• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 71
  • 11
  • 9
  • 1
  • Tagged with
  • 183
  • 183
  • 51
  • 31
  • 30
  • 30
  • 28
  • 23
  • 21
  • 18
  • 17
  • 16
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Network mechanisms underlying sharp wave ripples and memory replay

Chenkov, Nikolay 24 October 2017 (has links)
Komplexe Muster neuronaler Aktivität entstehen während der Sharp-wave Ripples (SWRs) im Hippocampus und während der Up States im Neokortex (Zuständen mit hoher Aktivität). Sequenzen von Verhalten, die in der Vergangenheit erlebt wurden, werden während des komplexen Musters abgespielt. Die zugrunde liegenden Mechanismen sind nicht gründlich erforscht: Wie können kleine synaptische Veränderungen die großflächige Netzwerkaktivität während des Gedächtnisabrufes und der Gedächtniskonsolidierung kontrollieren? Im ersten Teil dieser Abhandlung wird die Hypothese aufgestellt, dass eine schwache synaptische Konnektivität zwischen Hebbschen Assemblies von der bereits vorhandenen rekurrenten Konnektivität gefördert wird. Diese Hypothese wird auf folgende Weise geprüft: die vorwärts gekoppelten Assembly-Sequenzen werden in neuronale Netzwerke eingebettet, mit einem Gleichgewicht zwischen exzitatorischer und inhibitorischer Aktivität. Simulationen und analytische Berechnungen haben gezeigt, dass rekurrente Verbindungen innerhalb der Assemblies zu einer schnelleren Signalverstärkung führen, was eine Reduktion der notwendigen Verbindungen zwischen den Assemblies zur Folge hat. Diese Aktivität kann entweder von kleinen sensorisch ähnlichen Inputs hervorgerufen werden oder entsteht spontan infolge von Aktivitätsschwankungen. Globale -- möglicherweise neuromodulatorische -- Änderungen der neuronalen Erregbarkeit können daher die Netzwerkzustände steuern, die Gedächnisabruf und die Konsolidierung begünstigen. Der zweite Teil der Arbeit geht der Herkunft der SWRs nach, die in vitro beobachtet wurden. Neueste Studien haben gezeigt, dass SWR-ähnliche Erscheinungen durch optogenetische Stimulation der Subpopulationen von inhibitorischen Neuronen hervorgerufen werden können (Schlingloff et al., 2014). Um diese Ergebnisse zu erklären wird ein de-inhibierendes Schaltkreis-Modell diskutiert, das die beobachteten Populationsausbrüche generieren kann. Die Auswirkungen der pharmakologischen GABAergischen Modulatoren auf die SWR-Häufigkeit werden in vitro untersucht. Die gewonnenen Ergebnisse wurden in Rahmen des Schaltkreis-Modells analysiert. Insbesondere wird den folgenden Fragen nachgegangen: Wie unterdrückt Gabazine, ein GABA_A-Rezeptor-Antagonist, die Entwicklung von SWRs? Wird das Zeitintervall zwischen SWRs durch die Dynamik der GABA_B Rezeptoren moduliert? / Complex patterns of neural activity appear during up-states in the neocortex and sharp-wave ripples (SWRs) in the hippocampus, including sequences that resemble those during prior behavioral experience. The mechanisms underlying this replay are not well understood. How can small synaptic footprints engraved by experience control large-scale network activity during memory retrieval and consolidation? In the first part of this thesis, I hypothesise that sparse and weak synaptic connectivity between Hebbian assemblies are boosted by pre-existing recurrent connectivity within them. To investigate this idea, sequences of assemblies connected in a feedforward manner are embedded in random neural networks with a balance of excitation and inhibition. Simulations and analytical calculations show that recurrent connections within assemblies allow for a fast amplification of signals that indeed reduces the required number of inter-assembly connections. Replay can be evoked by small sensory-like cues or emerge spontaneously by activity fluctuations. Global--potentially neuromodulatory--alterations of neuronal excitability can switch between network states that favor retrieval and consolidation. The second part of this thesis investigates the origin of the SWRs observed in in-vitro models. Recent studies have demonstrated that SWR-like events can be evoked after optogenetic stimulation of subpopulations of inhibitory neurons (Schlingloff et al., 2014; Kohus et al., 2016). To explain these results, a 3-population model is discussed as a hypothetical disinhibitory circuit that could generate the observed population bursts. The effects of pharmacological GABAergic modulators on the SWR incidence in vitro are analysed. The results are discussed in the light of the proposed disinhibitory circuit. In particular, how does gabazine, a GABA_A receptor antagonist, suppress the generation of SWRs? Another explored question is whether the slow dynamics of GABA_B receptors is modulating the time scale of the inter-event intervals.
152

