• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • 3
  • Tagged with
  • 33
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neurociencias y teoría neuronal

Aguilar Mendoza, Luis Ángel 23 June 2008 (has links)
Diapositivas elaboradas por el profesor Luis Ángel Aguilar Mendoza, como parte de la unidad IV del curso Organización y Función 1, semestre académico 2008 1
2

Papel del miR-124a en la adquisición y establecimiento del fenotipo neuronal en Mus musculus

Fuentealba Escobar, Yerko January 2011 (has links)
Memoria para optar el título de Bioquímico / Las neuronas de la corteza cerebral se generan a partir de los progenitores ubicados en la pared dorsal de las vesículas telencefálicas. Este proceso implica la salida del ciclo proliferativo de los progenitores, un cambio en el patrón de expresión génica y la migración radial desde los centros neurogénicos (zona ventrícular-subventricular), hacia la posición final de las neuronas en la placa cortical. Se han definido muchos factores transcripcionales que son responsables de mantener la pluripotencialidad de los progenitores, y otros que comienzan a expresarse cuando la célula adquiere el destino neural. Se ha visto que además de los reguladores de la transcripción hay otros mecanismos importantes que controlan el desarrollo cortical y que recientemente se están estudiando. Entre ellos se encuentra el posible papel de los microRNAs en el desarrollo cortical. Los microRNA (miRNA o miR-s) son pequeñas hebras simples de RNA (21-23 nucleótidos) que regulan post-transcripcionalmente la expresión de ciertos RNA mensajeros por complementariedad de bases. Se ha demostrado que un mismo miRNA es capaz de controlar a cientos de mRNA en un contexto altamente definido temporal y espacialmente. El miR-124a es el más abundante en tejido neural de roedores y que su expresión comienza en E12.5, es decir, junto con el comienzo de la neurogénesis en la corteza. Se han descrito varios mRNAs que son controlados por el miR-124a tanto en progenitores como en neuronas, pero su papel en la neurogénesis aún no se ha caracterizado. La presente memoria explora el papel del miR-124a en el desarrollo de la morfología y en la generación de neuronas piramidales corticales. Se realizaron experimentos de pérdida y ganancia de función tanto en neuronas corticales in vitro, como en la corteza en desarrollo mediante electroporación in utero. La pérdida de función del miR-124a generó una rápida disminución de las dendritas primarias, que se recuperó a los 5 días in vitro (DIV). La sobre-expresión del miR-124a generó un aumento rápido (a los 3 DIV) del largo de las dendritas y de la complejidad del árbol dendrítico, pero este efecto se perdió a los 5 DIV. A la inversa, el largo axonal aumentó cuando se elevaron los niveles del miR-124a, a los 5 DIV pero no a tiempos más cortos. La manipulación de los niveles del miR-124a en la corteza en desarrollo, en tanto, no mostró alteración de la dinámica de migración radial en la corteza, ni de la proporción de progenitores basales, ni de la morfología de las neuronas que alcanzan la placa cortical. Este trabajo indica que el miR-124a contribuye a la elongación de dendritas y axones de neuronas en cultivo, mientras que en la corteza in vivo, el miR-124a parece ser una consecuencia propia del sistema y la variación de sus niveles no afecta ninguno de los procesos que determinan la generación de la corteza cerebral
3

Control de la apoptosis en neuronas fotorreceptoras obtenidas a partir de células madre

