• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

DECIPHERING FABP5 ROLES IN CANCER AND NEURONAL DEVELOPMENT IN RESPONSE TO SMALL MOLECULE INHIBITORS AND DIETARY FATTY ACIDS

Folkwein, Heather J. 25 January 2022 (has links)
No description available.
12

Six4/5 Family Transcription Factor UNC-39 Controls the Development of RID Neuron in Caenorhabditis elegans

Laskova, Valeriya 15 July 2013 (has links)
Members of the Six4/5 family of homeobox transcription factors have been implicated in multiple human disorders, including type I mytonic dystrophy, branchio-oto-renal syndrome, and holoprosencephaly, suggesting a role for these factors in the nervous system development. Using a forward genetics approach, we identified unc-39, a C. elegans homologue of the human SIX5 gene, as a novel regulator of the development of a specific neuron, called RID. Our data support the role of unc-39 early in C. elegans development and suggest a possibility of complete absence of RID neuron in unc-39 mutants. unc-39 mutant has a similar locomotion phenotype to the RID-ablated animals, which provides further support to the hypothesis that the absence of RID contributes to the locomotion phenotype observed in the mutant. We show that unc-39 functions at multiple points in the lineage that gives rise to the RID neuron, and that its function is context-dependent.
13

Six4/5 Family Transcription Factor UNC-39 Controls the Development of RID Neuron in Caenorhabditis elegans

Laskova, Valeriya 15 July 2013 (has links)
Members of the Six4/5 family of homeobox transcription factors have been implicated in multiple human disorders, including type I mytonic dystrophy, branchio-oto-renal syndrome, and holoprosencephaly, suggesting a role for these factors in the nervous system development. Using a forward genetics approach, we identified unc-39, a C. elegans homologue of the human SIX5 gene, as a novel regulator of the development of a specific neuron, called RID. Our data support the role of unc-39 early in C. elegans development and suggest a possibility of complete absence of RID neuron in unc-39 mutants. unc-39 mutant has a similar locomotion phenotype to the RID-ablated animals, which provides further support to the hypothesis that the absence of RID contributes to the locomotion phenotype observed in the mutant. We show that unc-39 functions at multiple points in the lineage that gives rise to the RID neuron, and that its function is context-dependent.
14

Drosophila melanogaster, as a model system to study the cell biology of neuronal GPCRs / Drosophila melanogaster, un organisme modèle pour l'étude de la biologie cellulaire des RCPGs neuronaux