Nichtlineare Methoden in der trainingswissenschaftlichen Diagnostik : mit Untersuchungen aus dem Schwimmsport / Nonlinear methods for diagnostic purposes in training science

Bügner, Jörg January 2005 (has links)
<p>Die trainingswissenschaftliche Diagnostik in den Kernbereichen Training, Wettkampf und Leistungsfähigkeit ist durch einen hohen Praxisbezug, eine ausgeprägte strukturelle Komplexität und vielseitige Wechselwirkungen der sportwissenschaftlichen Teilgebiete geprägt. Diese Eigenschaften haben in der Vergangenheit dazu geführt, dass zentrale Fragestellungen, wie beispielsweise die Maximierung der sportlichen Leistungsfähigkeit, eine ökonomische Trainingsgestaltung, eine effektive Talentauswahl und -sichtung oder die Modellbildung noch nicht vollständig gelöst werden konnten. Neben den bereits vorhandenen linearen Lösungsansätzen werden in dieser Arbeit Methoden aus dem Bereich der Neuronalen Netzwerke eingesetzt. Diese nichtlinearen Diagnoseverfahren sind besonders geeignet für die Analyse von Prozessabläufen, wie sie beispielsweise im Training vorliegen.</p> <p>Im theoretischen Teil werden zunächst Gemeinsamkeiten, Abhängigkeiten und Unterschiede in den Bereichen Training, Wettkampf und Leistungsfähigkeit untersucht sowie die Brücke zwischen trainingswissenschaftlicher Diagnostik und nichtlinearen Verfahren über die Begriffe der Interdisziplinarität und Integrativität geschlagen. Angelehnt an die Theorie der Neuronalen Netze werden anschließend die Grundlagenmodelle Perzeptron, Multilayer-Perzeptron und Selbstorganisierende Karten theoretisch erläutert. Im empirischen Teil stehen dann die nichtlineare Analyse von personalen Anforderungsstrukturen, Zustände der sportlichen Form und die Prognose sportlichen Talents - allesamt bei jugendlichen Leistungsschwimmerinnen und -schwimmern - im Mittelpunkt. Die nichtlinearen Methoden werden dabei einerseits auf ihre wissenschaftliche Aussagekraft überprüft, andererseits untereinander sowie mit linearen Verfahren verglichen.</p> / <p>The diagnostic methods in training science concentrate on the core areas of training, competition, and performance. The methods commonly used are characterized by a high degree of practical applicability and distinct structural complexity. These characteristics have led to the question which scientific methods fit best for resolving problems like, for example, the optimization of athletic performance, efficient planning and monitoring of training processes, effective talent screening, selection and development, or the formation of analytical models. All these questions have not yet been answered sufficiently.</p> <p>Aside from the traditional mathematical approaches on the basis of the linear model, nonlinear methods in the field of neural networks are used in this dissertation. These nonlinear diagnostic methods are especially suitable for the analysis of coherent patterns in time series such as training processes.</p> <p>In the theoretical part of the dissertation, common aspects, mutual dependencies, and differences between training, competition, and performance are examined. In this context, a bridge is built between the diagnostic purposes in these fields and suitable nonlinear methods. Along the lines of the neural networks theory, the basic models Perceptron, Multilayer-Perceptron, and Self-Organizing Feature Maps are subsequently elucidated.</p> <p>In the empirical part of the thesis, three studies conducted with top level adolescent swimmers are presented that focus on the nonlinear analysis of personal athletic ability structures, different states of athletic shape, and the prognosis of athletic talent. The nonlinear methods are thus examined as to how worthwhile they are for analytical purposes in training science on the one hand, and they are compared to each other as well as to linear methods on the other hand.</p>
153