Dibo, Marcos Javier 28 April 2020 (has links)
Dentro de la estructura del ojo de los vertebrados, la retina es tal vez el tejido que más capta la atención de los científicos por ser el primer actor en la recepción y transmisión del estímulo visual. La retina si bien forma parte de un sentido periférico, posee gran cantidad de homologías con el Sistema Nervioso Central. Esto provoca que los eventos y patologías asociadas a la retina puedan, hasta cierto punto, relacionarse con las enfermedades neurodegenerativas del cerebro más difíciles de estudiar como son el mal de Parkinson y la enfermedad de Alzheimer. En el caso particular de la retina, existen dos enfermedades aún hoy incurables como son la Retinitis Pigmentosa (RP) y la Degeneración Macular asociada a la Edad (AMD, por sus siglas en ingles). La muerte de las neuronas fotorreceptoras cumple un rol fundamental en el desarrollo de estas enfermedades, que se basan en la pérdida gradual y prácticamente irreversible de la visión. En la retina, las células gliales de Müller proveen el sostén necesario para la estructura de la misma. Se ha reportado que estas células expresan marcadores de células madre por lo cual están involucradas en la regeneración de la retina ante un eventual daño. Existen ya terapias destinadas a estimular el desarrollo de dichas células madre. Sin embargo, aún es necesario un mayor avance en la búsqueda de tratamientos destinados al mantenimiento y posterior diferenciación de las células regeneradas, evitando el proceso de muerte al que están expuestas. En otras palabras, evitar que las neuronas fotorreceptoras sean sometidas al proceso de suicidio celular conocido en líneas generales como Apoptosis. Dentro del enorme abanico de causas que pueden generar apoptosis en una neurona, la falta de factores tróficos o de crecimiento es una de ellas. Este trabajo de tesis buscó revertir la muerte provocada por la falta de factores tróficos en un modelo de cultivo neuronal puro compuesto en su mayor proporción por neuronas fotorreceptoras. En la primera parte nos enfocamos en estudiar el rol de la Melatonina como agente neuroprotector. Los resultados apuntan a que la Melatonina resulta eficaz para disminuir el avance de la apoptosis a días avanzados en el desarrollo. Pudimos demostrar que el efecto que la Melatonina ejerce específicamente en neuronas fotorreceptoras, está dado por la activación de la vía de señalización de ERK/MAPK. Respecto a la capacidad de la Melatonina de mantener la población de neuronas fotorreceptoras, no se vio un aumento en la expresión de proteínas del ciclo visual. Por el contrario, se observó un aumento de la expresión génica del factor de transcripción CRX (Cone Rod Homeobox) que ayudaría a mantener el fenotipo de neuronas fotorreceptoras a aquellas que hayan iniciado el proceso de diferenciación. Estos resultados sugieren que la Melatonina, podría ejercer su acción protectora directamente en las neuronas fotorreceptoras, e indirectamente, a través del estímulo de la población de neuronas que acompaña a los fotorreceptores en el ciclo visual, como ser las células amacrinas. La segunda parte de este trabajo se enfocó en la caracterización de la vía de muerte por falta de factores tróficos. En ese sentido, la vía de NO-GAPDH-SIAH consiste en la translocación a núcleo de la enzima GAPDH y el posterior desencadenamiento de la muerte celular. Comprobamos que efectivamente en nuestro modelo se verifica la translocación nuclear; y que al pre-tratar los cultivos con un inhibidor selectivo de dicha translocación se recupera significativamente la perdida de la viabilidad en los cultivos neuronales. Los resultados de esta tesis por un lado enriquecen el conocimiento sobre el rol de la Melatonina como agente neuroprotector en la retina. Por otro lado contribuyen a esclarecer los mecanismos de muerte en las células de la retina ante la falta de factores tróficos para poder, en un futuro, unificar su tratamiento. / The retina is probably the most interesting tissue within the structure of vertebrate eye, given its role as the first one in charge of receiving and transmitting the visual stimuli. Even though the retina is part of a peripheral sensory system, it shares many homologies with the Central Nervous System. This allows correlating to some extent the pathologic events associated with the retina with neurodegenerative illness more difficult to study such as Alzheimer’s and Parkinson’s disease. There are two main disorders of the retina named Retinitis Pigmentosa and Age-related Macular Degeneration. Those two pathologies share a common trait which is the death of photoreceptor cells as the main cause of gradual and irreversible loss of vision. In the retina, Müller glial cells are in charge among other functions, to support and maintain the structure of the retina. It has been reported for this cells the expression of stem cell markers and the involvement on retina regeneration after damage. Even though there are treatments nowadays that aim to stimulate Müller glia development of their stem potential, treatments aiming to the maintenance and ulterior differentiation of newly regenerated cells are just as important. The general idea is to prevent newly generated photoreceptor cells to undergo cell suicide, also known as Apoptosis. Within the large range of causes that can trigger apoptosis on a neuron, the lack of growth factors is one of them. In this thesis we aim to revert photoreceptor cell death induced by lack of growth factors, on a model of pure neuronal cultures. On the first chapter we focused on assessing the role of Melatonin as a neurotrophic factor. Results showed that Melatonin is effective on slowing down the apoptotic pathway after 4 days of development. We proved the involvement of Melatonin on the activation of the ERK/MAPK pathway directly on photoreceptor cells. Regarding Melatonin as a factor promoting neuronal differentiation, we could not observe an overexpression of visual cycle proteins. On the other hand, we observed the genetic overexpression of a transcription factor (Cone Rod Homeobox) which will help maintain the phenotype of those neurons that started developing as photoreceptors. Our results suggest that Melatonin could accomplish neuroprotection by either acting directly on photoreceptor cells, or indirectly through engaging the neurons that aid said cells on the visual cycle. The second part of this thesis focuses on the characterization on the cell death pathway caused by lack of trophic factors. On that matter, the NO-GAPDH-SIAH pathway consist in nuclear translocation of the glycolytic enzyme GAPDH followed by onset of neuronal death. We found that nuclear translocation of GAPDH occurs in our model, and that by pre-treating cultures with R-(-)-Deprenyl (a selective inhibitor for such translocation), we recovered neuronal cultures from loss of cell viability. The results shown on this thesis on one hand contribute to deepen the knowledge of Melatonin as a neuroprotective agent in the retina. On the other hand they shed light into the mechanisms involving neuronal death on lack of trophic factors so we may, in the future, unify their treatment.
4

Estudio de la vía de señalización asociada a la retracción/inhibición de crecimiento neurítico, mediada por las interacciones [alfa]v[beta]3/Thy-1 en cultivos neuronales