Gaffuri, Anne-Lise 24 September 2012 (has links)
Le récepteur cannabinoique de type 1 (CB1R) est l’un des récepteurs couplés aux protéines G les plus abondants du cerveau mammifère. CB1R a longtemps été décrit comme un récepteur présynaptique régulant de manière rétrograde la transmission synaptique. Cependant, depuis les vingt dernières années, de nouveaux rôles ont été découverts et il est maintenant clairement admis que l’action des endocannabinoides (eCBs) ne se limite pas à la régulationde la neurotransmission au niveau de synapses adultes déjà établies. En effet, les eCBs et le CB1R sont des acteurs majeurs de l’ensemble des phases du développement cérébral. Cependant, les mécanismes moléculaires impliqués n’ont toujours pas été identifiés. Les mécanismes cellulaires auxquels nous nous intéressons ne dépendant pas de l’environnement cellulaire, nous proposons donc de combiner la puissance génétique du modèle drosophile à l’accessibilité et la haute résolution offerte par la culture primaire de neurones. De plus, le récepteur CB1 ne possédant pas d’orthologue parmi les invertébrés, ce système offre la possibilité d’étudier la biologie du récepteur en s’affranchissant de la machinerie endocannabinoide. Cependant, actuellement, aucun protocole de culture primaire de neurones de drosophile ne permet d’obtenir des cellules hautement différenciées et polarisées à basse densité. Ainsi, nous avons tout d’abord développé, optimisé et validé un nouveau protocole permettant de d’obtenir des neurones fonctionnels, hautement différenciés et polarisés en culture de basse densité. Dans un second temps, nous avons démontré que l’activation durécepteur CB1, exprimé ectopiquement dans les neurones de drosophile, entrainait son internalisation, de manière identique à ce qui avait déjà été observé chez les mammifères. Puis, nous avons étudié l’effet de l’expression et de l’activation ectopique de CB1R sur le développement neuronal chez la drosophile. Ainsi, nous avons démontré que l’activation du récepteur module directement la dendritogénèse. Afin de compléter la caractérisation de notremodèle, nous avons démontré que l’activation transitoire du récepteur dans les corps pédonculés (le centre de la mémoire olfactive chez la drosophile) altérait spécifiquement la formation d’une forme consolidée de mémoire après un conditionnement aversif. En conclusion, la validation du modèle drosophile dans l’étude de la biologie cellulaire durécepteur CB1 ouvre de nouvelles perspectives quant à la détermination des mécanismes moléculaires régissant l’action du récepteur sur le fonctionnement neuronal. / The type-1 cannabinoid receptor (CB1R), the neuronal receptor for the major psychoactive substance of marijuana, is one, of the most abundant G-protein coupled receptors in the mammalian central nervous system. CB1R is traditionally described as a presynaptic receptor that retrogradely regulates synaptic transmission. In addition to this now relatively wellcharacterized function, in the last two decades it has become widely recognized that endocannabinoid (eCB) actions in the brain are not limited to the regulation of neurotransmission at established adult synapses. Indeed, eCB and CB1R are now recognized to be involved in brain development at the synaptic, neuronal and network levels. However, precise mechanisms underlying these processes remain poorly described. Since cellular mechanisms that mediate CB1R-activition dependent neuronal remodeling and subneuronal targeting have been demonstrated to be cell-autonomous, we aimed to combine the power of Drosophila genetics with the experimental accessibility and single-cell resolution of lowdensity primary neuronal cultures, a tool currently lacking in Drosophila. Moreover, becauseDrosophila does not have a CB1R ortholog, CB1R cell biology may be observed independently from eCB machinery. Thus, we first developed and validated an in vitro culture protocol that yields mature and fully differentiated Drosophila neurons. Secondly, we showed that activation-dependent endocytosis of ectopically expressed CB1R is conserved in Drosophila neurons. Next, we investigated whether ectopic expression and activation of CB1R in Drosophila modulate neuronal development. As observed in mammals, we observed that activation of CB1R impairs dendritogenesis in a cell-autonomous manner. For further characterization of our model, we showed that, as with mammals, transient ectopic CB1R expression and activation in mushroom body neurons (the center of olfactory memory in Drosophila) modulate the formation of a consolidated form of aversive memory. In conclusion, the validation of this new animal model opens new perspectives to better characterize mechanisms underlying modulation of neuronal functions induced by CB1Ractivity
15