Approaches to analyse and interpret biological profile data

Scholz, Matthias January 2006 (has links)
Advances in biotechnologies rapidly increase the number of molecules of a cell which can be observed simultaneously. This includes expression levels of thousands or ten-thousands of genes as well as concentration levels of metabolites or proteins. <br><br> Such Profile data, observed at different times or at different experimental conditions (e.g., heat or dry stress), show how the biological experiment is reflected on the molecular level. This information is helpful to understand the molecular behaviour and to identify molecules or combination of molecules that characterise specific biological condition (e.g., disease). <br><br> This work shows the potentials of component extraction algorithms to identify the major factors which influenced the observed data. This can be the expected experimental factors such as the time or temperature as well as unexpected factors such as technical artefacts or even unknown biological behaviour. <br><br> Extracting components means to reduce the very high-dimensional data to a small set of new variables termed components. Each component is a combination of all original variables. The classical approach for that purpose is the principal component analysis (PCA). <br><br> It is shown that, in contrast to PCA which maximises the variance only, modern approaches such as independent component analysis (ICA) are more suitable for analysing molecular data. The condition of independence between components of ICA fits more naturally our assumption of individual (independent) factors which influence the data. This higher potential of ICA is demonstrated by a crossing experiment of the model plant <i>Arabidopsis thaliana</i> (Thale Cress). The experimental factors could be well identified and, in addition, ICA could even detect a technical artefact. <br><br> However, in continuously observations such as in time experiments, the data show, in general, a nonlinear distribution. To analyse such nonlinear data, a nonlinear extension of PCA is used. This nonlinear PCA (NLPCA) is based on a neural network algorithm. The algorithm is adapted to be applicable to incomplete molecular data sets. Thus, it provides also the ability to estimate the missing data. The potential of nonlinear PCA to identify nonlinear factors is demonstrated by a cold stress experiment of <i>Arabidopsis thaliana</i>. <br><br> The results of component analysis can be used to build a molecular network model. Since it includes functional dependencies it is termed functional network. Applied to the cold stress data, it is shown that functional networks are appropriate to visualise biological processes and thereby reveals molecular dynamics. / Fortschritte in der Biotechnologie ermöglichen es, eine immer größere Anzahl von Molekülen in einer Zelle gleichzeitig zu erfassen. Das betrifft sowohl die Expressionswerte tausender oder zehntausender Gene als auch die Konzentrationswerte von Metaboliten oder Proteinen. <br><br> Diese Profildaten verschiedener Zeitpunkte oder unterschiedlicher experimenteller Bedingungen (z.B. unter Stressbedingungen wie Hitze oder Trockenheit) zeigen, wie sich das biologische Experiment auf molekularer Ebene widerspiegelt. Diese Information kann genutzt werden, um molekulare Abläufe besser zu verstehen und um Moleküle oder Molekül-Kombinationen zu bestimmen, die für bestimmte biologische Zustände (z.B.: Krankheit) charakteristisch sind. <br><br> Die Arbeit zeigt die Möglichkeiten von Komponenten-Extraktions-Algorithmen zur Bestimmung der wesentlichen Faktoren, die einen Einfluss auf die beobachteten Daten ausübten. Das können sowohl die erwarteten experimentellen Faktoren wie Zeit oder Temperatur sein als auch unerwartete Faktoren wie technische Einflüsse oder sogar unerwartete biologische Vorgänge. <br><br> Unter der Extraktion von Komponenten versteht man die Reduzierung dieser stark hoch-dimensionalen Daten auf wenige neue Variablen, die eine Kombination aus allen ursprünglichen Variablen darstellen und als Komponenten bezeichnet werden. Die Standard-Methode für diesen Zweck ist die Hauptkomponentenanalyse (PCA). <br><br> Es wird gezeigt, dass - im Vergleich zur nur die Varianz maximierenden PCA - moderne Methoden wie die Unabhängige Komponentenanalyse (ICA) für die Analyse molekularer Datensätze besser geeignet sind. Die Unabhängigkeit von Komponenten in der ICA entspricht viel besser unserer Annahme individueller (unabhängiger) Faktoren, die einen Einfluss auf die Daten ausüben. Dieser Vorteil der ICA wird anhand eines Kreuzungsexperiments mit der Modell-Pflanze <i>Arabidopsis thaliana</i> (Ackerschmalwand) demonstriert. Die experimentellen Faktoren konnten dabei gut identifiziert werden und ICA erkannte sogar zusätzlich einen technischen Störfaktor. <br><br> Bei kontinuierlichen Beobachtungen wie in Zeitexperimenten zeigen die Daten jedoch häufig eine nichtlineare Verteilung. Für die Analyse dieser nichtlinearen Daten wird eine nichtlinear erweiterte Methode der PCA angewandt. Diese nichtlineare PCA (NLPCA) basiert auf einem neuronalen Netzwerk-Algorithmus. Der Algorithmus wurde für die Anwendung auf unvollständigen molekularen Daten erweitert. Dies ermöglicht es, die fehlenden Werte zu schätzen. Die Fähigkeit der nichtlinearen PCA zur Bestimmung nichtlinearer Faktoren wird anhand eines Kältestress-Experiments mit <i>Arabidopsis thaliana</i> demonstriert. <br><br> Die Ergebnisse aus der Komponentenanalyse können zur Erstellung molekularer Netzwerk-Modelle genutzt werden. Da sie funktionelle Abhängigkeiten berücksichtigen, werden sie als Funktionale Netzwerke bezeichnet. Anhand der Kältestress-Daten wird demonstriert, dass solche funktionalen Netzwerke geeignet sind, biologische Prozesse zu visualisieren und dadurch die molekularen Dynamiken aufzuzeigen.
154