Maldonado Lorca, Horacio Javier January 2015 (has links)
Doctor en Bioquímica / Autor no autoriza el acceso a texto completo de su documento hasta diciembre de 2016 / Previamente describimos que la interacción entre Thy- 1 neuronal y la integrina αvβ3 presente en astrocitos aumenta la fosforilación inhibitoria de Src, provoca retracción de neuritas e inhibe el crecimiento de éstas. Sin embargo, Thy- 1 es una proteína anclada a la membrana vía un glicoplípido (GPI) y carece de dominios transmembrana e intracelular, y por lo tanto no puede transducir señales al interior de la célula. Aquí, evaluamos si la proteína que une a Csk (CBP), una proteína de andamiaje para las quinasas de la familia de Src, actúa como un transductor de Thy-1 y estudiamos los acontecimientos de señalización río abajo que causan la retracción de las neuritas desencadenada por la interacción de Thy-1 con Integrina αvβ3 . Para estudiar estas vías de señalización, se utilizaron dos modelos celulares diferentes. El primero de ellos fue células CAD; estas células se pueden diferenciar a un fenotipo neuronal por privación de suero. Luego estimulamos las células con la proteína fusión de Integrina αvβ3-Fc para estudiar su efecto. El segundo fue neuronas corticales de rata de 14 días en cultivo. Después de este período, también estimulamos añadiendo Integrina αvβ3. En ambos modelos se analizó el efecto de Integrina en la composición del complejo de membrana conformado por Thy-1, CBP y Src. Realizamos ensayos de inmunoprecipitación, microscopía STED, análisis de inmunofluorescencia entre otros. La participación de CBP, Src y RhoA también se evaluaron con herramientas de biología molecular y además se analizó el estado de fosforilación de sus efectores. Encontramos que Thy 1, CBP y Src forman un complejo funcional en los procesos neuronales que induce la inactivación de Src. Además, la adición de Integrina αvβ3 aumentó la activación de RhoA y su efector ROCK, eventos que causan la retracción de las neuritas a través de la disrupción del citoesqueleto de actina. Por otro lado, la utilización de una construcción de Src constitutivamente activa o el silenciamiento de CBP bloqueó la retracción neuronal causado por la interacción con Integrina αvβ3. Aquí, se propone un mecanismo molecular novedoso gatillado por la unión de Integrina αvβ3 astrocitaria a Thy-1 que involucra el agrupamiento de Thy-1 y la formación de un complejo de membrana el que a través de la activación de RhoA/ROCK lleva a la retracción de las neuritas. Una mejor comprensión de las vías de señalización implicadas en la comunicación celular entre las neuronas y astrocitos, que generan un ambiente no permisivo para la regeneración neuronal, debería ser útil en el desarrollo de nuevas terapias farmacológicas para ayudar a re-establecer redes neuronales dañadas / We have previously described that the interaction between neuronal Thy-1 and αvβ3-Integrin in astrocytes increases the inactivating phosphorylation of Src, causes neurite retraction and inhibits neurite outgrowth. Thy-1 is a GPI-anchored membrane protein, which lacks membrane-spanning and cytosolic domains and therefore cannot directly transduce signals to the cell interior. Thus, we evaluated whether Csk-Binding-Protein (CBP), a scaffolding protein for Src-family kinases, acts as a Thy-1 transducer and studied the downstream signaling events that cause neurite retraction triggered by Thy-1 interaction with αvβ3 Integrin. To study these signaling pathways, we used two different cellular models. The first one was CAD cells which can be differentiated to a neuronal phenotype by serum deprivation. Afterwars we added a fusion protein αvβ3 Integrin-Fc. The second one was rat cortical neurons of 14 days in culture. Following this period, these cells were also stimulated the cells by adding the αvβ3 Integrin. In both models we analyzed the effects of the Integrin the composition of the Thy-1, CBP and Src membrane complex. We performed immunoprecipitation assays, STED microscopy and immunofluorescence analysis among other assays. CBP, Src and RhoA participation was also evaluated using molecular biology approaches and by analyzing the phosphorylation state of downstream effectors. We found that Thy-1, CBP and Src form a functional complex in neuronal processes that induces Src inactivation. Furthermore, treatment with αvβ3-Integrin increased the activation of RhoA and its effector ROCK, both of which induce neurite retraction through the Actin cytoskeleton disruption. On the other hand, constitutively active Src or CBP abrogation prevented neuronal retraction caused by αvβ3 Integrin engagement. Here, we propose a novel molecular mechanism triggered by the binding of astrocytic αvβ3 Integrin to Thy-1 that involves Thy-1 clustering and the formation of a membrane complex with that through RhoA/ROCK activation leads to neurite retraction. A better understanding of the signaling pathways involved in cellular communication between neurons and astrocytes that generate a non-permissive environment for neuronal regeneration should be helpful to develop new therapies to help re-establishing damaged neuronal networks / Fondecyt Fondap Iniciativa Científica Milenio ACT1111
5

Expresión de marcadores moleculares de identidad neuroquímica en neuronas del núcleo parabigémino del Octodon degus.