Role of CG9650 in Neuronal Development And Function of Drosophila Melanogaster

Murthy, Smrithi January 2016 (has links) (PDF)
The nervous system is the most complex system in an organism. Functioning of the nervous system requires proper formation of neural cells, as well as accurate connectivity and signaling among them. While the major events that occur during these processes are known, the finer details are yet to be understood. Hence, an attempt was made to look for novel genes that could be involved in them. The focus of the present study is on CG9650, a gene that was uncovered in a misexpression screen, as a possible player in neuronal development in Drosophila melanogaster. The first chapter of the thesis reviews existing knowledge about neuronal development and function. The first section of this chapter explains in brief the formation and specification of neural stem cells, and their differentiation to neurons and glia. Sections 2 and 3 describe neuronal connectivity and signaling with respect to axon growth, synapse formation, function and plasticity. A comparison of invertebrate and vertebrate neuronal development is provided in section 4 of this chapter. This part also explains the use of Drosophila as a model for neuronal development and function. Chapter 2 describes the expression pattern of CG9650, which was characterized to gain insights into the possible role it plays during Drosophila neurogenesis.CG9650 is expressed in multiple cell types in the nervous system at the embryonic stage. Some of the cell sub-types have been identified from their morphology and position. Expression was restricted to neurons in the larval stage (except in the optic lobe, where it was expressed in precursors also), and continued in the pupal stage. No expression was seen in adults (except in the optic lobe). CG9650 has a putative DNA binding region, which bears homology to the mouse proteins CTIP1 and CTIP2, implying that CG9650 is possibly a transcription factor. In order to understand the function of CG9650, the protein was knocked down panneuronally. The resultant animals showed locomotor defects at both larval and adult stages, which have been described in chapter 3. Knock down larvae showed reduced displacement and speed of movement. The number of peristaltic cycles was also reduced in these animals but the cycle period was normal. In adults, movement was uncoordinated and righting reflex was lost, resulting in inability to walk, climb or fly. These results imply a defect in neuronal signaling. Sensory perception was unaffected in these animals. Stage specific knockdown of CG9650 indicated that the requirement for this protein is primarily during the larval stage. All CG9650-expressing neurons in the ventral nerve cord were glutamatergic, implying that its role in controlling locomotor activity is likely through glutamatergic circuits. Following up on these observations, signaling at the neuromuscular junction was assessed in CG9650 knock down animals. Chapter 4 discusses the signaling defects seen on CG9650 knock down, and the possible role of this protein. Electrophysiological recordings from Dorsal Longitudinal Muscles showed reduced and irregular neuronal firing in the knock down animals. These animals also had reduced bouton and active zone numbers. Moreover, overexpression of BRP, an active zone protein, rescued the locomotor defects caused by knock down of CG9650. Chapter 5 reports the effect of over expression of CG9650. Pan-neural over expression of CG9650 resulted in embryos with severe axon scaffolding defects, as well as aberrant neuronal and glial pattern. However, the incorrectly positioned glial cells in these embryos did not express CG9650, indicating that their aberrant positioning was probably due to incorrect signaling from the neurons. In conclusion, this study reports the requirement for CG9650, a hitherto unknown protein, in locomotor activity and signaling, thus ascribing for it a role in neuronal development and function of Drosophila melanogaster.
16