Modellierung modularer Materialfluss-Systeme mit Hilfe von künstlichen neuronalen Netzen / Modelling of material flow systems with artificial neural networks

Markwardt, Ulf 23 October 2004 (has links) (PDF)
Materialfluss-Systeme für den Stückgut-Transport auf der Basis von Stetigförderern sind meist modular aufgebaut. Das Verhalten gleichartiger Materialfluss-Elemente unterscheidet sich durch technische Parameter (z.B. geometrische Größen) und durch unterschiedliche logistische Belastungen der Elemente im System. Durch die in der Arbeit getroffenen Modellannahmen werden für die Elemente nur lokale Steuerungsregeln zugelassen und für das System Blockierfreiheit vorausgesetzt. Das Verhalten eines Materialfluss-Elements hängt dann nicht mehr von Zuständen anderer Elemente des Systems ab sondern nur noch von den stochastischen Prozessen des Eintreffens von Transporteinheiten. Die Auslastung eines Elements, die Quantile der Warteschlangenlängen an seinen Eingängen und die Variationskoeffizienten seiner Abgangsströme sind statistische Kenngrößen. Sie hängen im Wesentlichen nur von der Klasse des Elements, seinen technischen Parametern, den Parametern der Eingangsströme und der lokalen Transportmatrix ab. Diese funktionellen Abhängigkeiten sind im Allgemeinen nicht analytisch handhabbar. Da diese Funktionen stetig differenzierbar und beschränkt sind und von relativ viele Eingansgrößen anhängen, sind neuronale Netze gut geeignet für numerische Näherungen. Mit Hilfe von einfachen neuronalen Netzen können die statistischen Kenngrößen numerisch approximiert werden. Aus einzelnen Teilmodellen kann ein hybrides Modell des gesamten Systems zusammengesetzt werden. Anhand von einigen Beispielen wird die Güte der Modellierung bewertet. / Material flow systems are normally built with a modular structure. The behavoir of similar elements only differs by technical parameters (e.g. geometriy), and by different logistic loads of the elements in the system. In this paper, a new model is being developed for a non-blocking system with non-global control rules. The behavior of a flow of a material flow element is assumed not to depend on the conditions of other elements of the system, but only on stochastic processes of the arrival of transportation units. The rate of utilization of an element, the quantiles of the queue lengths at its inputs, and the dispersion of its output stream are statistic characteristics. They depend only on the type of the element, its technical parameters, the parameters of the input streams, and the local transportation matrix. These functional dependencies are not analytically manageable. But due to their properties, neural nets are well suited for numeric approximations of these statistic functions. The single models can be used to compose a hybrid model of the whole system. A few examples show the quality of the new modeling technique.
155