Carrasco Hinojosa, Denisse 04 1900 (has links)
Tesis entregada a la Universidad de Chile en cumplimiento parcial de los requisitos para optar al grado de Magíster en Ciencias Biológicas con mención Biología Molecular, Celular y Neurociencias. / El fenómeno de la atención espacial, prioriza el procesamiento neuronal de las aferencias sensoriales provenientes de lugares específicos en el espacio donde se focaliza la atención. Dentro del sistema visual se ha evidenciado la participación de circuitos mesencefálicos en el control de la selección de estímulos y la atención espacial. En los vertebrados, esta red neural está compuesta por los núcleos del istmo (NI), que se caracterizan por presentan conexiones recíprocas y topográficas con el tectum óptico (TeO), o colículo superior (SC) en mamíferos. Los NI han sido ampliamente estudiados, por proveer de retroalimentación visual al TeO/SC, modulando la transmisión de las señales visuales retinianas hacia centros superiores. Dentro de este circuito, se destacan poblaciones neuronales de naturaleza colinérgica y GABAérgica. En aves, las neuronas istmales colinérgicas forman los núcleos isthmi pars parvocellularis (Ipc) y núcleo isthmi pars semilunaris (Slu) y la población de neuronas GABAérgicas conforman el núcleo istmi pars magnocellularis (Imc). Además, se ha demostrado la presencia de VGluT2 en Ipc, sugiriendo que la retroalimentación de los núcleos Ipc y Slu sobre el TeO involucra acetilcolina y glutamato, proponiendo la posibilidad de doble liberación de glutamato y acetilcolina por las neuronas de Ipc. En mamíferos, se ha sugerido al núcleo parabigémino (Pbg) como homólogo al Ipc y Slu, y al área periparabigeminal del núcleo tegmental lateral (pLTN) como homólogo al Imc de las aves, los cuales comparten respectivamente un fenotipo colinérgico y GABAérgico. Estudios previos realizados en nuestro laboratorio en un roedor diurno, el Octodon degus (Degus), han dilucidado la citoarquitectura del Pbg y la organización de sus proyecciones recíprocas con el SC, evidenciando dos subdivisiones que proyectan a diferentes regiones del SC, definiendo una de ellas un área de interacción binocular en la parte medial del SC que representa el campo visual aéreo. En el presente trabajo, con la finalidad de precisar el rol específico de las neuronas de ambas subdivisiones del Pbg y del área periparabigeminal del núcleo tegmental lateral (pLTN), hemos decidido investigar por primera vez la identidad neuroquímica de la región del istmo del Octodon degus. De esta forma, mediante técnicas de Hibridación in situ (ISH), analizamos en la región del istmo la expresión de mRNA de ChAT y de los transportadores vesiculares VAChT, VGluT1, VGluT2 y VIAAT en el Pbg y el pLTN. También estudiamos la co-expresión de la proteína de ChAT y de VGluT2 mRNA en las neuronas del Pbg, utilizando doble marca de Inmunohistoquímica fluorescente (IF) e Hibridación in situ fluorescente (FISH). Los resultados de las ISH mostraron, por un lado, que las neuronas de ambas subdivisiones del Pbg expresan los marcadores colinérgicos ChAT y VAChT mRNA y el marcador glutamatérgico VGluT2 mRNA, lo cual confirma el fenotipo colinérgico del Pbg y propone un segundo fenotipo glutamatérgico en sus neuronas. Por otro lado, se evidenció que el pLTN expresa el marcador GABAérgico VIAAT mRNA, apoyando el fenotipo GABAérgico de las células del pLTN. Los resultados de doble marca de FISH e IF mostraron además que todas las neuronas del Pbg co-expresan VGluT2 mRNA y la proteína de ChAT, sugiriendo la capacidad de doble liberación en vesículas de acetilcolina y glutamato. Esta posible identidad neuroquímica del Pbg y el pLTN, vinculada con la hodología de sus proyecciones, sugiere que ambos núcleos a través de interacciones excitatorias e inhibitorias podrían ejercer efectos de modulación sobre las células del SC, de manera análoga a lo observado en los núcleos Ipc, Slu y Imc en las aves. La posible doble liberación de glutamato y acetilcolina por el Pbg propone un significativo rol modulatorio sobre los circuitos del SC, presumiblemente asociado al fenómeno de la atención espacial como se ha sugerido para el sistema NI/TeO de otros vertebrados, y quizá también a conductas de escape provocadas por estímulos aéreos.
6

Neurotransmisores y neuropéptidos

Aguilar Mendoza, Luis Ángel 30 June 2008 (has links)
Diapositivas de la clase dictada por el profesor Luis Aguilar para el curso de Organización y Función del Cuerpo Humano 1 - Unidad Control y Regulación Interna, semestre 2008 1
7