Analyzing the neural transcriptional landscape in time and space

Sünkel, Christin 31 January 2020 (has links)
Zirkuläre RNAs sind eine Klasse endogener, tierischer RNAs. Obwohl sie hoch abundant sind, ist weder ihre Funktion noch ihre Expression im Nervensystem bekannt. Es wurde ein Katalog zirkulärer RNAs in neuralen Proben erstellt. Es konnten tausende zirkuläre RNAs von Mensch und Maus entdeckt und analysiert werden. Zirkuläre RNAs sind außerordentlich angereichert im Säugetiergehirn, ihre Sequenz ist gut konserviert und sie sind häufig gemeinsam in Mensch und Maus exprimiert. Zirkuläre RNAs waren generell höher exprimiert im Verlauf der neuronalen Differenzierung, sind stark angereichert an Synapsen und oft differentiell exprimiert. circSLC45A4 ist die Hauptisoform, die in humanem präfrontalem, embryonalen Cortex von diesem genomischen Lokus exprimiert wird und eine der am höchsten exprimierten zirkulären RNAs in diesem System. Induzierte Verminderung der Expression von circSLC45A4 ist ausreichend, um die spontane neuronale Differenzierung einer humanen Neuroblastomzelllinie zu induzieren. Dies kann durch die verstärkte Expression neuronaler Markergene belegt werden. Verminderung der Expression von circSLC45A4 im embryonalen Mauscortex verursacht eine signifikante Reduktion von basalen Progenitoren. Außerdem wurde eine signifikante Reduktion von Zellen in der kortikalen Platte nach Depletion von circSLC45A4 gemessen. Weiterhin konnten die Ergebnisse im Mauscortex dekonvoliert werden. Dies zeigte die Zunahme von Cajal-Retzius Zellen. Es wird eine Methode vorgestellt, die RNA-Sequenzierung von Einzelzellen mit räumlicher Auflösung zulässt, ohne vorherige Kenntnisse des Systems zu benötigen. 3D-seq vereint die Applikation eines physischen Gitters mit kombinatorischem Indizieren, so dass Einzelzellen individuell und räumlich markiert werden können. 3D-seq wurde an koronalen Schnitten von adultem Mausgehirn etabliert. Die Daten wurden zur Reproduktion des Gewebes in silico genutzt. 3D-seq ein leicht zu adaptierendes Protokoll, das an jedem Gewebe angewendet werden kann. / Circular RNAs (circRNAs) are an endogenous class of animal RNAs. Despite their abundance, their function and expression in the nervous system are unknown. Therefore, a circRNA catalogue comprising RNA-seq samples from different brain regions, primary neurons, synaptoneurosomes, as well as during neuronal differentiation was created. Using these and other available data, thousands of neuronal human and mouse circRNAs were discovered and analyzed. CircRNAs were extraordinarily enriched in the mammalian brain, well conserved in sequence, often expressed as circRNAs in both human and mouse, and sometimes even detected in Drosophila brains. CircRNAs were overall upregulated during neuronal differentiation, highly enriched in synapses, and often differentially expressed compared to their corresponding mRNA isoforms. CircRNA expression correlated negatively with expression of the RNA-editing enzyme ADAR1. Knockdown of ADAR1 induced elevated circRNA expression. Together, a circRNA brain expression atlas and evidence for important circRNA functions is provided. Starting from this catalogue a circRNA, circSLC45A4 was identified. It is the main RNA isoform produced from its genetic locus in the developing human frontal cortex and one of the highest expressed circRNAs in that system. Knockdown of this conserved circular RNA in a human neuroblastoma cell line was sufficient to induce spontaneous neuronal differentiation, measurable by increased expression of neuronal marker genes and neurite outgrowth. Depletion of circSlc45a4 in the developing mouse cortex caused a significant reduction of the basal progenitor pool and increased the expression of neurogenic regulators like Notch2, Foxp2, and Unc5b. Furthermore, a significant depletion of cells in the cortical plate after knockdown of circSlc45a4 was observed. In addition, deconvolution of the bulk RNA-seq data with the help of single cell RNA-seq data validates the depletion of basal progenitors after knockdown of circSlc45a4 in the mouse cortex and reveals an increase in Cajal-Retzius cells. Taken together, a detailed study of a conserved circular RNA that is necessary to maintain the pool of neural progenitors in vitro and in vivo is presented. The developing mouse cortex is a good illustration for a highly spatially organized tissue and why knowledge of spatial information for each cell can be of great importance. However, obtaining transcriptome-wide and spatially resolved information from single-cells has been proven to be a challenging task. Current state-of-the-art experimental methods are either limited by the number of genes that can be detected simultaneously within a single-cell or require preexisting spatial information. Here, 3D-seq, a new experimental technique that allows unbiased, high-throughput single-cell spatial transcriptomics is introduced. 3D-seq combines a physical grid with combinatorial indexing to label single cells of any tissue in a unique way and thereby preserving the approximate spatial localization of any given cell. 3D-seq was applied to coronal slices of adult mouse brain, more than 70 cell types were identified and the 3D-seq data was used to reproduce the tissue in silico with single-cell resolution. Furthermore, 3D-seq is easy to adapt, can be applied to any tissue and can be combined with other technologies.
17