Dynamische Neuronale Netzarchitektur für Kontinuierliches Lernen

Tagscherer, Michael 23 August 2001 (has links) (PDF)
Am Beispiel moderner Automatisierungssysteme wird deutlich, dass die Steuerung und optimale Führung der technischen Prozesse eng verbunden ist mit der Verfügbarkeit eines möglichst exakten Prozessmodells. Steht jedoch kein Modell des zu steuernden Systems zur Verfügung oder ist das System nicht ausreichend genau analytisch beschreibbar, muss ein adäquates Modell auf der Basis von Beobachtungen (Messdaten) abgeleitet werden. Erschwerend wirken sich hierbei starke Nichtlinearitäten sowie der zeitvariante Charakter der zu identifizierenden Systeme aus. Die Zeitvarianz, beispielsweise durch Alterung oder Verschleiß hervorgerufen, erfordert zusätzlich eine schritthaltende Adaption an den sich verändernden Prozess. Das einmalige, zeitlich begrenzte Erstellen eines Modells ist somit nicht ausreichend. Stattdessen muss zeitlich unbegrenzt "nachtrainiert" werden, was dementsprechend als "Kontinuierliches Lernen" bezeichnet wird. Auch wenn das Ableiten eines Systemmodells anhand von Beobachtungen eine typische Aufgabenstellung für Neuronale Netze ist, stellt die Zeitvarianz Neuronale Netze dennoch vor enorme Probleme. Im Rahmen der Dissertation wurden diese Probleme identifiziert und anhand von unterschiedlichen Neuronalen Netzansätzen analysiert. Auf den sich hieraus ergebenden Ergebnissen steht anschließend die Entwicklung eines neuartigen Neuronalen Netzansatzes im Mittelpunkt. Die besondere Eigenschaft des hybriden ICE-Lernverfahrens ist die Fähigkeit, eine zur Problemkomplexität adäquate Netztopologie selbstständig zu generieren und diese entsprechend des zeitvarianten Charakters der Zielfunktion dynamisch adaptieren zu können. Diese Eigenschaft begünstigt insbesondere schnelles Initiallernen. Darüber hinaus ist das ICE-Verfahren in der Lage, parallel zur Modellausgabe Vertrauenswürdigkeitsprognosen für die aktuelle Ausgabe zur Verfügung zu stellen. Den Abschluss der Arbeit bildet eine spezielle Form des ICE-Ansatzes, bei der durch asymmetrische Aktivierungsfunktionen Parallelen zur Fuzzy-Logik hergestellt werden. Dadurch wird es möglich, automatisch Regeln abzuleiten, welche das erlernte Modell beschreiben. Die "Black-Box", die Neuronale Netze in der Regel darstellen, wird dadurch transparenter. / One of the main requirements for an optimal industrial control system is the availability of a precise model of the process, e.g. for a steel rolling mill. If no model or no analytical description of such a process is available a sufficient model has to be derived from observations, i.e. system identification. While nonlinear function approximation is a well-known application for neural networks, the approximation of nonlinear functions that change over time poses many additional problems which have been in the focus of this research. The time-variance caused for example by aging or attrition requires a continuous adaptation to process changes throughout the life-time of the system, here referred to as continuous learning. Based on the analysis of different neural network approaches the novel incremental construction algorithm ICE for continuous learning tasks has been developed. One of the main advantages of the ICE-algorithm is that the number of RBF-neurons and the number of local models of the hybrid network have not to be determined in advance. This is an important feature for fast initial learning. The evolved network is automatically adapted to the time-variant target function. Another advantage of the ICE-algorithm is the ability to simultaneously learn the target function and a confidence value for the network output. Finally a special version of the ICE-algorithm with asymmetric receptive fields is introduced. Here similarities to fuzzy logic are intended. The goal is to automatically derive rules which describe the learned model of the unknown process. In general a neural network is a "black box". In contrast to that an ICE-network is more transparent.
156

Anwendung und Entwicklung Neuronaler Verfahren zur autonomen Prozess-Steuerung

Protzel, Peter, Lewandowski, Achim, Kindermann, Lars, Tagscherer, Michael, Herrnberger, Bärbel 09 October 2001 (has links) (PDF)
In diesem Bericht wurden die Arbeiten und Ergebnisse dargestellt, die am FORWISS im Rahmen des Verbundprojekts AENEAS im Zeitraum vom 1.10.1995 bis zum 31.12.1999 erzielt wurden. Die Forschungsziele des Vorhabens wurden durch eine industrielle Anwendung im Bereich der Stahlverarbeitung motiviert und konzentrierten sich im Wesentlichen auf die folgenden Punkte: • Modellierung von nichtlinearen und zeitvarianten Prozessen, die analytisch nicht fassbar sind und nur durch Messdaten repräsentiert werden. • Modellierung von Größen, die nicht direkt messbar sind, aber auf nichtlineare Weise von anderen, messbaren Größen abhängen. • Kombination von analytischen bzw. statistischen Modellen und Neuronalen Netzen, um die jeweiligen Vorteile der Verfahren zu vereinen. Als Ergebnis des Vorhabens wurden eine Reihe neuer Ansätze zum kontinuierlichen Lernen entwickelt, darunter eine neuartige, lebenslang adaptive Netzarchitektur mit entscheidenden Vorteilen im Bereich des kontinuierlichen Lernens im Vergleich zu allen bisher bekannten Verfahren. Zum zweiten Punkt wurde eine Theorie der Analyse iterierter Prozesse entwickelt, die auf das mathematische Problem der Lösung von Funktionswurzeln führte. Für nichtlineare Systeme gibt es keine analytischen Lösungsmöglichkeiten, daher wurden erstmals Neuronale Netze zur Lösung dieses Problems verwendet. Die Ergebnisse aller grundlagenorientierten Arbeiten flossen in die Lösung eines industriellen Anwendungsproblems ein, bei der End- und Zwischenprofile warmgewalzter Stahlbänder modelliert und prognostiziert werden sollten. Dieser Prozess ist charakterisiert durch Nichtlinearität, Zeitvarianz („Tagesform“ der Anlage) und durch die nicht direkte Messbarkeit der Zwischenprofile, die sich als inverse Iteration (Funktionswurzel) aus dem Endprofil ergeben. Dieses Problem konnte auf elegante Weise durch eine Verknüpfung von analytischen und neuronalen Ansätzen gelöst werden. Neben dem unmittelbaren Wert der Ergebnisse bei der Lösung der beispielhaften Anwendung lassen sich die entwickelten Verfahren zum kontinuierlichen Lernen und zur Analyse iterierter Prozesse auf eine Vielzahl anderer Problemstellungen verallgemeinern und stellen eine gute Basis für weitere Forschungsarbeiten dar.
157