Rol del ácido retinoico en el desarrollo de neuronas de retina

De Genaro, Pablo 15 March 2013 (has links)
La retina de los vertebrados está compuesta por cinco tipos de neuronas: fotorreceptores (FRs, conos y bastones), bipolares, ganglionares, horizontales y amacrinas, y células no neurales entre las que se destacan las células gliales de Müller. Durante el desarrollo, estas neuronas se originan a partir de células progenitoras que pasan a través de una serie de estados de competencia determinados por factores genéticos, celulares y moleculares, lo que permite la aparición ordenada y secuencial de los distintos tipos celulares (Livesey y Cepko, 2001b). Entre las diversas moléculas y factores tróficos que influencian el desarrollo de los bastones se encuentran el Ácido Retinoico (AR) y el Ácido Docosahexaenoico (ADH). El AR ejerce una amplia variedad de efectos durante el desarrollo de los vertebrados y la diferenciación celular. Juega un rol crucial en la determinación del patrón antero-posterior del cuerpo, en la espermatogénesis, y en la formación y crecimiento de los miembros y de la piel. Además, es crítico para el desarrollo temprano del ojo y diferenciación de los FRs (Stenkamp y col., 1993; Prabhudesai y col., 2005; Hyatt y col., 1996; Khanna y col., 2006). El AR ejerce sus efectos en las células uniéndose y activando a receptores nucleares que funcionan como factores de transcripción y regulan así la transcripción génica. Por otro lado, en nuestro laboratorio se ha establecido que el ADH promueve la supervivencia y diferenciación de los FRs de retina de rata en cultivo, y que sus efectos anti-apoptóticos ocurren a través de la estimulación de la vía de la ERK/MAPK y de la modulación de la expresión de proteínas anti y pro-apoptóticas.El objetivo general de este trabajo fue estudiar los efectos del AR en el desarrollo de neuronas amacrinas y FRs de retina in vitro. Para ello utilizamos cultivos neuronales de retinas de rata postnatal desarrollados en medio químicamente definido, los cuales fueron suplementados con AR y/o ADH. Dado que el AR es un factor de diferenciación celular nuestra hipótesis fue que, al igual que otros factores tróficos, esta molécula promovería además la supervivencia de los FRs. Sin embargo, cuando el AR se agregó al día 0 se incrementó el porcentaje de FRs apoptóticos, lo cual se correspondió con una pérdida de funcionalidad mitocondrial. Esta apoptosis pudo ser bloqueada completamente por el tratamiento con un pan-inhibidor de caspasas previo a la suplementación con AR. Estos resultados sugieren que el AR induciría la muerte de los FRs a través de un mecanismo apoptótico que involucra la pérdida de la actividad mitocondrial y activación de caspasas. Como el AR está ubicuamente presente en la retina y es esencial para su desarrollo, la preservación de FRs viables requeriría que su efecto pro-apoptótico fuera contrarrestado por la presencia simultánea de moléculas de supervivencia, como el ADH. Para poner a prueba esta hipótesis agregamos ADH a los cultivos previo al tratamiento con AR. Este agregado previno la muerte de los FRs inducida por el AR, respaldando la hipótesis de que durante el desarrollo se requeriría la presencia de otros factores de supervivencia para prevenir esta muerte. Notablemente, la inducción de apoptosis por AR afectó selectivamente a los FRs, resultando inalteradas las neuronas amacrinas.Dado que el AR es reconocido por sus efectos promotores de la diferenciación, su efecto inductor de la muerte de los FRs fue un hallazgo inesperado. Esta observación hizo necesario verificar si, en las condiciones experimentales ensayadas, el AR favorecía o no la diferenciación. Comprobamos que el AR promovió marcadamente la diferenciación, en paralelo al aumento en el porcentaje de células apoptóticas. Determinamos, por inmunocitoquímica y Western Blot, que el AR incrementó la cantidad de FRs que expresaron opsina y periferina, proteínas características de FRs maduros, y que desarrollaron procesos apicales, rudimentos de los segmentos externos propios de estas neuronas maduras. Además, el AR aumentó el número de FRs que desarrollaron neuritas y la extensión alcanzada por las mismas.Cabe destacar que a diferencia de los otros parámetros analizados, la estimulación del desarrollo de neuritas no fue selectiva para los FRs: el tratamiento con AR indujo el crecimiento de neuritas también en las neuronas amacrinas. Dado que el AR y el ADH tienen efectos similares sobre la diferenciación, y que se unen a receptores que forman heterodímeros (RAR y RXR respectivamente), decidimos estudiar sus posibles efectos aditivos o sinérgicos. El tratamiento simultáneo con ambos factores aumentó la expresión de opsina y periferina a valores semejan la suma de los dos por separado. Estos resultados implican que el AR y ADH contribuyen a la diferenciación de los FRs en forma aditiva, y sugieren que estimularían vías independientes para promover sus efectos. El hecho de que el AR indujera mayor expresión de proteínas y formación de estructuras de neuronas maduras, nos llevó a proponer que la funcionalidad de los FRs también podría estar estimulada. Sin embargo, observamos que el AR no estimuló la hidrólisis del GMPc, característica indicativa de una cascada de fototransducción activa y por consiguiente de capacidad de respuesta a la luz, ni la capacidad de incorporar neurotransmisores (como glutamato en los FRs y GABA en las neuronas amacrinas) del medio extracelular. Estos resultados indican que, aunque el AR promueve la diferenciación de los FRs y neuronas amacrinas, por sí solo no logra la maduración funcional de estas neuronas en cultivo, sugiriendo que se requeriría la presencia de otros factores. La observación de que el AR inducía simultáneamente la diferenciación y simultáneamente la apoptosis nos hizo suponer que podría tener efectos distintos sobre distintas sub-poblaciones de FRs o sobre sub-poblaciones celulares en distintos estadios de maduración. Para corroborar esta hipótesis, se suplementaron los cultivos con AR al día 0, cuando la proliferación aún era activa, y al día 2, momento en el cual ya no había progenitores en proliferación. Notablemente, al tratar los cultivos al día 2, el AR estimuló la diferenciación de los FRs, aunque ya no se observó un aumento en la apoptosis. Estos resultados indican que el AR actuaría en forma diferencial según el estadio de desarrollo de los FRs, induciendo la apoptosis en una sub-población de aquellos que aun son progenitores indiferenciados y acelerando la diferenciación en los que ya han abandonado el ciclo celular. Diversos trabajos han demostrado que el AR influye en la proliferación y la adquisición de un fenotipo particular en progenitores de retina embrionarios. Esto sugirió que el incremento en el número de células