Expression and possible functions of circular RNAs

Glazar, Petar 08 June 2020 (has links)
Circular RNAs (circRNAs) sind eine große Klasse endogener RNAs, die in Organismen vorkommen, die RNA-Transkripte durch Spleißen prozessieren. Sie sind Produkte des „backsplicing“ – einer Art des alternativen Spleißens, bei der das 3‘-Ende eines Exons mit einer vorgelagerten 5‘-„splice site“ verbunden wird. Trotz ihrer Abundanz und spezifischen Expressionsmustern sind in vivo-Funktionen von circRNAs größtenteils unbekannt. Wir haben den existierenden Kenntnisstand systematisiert und diesen in Form von circBase frei zugänglich gemacht. circBase ist eine Online-Datenbank, in der circRNA-Datensätze abgerufen und im genomischen Kontext durchsucht und visualisiert werden können. Für die Arbeit mit Hochdurchsatz-circRNA-Daten haben wir des Weiteren die Software ciRcus entwickelt. Um mehr bezüglich circRNA-Expression und möglicher Funktionen zu lernen, haben wir die Expressionsmuster im Säugetiergehirn umfassend erforscht. Mithilfe von eigenen und öffentlich zugänglichen RNA-Sequenzierungsdaten haben wir Tausende von neuralen circRNAs in Mensch und Maus entdeckt. circRNAs waren während der neuronalen Differenzierung und Reifung insgesamt hochreguliert, stark angereichert in Synapsen, und oft differentiell exprimiert im Vergleich zu ihren mRNA-Isoformen. Außerdem haben wir gezeigt, dass viele circRNAs zwischen Mensch und Maus konserviert sind. Schließlich haben wir in vivo-Funktionen von Cdr1as erforscht - einer konservierten und im Gehirn hoch exprimierten circRNA, die stark von microRNA (miRNA)-Effektor-Komplexen gebunden ist und zahlreiche miR-7-Bindestellen sowie eine Bindestelle für miR-671 aufweist. „Knockout“-Tiere, bei denen der Cdr1as-Lokus deletiert wurde, zeigten ein gestörtes sensomotorisches „gating“ und dysfunktionale synaptische Übertragung. Die Expression von miR-7 und miR-671 war in verschiedenen Hirnregionen der Tiere dereguliert. Die Expression von „immediate early“-Genen, von denen einige miR-7-Zielgene sind, war erhöht. / circular RNAs (circRNAs) are a large class of endogenous RNAs present in organisms that process RNA transcripts by splicing. They are products of backsplicing - alternative splicing reactions where the 3’ end of an exon is spliced to an upstream 5’ splice site. Despite their abundance and tissue- and developmental-stage-specific expression patterns, their in vivo functions are largely unknown. We systematized the existing knowledge on circRNAs and made it freely available by developing circBase - an online database where circRNA datasets can be accessed, downloaded and browsed within the genomic context. Another technical challenge was addressed by developing ciRcus - a software package for working with high-throughput circRNA data, which allowed us to routinely handle, explore, annotate, quantify and integrate circRNA data with the external sources of biological data. To learn more about circRNA expression and potential functions, we have explored the expression patterns of circRNAs in the mammalian brain. Using own and public RNA-seq data, we discovered thousands of neural circRNAs in human and mouse. circRNAs were upregulated during neuronal differentiation and maturation, enriched in synapses, and often differentially expressed compared to their host mRNAs. Many circRNAs were conserved between human and mouse. Finally, we explored in vivo functions of Cdr1as - a conserved circRNA known to be highly expressed in the brain, heavily bound by microRNA (miRNA) effector complexes, and harbouring many binding sites for miR-7, as well as a single binding site for miR-671. Upon deleting the Cdr1as locus, knockout animals displayed impaired sensorimotor gating and dysfunctional synaptic transmission. Expression of miR-7 and miR-671 was deregulated in different brain regions of Cdr1as knockout animals. Expression of immediate early genes, some of which are miR-7 targets, was increased, providing a possible molecular link to the behavioral phenotype.
18

The role of E3 ubiquitin ligase FBXO31-SCF in neuronal morphogenesis / The role of E3 ubiquitin ligase FBXO31-SCF in neuronal morphogenesis

Vadhvani, Mayur 24 October 2012 (has links)
No description available.
19

The Role of the HECT-Type Ubiquitin Ligases WWP1 and WWP2 in Nerve Cell Development and Function / Die Rolle der HECT-Typ Ubiquitin Ligasen WWP1 und WWP2 bei der Entwicklung und der Funktion von Nervenzellen

Kishimoto-Suga, Mika 15 April 2011 (has links)
No description available.

Page generated in 0.081 seconds