Neuronale Netze zur Berechnung Iterativer Wurzeln und Fraktionaler Iterationen

Kindermann, Lars 17 December 2002 (has links) (PDF)
Diese Arbeit entwickelt eine Methode, Funktionalgleichungen der Art g(g(x))=f(x) bzw. g^n(x)=f(x) mit Hilfe neuronaler Netze zu lösen. Gesucht ist eine Funktion g(x), die mehrfach hintereinandergeschaltet genau einer gegebenen Funktion f(x) entspricht. Man nennt g=f^1/n eine iterative Wurzel oder fraktionale Iteration von f. Lösungen für g zu finden, stellt das inverse Problem der Iteration dar oder die Erweiterung der Wurzel- bzw. Potenzoperation auf die Funktionsalgebra. Geschlossene Ausdrücke für Funktionswurzeln einer gegebenen Funktion zu finden, ist in der Regel nicht möglich oder sehr schwer. Numerische Verfahren sind nicht in allgemeiner Form beschrieben oder als Software vorhanden. Ausgehend von der Fähigkeit eines neuronalen Netzes, speziell des mehrschichtigen Perzeptrons, durch Training eine gegebene Funktion f(x) zu approximieren, erlaubt eine spezielle Topologie des Netzes auch die Berechnung von fraktionalen Iterationen von f. Ein solches Netz besteht aus n identischen, hintereinandergeschalteten Teilnetzen, die, wenn das Gesamtnetz f approximiert, jedes für sich g = f^1/n annähern. Es ist lediglich beim Training des Netzes darauf zu achten, dass die korrespondierenden Gewichte aller Teilnetze den gleichen Wert annehmen. Dazu werden mehrere Verfahren entwickelt: Lernen nur im letzten Teilnetz und Kopieren der Gewichte auf die anderen Teile, Angleichen der Teilnetze durch Kopplungsfaktoren oder Einführung eines Fehlerterms, der Unterschiede in den Teilnetzen bestraft. Als weitere Näherungslösung wird ein iteriertes lineares Modell entwickelt, das durch ein herkömmliches neuronales Netz mit hoher Approximationsgüte für nichtlineare Zusammenhänge korrigiert wird. Als Anwendung ist konkret die Modellierung der Bandprofilentwicklung beim Warmwalzen von Stahlblech gegeben. Einige Zentimeter dicke Stahlblöcke werden in einer Walzstraße von mehreren gleichartigen, hintereinanderliegenden Walzgerüsten zu Blechen von wenigen Millimetern Dicke gewalzt. Neben der Dicke ist das Profil - der Dickenunterschied zwischen Bandmitte und Rand - eine wichtige Qualitätsgröße. Sie kann vor und hinter der Fertigstraße gemessen werden, aus technischen Gründen aber nicht zwischen den Walzgerüsten. Eine genaue Kenntnis ist jedoch aus produktionstechnischen Gründen wichtig. Der Stand der Technik ist die Berechnung dieser Zwischenprofile durch das wiederholte Durchrechnen eines mathematischen Modells des Walzvorganges für jedes Gerüst und eine ständige Anpassung von adaptiven Termen dieses Modells an die Messdaten. Es wurde gezeigt, dass mit einem adaptiven neuronalen Netz, das mit Eingangs- und Ausgangsprofil sowie allen vorhandenen Kenn- und Stellgrößen trainiert wird, die Vorausberechnung des Endprofils mit deutlich höherer Genauigkeit vorgenommen werden kann. Das Problem ist, dass dieses Netz die Übertragungsfunktion der gesamten Straße repräsentiert, Zwischenprofile können nicht ausgegeben werden. Daher wird der Versuch gemacht, beide Eigenschaften zu verbinden: Die genaue Endprofilmodellierung eines neuronalen Netzes wird kombiniert mit der Fähigkeit des iterierten Modells, Zwischenprofile zu berechnen. Dabei wird der in Form von Messdaten bekannte gesamte Prozess als iterierte Verknüpfung von technisch identischen Teilprozessen angesehen. Die Gewinnung eines Modells des Einzelprozesses entspricht damit der Berechnung der iterativen Wurzel des Gesamtprozesses.
158