diferenciadas inducido por el AR podría ser resultado de un mayor número total de FRs debido a que el AR podría estar modificando la proliferación o redirigiendo el destino celular. Sin embargo, al analizar distintos parámetros relacionados con estos eventos, como la incorporación de BrdU, la expresión de p27, nestina, Crx y HPC-1 (marcadores de FRs y neuronas amacrinas, respectivamente), observamos que el AR no indujo una salida temprana del ciclo ni modificó la determinación de la identidad celular. Esto implica que al menos en las condiciones experimentales descritas, y en ese momento del desarrollo postnatal temprano, el AR no altera la salida del ciclo ni regula la identidad celular de estas neuronas in vitro. Para comprender mejor los mecanismos de acción del AR sobre los FRs, estudiamos la modulación de las vías de señalización intracelular implicadas en sus efectos. Se ha involucrado al AR en la activación de la quinasa p38, relacionada con la regulación de la apoptosis en varios tipos celulares. Cuando investigamos si el AR activaba la vía de p38 en los FRs, el análisis por Western Blot e inmunocitoquímica demostró que el AR promovió rápidamente la activación de esta vía de señalización, y que el bloqueo de dicha activación con un inhibidor específico de p38 evitó la apoptosis de los FRs. Paralelamente, la inhibición de esta vía redujo significativamente, aunque no por completo, la diferenciación de los FRs. Esto sugiere que la vía de señalización de p38 sería la preferencialmente activada por el AR para activar la apoptosis de los FRs y al menos una de las involucradas en inducir su diferenciación. Trabajos previos han mostrado que en la estimulación de la supervivencia de los FRs promovida por ADH interviene la activación de ERK/MAPK. Por ello, sería posible que el efecto deletéreo del AR implicara una modulación de esta vía. Sin embargo, no observamos cambios en la activación de dicha vía, indicando que no estaría afectada en el proceso de muerte inducido por AR. Por otro lado, teniendo en cuenta que la actividad de p38/MAPK podría ser regulada por interacción con la vía de PI3K/Akt, determinamos si el AR era capaz de modular esta vía en los FRs. El tratamiento con AR redujo la cantidad de P-Akt, respaldando la hipótesis de que el efecto estimulatorio del AR sobre la vía de p38 involucraría también una inhibición de la actividad de PI3K/Akt. En conjunto, estos resultados muestran que el AR es requerido para promover la diferenciación de los FRs y que este proceso de diferenciación no está necesariamente ligado a la supervivencia de estas neuronas. Su presencia prematura podría inducir la muerte de los progenitores al inducirlos a diferenciarse cuando aun están demasiado inmaduros, lo que resalta la importancia de la presencia simultánea de factores tróficos para prevenir dicha muerte. En conclusión, este trabajo remarca la importancia de una adecuada sincronización entre los niveles de diferentes señales moleculares esenciales para el desarrollo de los FRs. El AR podría así ser una de las moléculas cruciales que contribuyen a definir el número final de FRs en la retina. Las principales conclusiones de esta tesis son: a) El AR induce la muerte por apoptosis en los progenitores de FRs mientras se encuentran en el ciclo celular, por una vía que involucra la pérdida de funcionalidad mitocondrial y la activación de caspasas. b) El AR induce la diferenciación de los FRs, estimulando la expresión de opsina, periferina y el crecimiento de neuritas. c) El AR promueve el crecimiento de las neuritas en las neuronas amacrinas. d) La inducción de apoptosis por parte del AR es selectiva para los FRs. e) El AR no altera la proliferación ni modifica el destino de los progenitores. f) La inducción de de la diferenciación es independiente de que las células estén activas o no en el ciclo celular. g) Los procesos de apoptosis y diferenciación en los FRs inducidos por el AR dependen de la activación de la vía de p38/MAPK, que a su vez interacciona con la vía de PI3K/Akt. h) Un factor trófico lipídico, el ADH, protege a los FRs de la muerte inducida por AR. / The vertebrate retina has five neuronal types: photoreceptors (PHRs, rods and cones), bipolar, ganglion, horizontal and amacrine neurons, and non neuronal cells including the Müller glial cells. During development, these neurons are originated from progenitor cells that undergo a series of competence states, determined by genetic, cellular and environmental factors, thus allowing the sequential and organized appearance of the different cell types (Livesey y Cepko, 2001b). Retinoic Acid (RA) and Docosahexaenoic Acid (DHA) are among the different molecules and trophic factors that influence the development of rod PHRs. RA exerts a wide variety of effects during vertebrate development and cell differentiation. It plays a major role in the determination of the antero-posterior body axis, spermatogenesis, the formation and growth of body limbs and skin. Moreover, it is critical for the early development of the eye and PHR differentiation (Stenkamp y col., 1993; Prabhudesai y col., 2005; Hyatt y col., 1996; Khanna y col., 2006). RA binds to and activates nuclear receptors that function as transcription factors, thus regulating gene transcription. On the other hand, in our lab we have established that DHA promotes the survival and differentiation of rat PHRs in culture, and that these anti-apoptotic effects require the activation of the ERK/MAPK signaling pathway and the modulation of anti- and pro-apoptotic protein the expression. The general purpose of this work was to study the effects of RA on the development of amacrine neurons and PHRs in vitro. To that end, we used cultures obtained from postnatal rat retinas, developed in chemically defined media, which were supplemented with RA and/or DHA. Given that RA is a cell differentiation factor; our hypothesis was that, like other trophic factors, this molecule would also promote PHR survival. However, when RA was added at day 0, the percentage of apoptotic PHRs increased, in parallel with a loss of mitochondrial functionality. This apoptosis was completely blocked by incubating the cultures with a caspase inhibitor before RA addition. These results suggest that RA would induce PHR death through an apoptotic mechanism involving a loss of mitochondrial activity and caspase activation. Since RA is ubiquitously present in the retina and it is essential for development, the preservation of viable PHRs would require its pro-apoptotic effects to be counteracted by the simultaneous presence of survival molecules, such as DHA. To test this hypothesis, we added DHA to the cultures prior RA treatment; this addition prevented RA-induced PHR death, supporting the hypothesis of the necessity of other survival factors to prevent