway for dynamic microtubule stabilization required for pre- and postsynaptic expansion, and how a scaffolding protein regulates postsynaptic membrane expansion. These processes are all interconnected to maintain the efficacy of the synapse. The studies conducted revealed important information about how these processes are accomplished, and constitute an important step to elucidate the mechanisms by which synapse plasticity occurs at the level of single synaptic terminals.
109

Role of Glia in Sculpting Synaptic Connections at the Drosophila Neuromuscular Junction: A Dissertation

Fuentes Medel, Yuly F. 27 January 2012 (has links)
Emerging evidence in both vertebrates and invertebrates is redefining glia as active players in the development and integrity of the nervous system. The formation of functional neuronal circuits requires the precise addition of new synapses. Mounting evidence implicates glial function in synapse remodeling and formation. However, the precise molecular mechanisms governing these functions are poorly understood. My thesis work begins to define the molecular mechanisms by which glia communicate with neurons at the Drosophila neuromuscular junction (NMJ). During development glia play a critical role in remodeling neuronal circuits in the CNS. In order to understand how glia remodel synapses, I manipulated a key component of the glial engulfment machinery, Draper. I found that during normal NMJ growth presynaptic boutons constantly shed membranes or debris. However, a loss of Draper resulted in an accumulation of debris and ghost boutons, which inhibited synaptic growth. I found that glia use the Draper pathway to engulf these excess membranes to sculpt synapses. Surprisingly, I found that muscle cells function as phagocytic cells as well by eliminating immature synaptic ghost boutons. This demonstrates that the combined efforts of glia and muscle are required for the addition of synapses and proper growth. My work establishes that glia play a crucial role in synapse development at the NMJ and suggests that there are other glial-derived molecules that regulate synapse function. I identified one glial derived molecule critical for the development of the NMJ, a TGF-β ligand called Maverick. Presynaptically, Maverick regulates the activation of BMP pathway confirmed by reducing the transcription of the known target gene Trio. Postsynaptically, it regulates the transcription of Glass bottom boat (Gbb) in the muscle suggesting that glia modulate the function of Gbb and consequently the activation of the BMP retrograde pathway at NMJ. Surprisingly, I also found that glial Maverick regulates the transcription of Shaker potassium channel, suggesting that glia potentially could regulate muscle excitability and consequently modulate synaptic transmission. Future work will elucidate such hypothesis. My work has demonstrated two novel roles for glia at the NMJ. First is that glia engulfing activity is important for proper synaptic growth. Second is that the secretion of glial-derived molecules are required to orchestrate synaptic development. This further supports that glia are critical active players in maintaining a functional nervous system.
110

Caractérisation de la jonction neuromusculaire au cours du vieillissement chez l’humain

Marchand, Sandrine 02 1900 (has links)
Le vieillissement entraîne plusieurs changements au niveau de la fonction musculaire qui peuvent mener à une perte de la masse musculaire et de sa fonction qu’on appelle sarcopénie. La sarcopénie entraîne une augmentation du risque de chutes et d’hospitalisations qui nuit à la qualité de vie des personnes âgées. Le vieillissement de la population représente un enjeu important au sein de la société en raison de son impact socioéconomique élevé. Plusieurs facteurs contribuent à ce déclin observé au cours du vieillissement, mais un des éléments clés qui y contribue sont des altérations de la jonction neuromusculaire (JNM). La JNM est une synapse tripartite composée de la terminaison nerveuse présynaptique, de la fibre musculaire postsynaptique et des cellules de Schwann périsynaptiques (CSPs), des cellules gliales. Les CSPs jouent un rôle essentiel dans la maintenance, la modulation de la transmission et de la plasticité synaptique et la réparation de la JNM. Plusieurs études effectuées chez le murin ont démontré que la JNM présente des altérations telles que de la dénervation, de la fragmentation du postsynaptique et des signes de modulation et de réparation gliaux au cours du vieillissement. Ces altérations contribuent aux déficits de la fonction neuromusculaire observés lors du vieillissement. La JNM humaine demeure cependant sous-étudiée, particulièrement en considérant sa structure tripartite. Afin de mieux comprendre le vieillissement neuromusculaire chez l’humain, des biopsies du Vastus lateralis ont été effectuées chez 4 jeunes adultes (23-28 ans) et 5 personnes âgées (60-75 ans) sains et actifs. Un marquage immunohistochimique a été effectué sur les biopsies afin d’identifier les trois composantes de base de la JNM et le type de fibre, puis visualiser en microscopie confocale. Des mesures fonctionnelles ont également été prélevées pour chacun des participants âgés. L’analyse des JNMs a permis de démontrer qu’une instabilité de l’innervation de même qu’une relation tripartite divergente se développe avec l’âge. Ces altérations corrèlent également avec un déficit fonctionnel. Dans l’ensemble, notre étude présente des altérations de la JNM humaine au cours du vieillissement ayant un impact sur la fonction neuromusculaire. Elle pourrait permettre de mieux comprendre les mécanismes à la base du vieillissement neuromusculaire pour développer des stratégies d’intervention thérapeutiques efficaces pour limiter l’impact du vieillissement. / Several changes occur in muscular function in aging which can lead to a loss of muscle mass and function called sarcopenia. Sarcopenia can lead to an increased risk of fall and hospitalization and to a poor quality of life. Aging of the population represents an important societal issue due to its high socioeconomic impact. Many factors contribute to the decline of muscular function seen in aging, but alterations of the neuromuscular junctions are a key element leading to sarcopenia. The NMJ is a tripartite synapse composed of the presynaptic nerve terminal, the postsynaptic muscle fiber as well as perisynaptic Schwann cells (PSC), glial cells. PSCs play a key role in maintenance, modulation of synaptic transmission and plasticity as well as repair of the NMJ. Several rodent studies have shown that the NMJ present alterations such as denervation, fragmentation of the postsynaptic and glial-related signs of modulation and repair in aging. These alterations contribute to the neuromuscular deficits observed in aging. However, the NMJ remain widely understudied, particularly when considering its tripartite structure. In order to get a better understanding of neuromuscular aging in humans, biopsies form the Vastus lateralis were performed on 4 young (23-28 years old) and 5 older (60-75 years old) healthy and physically active men. Immunohistochemistry labelling of the NMJ’s main components and type of fibers was performed and then imaged using confocal microscopy. Functional assessment was also measured for each older adult. Analysis of NMJs revealed an instability in the innervation as well as a divergent tripartite relationship in older individuals. These alterations also correlated with neuromuscular deficits. Taken altogether, our study highlights alterations of the NMJ in aging leading to altered neuromuscular function. This could lead to a better understanding of the underlying mechanisms leading to sarcopenia and to develop better therapeutic strategies to limit its impact during aging.

Page generated in 0.4603 seconds