Network mechanisms regulating the generation of sharp wave-ripple complexes in the hippocampus

Evangelista, Roberta 04 November 2019 (has links)
Sharp wave-ripple Komplexe (SWRs) sind kurze Ereignisse von kohärenter Netzwerkaktivität im Hippocampus. SWRs spielen eine wichtige Rolle bei der Konsolidierung von expliziten Gedächtnisinhalten, die Mechanismen sind aber bis heute ungeklärt. Pyramidenzellen (PYR) und Parvalbumin-positive Korbzellen (PV+BCs) feuern während SWRs besonders häufig, wohingegen sie außerhalb beinahe inaktiv sind. SWRs treten spontan auf, und können durch Stimulation von PYR und PV+ Zellen hervorgerufen werden. Um die Rolle von PV+ Zellen in SWR Generierung zu klären, untersuche ich wie das Zusammenspiel von exzitatorischen Neuronen (PYR) und zwei Klassen von Interneuronen (PV+BCs und derzeit unbekannte Anti-SWR-Zellen) die Entstehung und die Häufigkeit von SWRs beeinflusst. Erstens entwickle ich ein Netzwerk aus feuernden Neuronen, das spontane Übergänge vom Anti-SWR-Zustand zum SWR-Zustand zeigt. Die Aktivität von PV+BCs, die die Aktivität von PYR disinhibieren, dominiert den SWR-Zustand. SWRs können hervorgerufen werden durch Stimulation von PYR oder PV+BCs, und durch Inaktivierung von Anti-SWR-Zellen. Durch Kurzzeitdepression der synaptischen Verbindung von PV+BCs zu Anti-SWR-Zellen wird die Dauer der SWRs reguliert. Die Koexistenz von Anti-SWR- und SWR-Zuständen bei konstanten Stärken der synaptischen Depression erlaubt die Untersuchung der Bistabilität des Netzwerks. Durch eine Mean-field-Näherung können Voraussetzungen für bistabile Netzwerkaktivität analytisch hergeleitet werden. Das Modell prognostiziert die Existenz von Anti-SWR-Zellen. Im letzten Teil dieser Arbeit zeige ich erste experimentelle Ergebnisse, die die Existenz von CA3-Interneuronen belegen, die anti-moduliert sind bezüglich SWRs. Durch die Untersuchung der Rolle von Interneuronen hinsichtlich der Generierung von SWRs trägt diese Arbeit zu einem tieferen Verständnis der neuronalen Schaltkreise im Hippocampus bei, die essentiell für den Erwerb und die Konsolidierung expliziter Gedächtnisinhalte sind. / Sharp wave-ripple complexes (SWRs) are events of coordinated network activity originating in the hippocampus. SWRs are thought to mediate the consolidation of explicit memories, but the mechanisms underlying their occurrence remain obscure. Pyramidal cells (PYR) and parvalbumin-positive basket cells (PV+BCs) preferentially fire during SWRs and are almost silent outside. SWRs emerge spontaneously or by activating PYR or PV+ cells. To understand how the activation of PV+ interneurons can result in an increase of PYR firing, I explore how the interaction of excitatory neurons (PYR) and two groups of interneurons (PV+BCs and a class of anti-SWR cells) contributes to the initiation, termination, and incidence of SWRs. First, I show that a biophysically constrained network of spiking neurons can exhibit spontaneous transitions from a non-SWR state to a SWR state, in which active PV+BCs disinhibit PYR by suppressing anti-SWR cells. SWR events can be triggered by activating PYR or PV+BCs, or inactivating anti-SWR cells. Short-term synaptic depression at the PV+BCs-to-anti-SWR cells connections regulates the termination of SWR events. The coexistence of states for intermediate values of the depression allows to study the network behavior in terms of bistability. To this end, I consider a mean-field approximation of the spiking network, where conditions for the emergence of a bistable configuration are derived analytically. This allows to unveil the mechanisms regulating the existence of bistable disinhibitory networks. The model predicts the existence of a class of anti-SWR cells. In the last part of this work, I show the first experimental evidence for CA3 interneurons anti-modulated with respect to SWRs, and discuss their involvement in the SWR generation process. Overall, the results of this thesis elucidate the role of interneurons in SWR generation and broaden our understanding of the microcircuits supporting the dynamics of memory-related networks.
159