death during development. Noteworthy, RA-induced apoptosis was selective for PHRs, since amacrine neurons were not affected. Since RA is well known for its differentiation-promoting effects, the fact that it induced apoptosis was rather unexpected. This observation led us to test whether, under these experimental conditions, RA would promote or not PHR differentiation. RA indeed promoted differentiation, in parallel with an increase in the percentage of apoptotic PHRs. We determined, by immunocytochemistry and Western Blot, that RA increased the amount of PHRs that expressed opsin and peripherin, characteristic proteins of mature PHRs and of PHRs that developed apical processes, structures that resemble the initial steps of outer segment formation. Moreover, RA increased the percentage of PHRs that developed neurites and promoted neurite outgrowth. It is worth to note that, unlike other evaluated features, the stimulation of neurite outgrowth was not exclusive for PHRs; RA treatment also induced also neurite outgrowth in amacrine cells. Since RA and DHA have similar effects on differentiation, and they bind to receptors that form heterodimers (RAR y RXR respectively), we evaluated their possible additive or synergistic effects. The simultaneous treatment with both factors increased opsin and peripherin expression up to a value that resembled the sum of both metabolites alone. These results imply that RA and DHA contribute to PH differentiation in an additive fashion, and suggest that they stimulate independent pathways to that end. The fact that RA induced the expression of proteins and formation of structures of mature neurons, led us to propose that the functionality of these cells could also be stimulated. However, RA neither stimulated cGMP hydrolysis, a characteristic that would indicate an active phototransduction cascade and the ability to respond to light, nor the capacity to take up neurotransmitters (like glutamate in PHRs and GABA in amacrine neurons) from the extracellular medium. These results indicate that, although RA promotes PHR and amacrine cell differentiation, it is not enough of a stimulus to achieve functional maturity of these cells, suggesting that this functionality requires the presence of other factors. The finding that RA simultaneously induced differentiation and apoptosis led us to propose that it might have distinct effects on different PHR sub-populations or on populations at different developmental stages. To test this hypothesis, cultures were supplemented with RA at day 0, when proliferation is still active, and at day 2, when there are no longer proliferating progenitors. Noteworthy, when added at day 2, RA stimulated PHR differentiation, although no increase in apoptosis was evident. These results indicate that RA would act differentially depending on PHRs developmental stages, inducing apoptosis in a sub-population of undifferentiated progenitors and accelerating the differentiation in those which have already abandoned the cell cycle. Several studies have shown that RA influences proliferation and in the acquisition of a particular phenotype in embryonic retina progenitors. For that reason, the increase in the number of differentiated cells induced by RA could be due to a higher total number of PHRs, since RA might be redirecting cell fate or modifying proliferation. However, when we analyzed a number of parameters related to these events, such as BrdU incorporation and the expression of p27, nestin, CRX and HPC-1 (markers of PHRs and amacrine cells, respectively), we found RA neither induced cell cycle exit nor modified cell fate. This implies that, at least under the described experimental conditions, and at this particular time of development, RA would not alter the cell cycle exit or regulate cell identity. To better understand the mechanisms by which RA exerted its effects on PHRs, we studied the modulation of signaling pathways. RA has been involved in the activation of p38/MAPK, which related to the regulation of apoptosis in several cell types. When we evaluated whether RA activated the p38 pathway in PHRs, Western Blot and immunocytochemical analyses showed that it induced a rapid activation of this pathway, and the blockade of such activation with a specific inhibitor prevented PHR apoptosis. Moreover, the inhibition of this pathway led to a significant, though not complete, reduction of PHR differentiation. This suggests that the p38/MAPK would be the preferred signaling pathway activated by RA to induce apoptosis in PHRs, and at least one of the involved in the induction of their differentiation. Previous work has shown that DHA-stimulated survival in PHRs requires the activation of the ERK/MAPK pathway. Hence, the deleterious effect of RA might involve the modulation of this pathway. However, we found no changes in the activation of this pathway, indicating that it would not be related to RA-induced PHR death. On the other hand, given that p38/MAPK activity has been shown to be regulated by interaction with the PI3K/Akt pathway, we determined whether RA was capable of modulating this pathway in PHRs. Treatment with RA reduced the amount of P-Akt, supporting the hypothesis that the stimulatory effect of RA on the p38 pathway would involve the inhibition of PI3K/Akt activity. As a whole, these results show that RA is required for the induction of PHR differentiation, and that this process is not necessarily linked to the survival of these neurons. The premature presence of RA could elicit progenitor death as it might induce them to differentiate at a stage when they are still too immature, highlighting the need of the simultaneous presence of trophic factors to prevent this death. In summary, this work underscores the relevance of an adequate synchronization between the levels of different molecular cues essential for PHR development. RA might thus be one of the crucial molecules that contribute to define the final number of PHRs in the retina. The main conclusions of this thesis are: a) RA induces PHR progenitor apoptosis while they are active in the cell cycle, through a mechanism that involves the loss of mitochondrial activity and caspase activation. b) RA induces PHR differentiation, stimulating opsin and peripherin expression, and neurite outgrowth. c) RA promotes neurite outgrowth in amacrine neurons. d) RA-induced apoptosis is selective for PHRs. e) RA does not alter progenitor proliferation or the acquisition of cell fate. f) The induction of differentiation occurs regardless of the cells being active in the cell cycle or not. g) RA-induced differentiation and apoptosis processes in PHRs depend on the activation of p38/MAPK, which also interacts with PI3K/Akt. h) A lipid trophic factor, DHA, protects PHRs from RA-induced apoptosis.
8