Strategien zur Datenfusion beim Maschinellen Lernen

Schwalbe, Karsten, Groh, Alexander, Hertwig, Frank, Scheunert, Ulrich 25 November 2019 (has links)
Smarte Prüfsysteme werden ein Schlüsselbaustein zur Qualitätssicherung in der industriellen Fertigung und Produktion sein. Insbesondere trifft dies auf komplexe Prüf- und Bewertungsprozesse zu. In den letzten Jahren haben sich hierfür lernbasierte Verfahren als besonders vielversprechend herauskristallisiert. Ihr Einsatz geht in der Regel mit erheblichen Performanceverbesserungen gegenüber konventionellen, regel- bzw. geometriebasierten Methoden einher. Der Black-Box-Charakter dieser Algorithmen führt jedoch dazu, dass die Interpretationen der berechneten Prognosegüten kritisch zu hinterfragen sind. Das Vertrauen in die Ergebnisse von Algorithmen, die auf maschinellem Lernen basieren, kann erhöht werden, wenn verschiedene, voneinander unabhängige Verfahren zum Einsatz kommen. Hierbei sind Datenfusionsstrategien anzuwenden, um die Resultate der verschiedenen Methoden zu einem Endergebnis zusammenzufassen. Im Konferenzbeitrag werden, aufbauend auf einer kurzen Vorstellung wichtiger Ansätze zur Objektklassifikation, entsprechende Fusionsstrategien präsentiert und an einem Fallbeispiel evaluiert. Im Anschluss wird auf Basis der Ergebnisse das Potential der Datenfusion in Bezug auf das Maschinelle Lernen erörtert.
160

Modellierung modularer Materialfluss-Systeme mit Hilfe von künstlichen neuronalen Netzen

Markwardt, Ulf 29 September 2004 (has links)
Materialfluss-Systeme für den Stückgut-Transport auf der Basis von Stetigförderern sind meist modular aufgebaut. Das Verhalten gleichartiger Materialfluss-Elemente unterscheidet sich durch technische Parameter (z.B. geometrische Größen) und durch unterschiedliche logistische Belastungen der Elemente im System. Durch die in der Arbeit getroffenen Modellannahmen werden für die Elemente nur lokale Steuerungsregeln zugelassen und für das System Blockierfreiheit vorausgesetzt. Das Verhalten eines Materialfluss-Elements hängt dann nicht mehr von Zuständen anderer Elemente des Systems ab sondern nur noch von den stochastischen Prozessen des Eintreffens von Transporteinheiten. Die Auslastung eines Elements, die Quantile der Warteschlangenlängen an seinen Eingängen und die Variationskoeffizienten seiner Abgangsströme sind statistische Kenngrößen. Sie hängen im Wesentlichen nur von der Klasse des Elements, seinen technischen Parametern, den Parametern der Eingangsströme und der lokalen Transportmatrix ab. Diese funktionellen Abhängigkeiten sind im Allgemeinen nicht analytisch handhabbar. Da diese Funktionen stetig differenzierbar und beschränkt sind und von relativ viele Eingansgrößen anhängen, sind neuronale Netze gut geeignet für numerische Näherungen. Mit Hilfe von einfachen neuronalen Netzen können die statistischen Kenngrößen numerisch approximiert werden. Aus einzelnen Teilmodellen kann ein hybrides Modell des gesamten Systems zusammengesetzt werden. Anhand von einigen Beispielen wird die Güte der Modellierung bewertet. / Material flow systems are normally built with a modular structure. The behavoir of similar elements only differs by technical parameters (e.g. geometriy), and by different logistic loads of the elements in the system. In this paper, a new model is being developed for a non-blocking system with non-global control rules. The behavior of a flow of a material flow element is assumed not to depend on the conditions of other elements of the system, but only on stochastic processes of the arrival of transportation units. The rate of utilization of an element, the quantiles of the queue lengths at its inputs, and the dispersion of its output stream are statistic characteristics. They depend only on the type of the element, its technical parameters, the parameters of the input streams, and the local transportation matrix. These functional dependencies are not analytically manageable. But due to their properties, neural nets are well suited for numeric approximations of these statistic functions. The single models can be used to compose a hybrid model of the whole system. A few examples show the quality of the new modeling technique.

Page generated in 0.0692 seconds