Mecanismo de protección de la enzima glutatión-S-transferasa M2-2 de astrocitos frente a los efectos tóxicos de aminocromo sobre un modelo neuronal dopaminérgico

Cuevas Lizana, Carlos Alberto January 2016 (has links)
Tesis presentada a la Universidad de Chile para optar al Grado de Doctor en Bioquímica / Los astrocitos colaboran con las neuronas en el normal desarrollo de sus actividades metabólicas, y más aún son capaces de participar activamente en su protección frente a estímulos potencialmente dañinos. Se ha demostrado, que la enzima glutatión-S-transferasa M2-2 (GSTM2-2) de astrocitos es capaz de conjugar glutatión con aminocromo, un producto de oxidación de la dopamina, y por ello es que se propone como hipótesis que la enzima Glutation-S-transferasa M2-2 producida por astrocitos les confiere protección, y protege neuronas tipo dopaminérgicas de los efectos tóxicos de aminocromo. Para validar esta hipótesis es que en primera instancia se determinó la capacidad de los astrocitos humanos U373MG (glioblastoma) de captar aminocromo mediante utilización de aminocromo tritiado, observándose una incorporación máxima a los 40 minutos, la que es parcialmente inhibida por tratamientos con exceso de dopamina, imipramina y nomifensina. Mediante western blot se determinó que la presencia del aminocromo en los cultivos celulares provoca un aumento en la cantidad proteína, además de detectarse aumento en la actividad enzimática, ambos cambios de manera dependiente de la concentración, en donde 100 μM de aminocromo aumenta 2,1 veces la cantidad de la enzima en 3 horas. Se detectó mediante western blot la presencia de la proteína GSTM2-2 en los medios condicionados de células U373MG, aumentando 2,7 veces al exponer las células a aminocromo 50 μM por 3 horas en relación al control sin aminocromo. La línea celular de neuroblastoma SH-SY5Y es susceptible a toxicidad inducida por aminocromo, determinada por citometría de flujo, por lo que se probaron los medios condicionados de las células U373MG que contenían la enzima GSTM2-2 sobre cultivos de SH-SY5Y, evidenciándose la capacidad de proteger a células SH-SY5Y de la muerte inducida por exposición a 10 μM de aminocromo, y dicha protección frente a la muerte celular es dependiente de la internalización de la proteína GSTM2-2 por parte de las células SH-SY5Y, tal como se demostró (i) por captación de 14C-GSTM2-2 liberado por células U373MG, proceso inhibido por un antisuero contra GSTM2-2, (ii) muerte celular de SH-SY5Y tratadas con aminocromo, en presencia de medios condicionados de U373MG tratados con antisuero contra GSTM2-2, (iii) muerte celular de SH-SY5Y tratadas con aminocromo, en presencia de medios condicionados de células U373MGsiGST6, que expresan un siRNA contra GSTM2-2. En conclusión, nuestros resultados demuestran que las células U373MG protegen las células SH-SY5Y contra la toxicidad inducida por aminocromo, por un mecanismo que involucraría la liberación de GSTM2-2 al medio condicionado y la subsecuente internalización de esta enzima por parte de las células SH-SY5Y. Estos resultados sugieren un nuevo mecanismo de protección de neuronas dopaminérgicas mediado por astrocitos / Astrocytes collaborate with neurons in the normal development of their metabolic activities, and to a greater extent, they are able to actively participate in their protection from potentially harmful stimuli. It has been shown that the enzyme glutathione S-transferase M2-2 (GSTM2-2) from astrocytes is able to conjugate glutathione to aminochrome, an oxidation product of dopamine. Therefore the hypothesis proposed is that the enzyme glutathione S-transferase M2-2 produced by astrocytes protect them, and also protects dopaminergic neurons from the toxic effects of aminochrome. To validate this hypothesis, we assessed the ability of human astrocytes U373MG (glioblastoma) to capture aminochrome by using tritiated aminochrome, reaching an incorporation peak at 40 minutes, which is partially inhibited by treatment with excess dopamine, imipramine and nomifensine. Using western blot, we determined that the presence of aminochrome in cell cultures causes an increase in the protein amount, besides the increasing enzymatic activity, both changes depending on the aminochrome concentration, with 100 μM aminochrome increasing 2.1 times the amount of the enzyme in 3 hours. The presence of protein GSTM2-2 was detected by western blot in conditioned media from U373MG cells, increasing 2.7 times after the exposure to 50 uM aminochrome for 3 hours compared to the control without aminochrome. The neuroblastoma cell line SH-SY5Y is susceptible to aminochrome-induced toxicity, determined by flow cytometry, then U373MG cells conditioned media containing the enzyme GSTM2-2 cultures were tested on SH-SY5Y, demonstrating the ability to protect SH-SY5Y against aminochrome-induced cells death, and that protection against cell death is dependent on internalization of the GSTM2-2 protein by SH-SY5Y cells. This internalization was demonstrated by (i) uptake of 14C-GSTM2-2 released by U373MG cells, process inhibited by an antiserum against GSTM2-2, (ii) cell death of SH-SY5Y treated with aminochrome, in the presence of conditioned media from U373MG treated with antiserum against GSTM2-2, (iii) cell death of SH-SY5Y treated with aminochrome, in the presence of conditioned media of U373MGsiGST6 cells expressing siRNA against GSTM2-2. In conclusion, our results demonstrate that U373MG cells protect SH-SY5Y cells against aminochrome-induced toxicity, by a mechanism which would involve the release of GSTM2-2 to the conditioned medium and subsequent internalization of this enzyme by SH-SY5Y cells. These results suggest a novel mechanism of protection of dopaminergic neurons mediated by astrocytes / Conicyt; Fondecyt
9

Regulación de NFkB por especies reactivas de oxígeno y calcio en neuronas hipocampales

Álvarez Martínez, Alvaro Gonzalo January 2008 (has links)
No description available.
10

El 17-?-estradiol frente a la muerte apoptótica en neuronas granulares de cerebelo: efectos sobre la supervivencia y modulación de la plasticidad neuronal

Miñano Molina, Alfredo Jesús 06 July 2006 (has links)
Durant el desenvolupament de les malalties neurodegeneratives les neurones moren. Una de les conseqüències més comuns del desenvolupament de malalties neurodegeneratives és l'activació en la majoria d'elles del programa de mort cel·lular, conegut com apoptosi. El coneixement exhaustiu d'aquest programa apoptòtic és clau per poder abordar estratègies terapèutiques que puguin aturar l'avanç d'aquestes malalties.L'apoptosi és un procés fisiològic important durant el desenvolupament del SNC mantenint la homeòstasi cel·lular. El cerebel és una de les regions del cervell en la que aquest fenomen és especialment dramàtic. Durant el desenvolupament de les neurones granulars de cerebel (CGCs) pràcticament la meitat es perden durant el procés apoptòtic. Aquest fenomen pot mimetitzar-se in vitro, a partir d'un cultiu pur d'aquestes neurones. El cultiu primari de les CGCs és un model àmpliament utilitzat per a l'estudi de l'apoptosi, induint-la per deprivació de potassi. En aquest procés es pot produir un increment en les concentracions intracel·lulars de ceramida, implicada en aquest procés de mort.La ceramida és una molècula senyalitzadora implicada en diferents processos cel·lulars com la proliferació, senescència, diferenciació i aturada del cicle cel·lular. Durant els últims anys s'ha proposat que la ceramida podria tenir un paper més important com a regulador de la mort apoptòtica. Un dels nostres objectius va ser, mitjançant la utilització d'aquest model, caracteritzar el procés de mort apoptòtica per ceramida. Durant els últims anys s'han acumulat evidències suggerint que la exposició a estrògens disminueix el risc i retarda el principi de malalties neurodegeneratives com l'Alzheimer i el Parkinson, així com potencien la recuperació front a danys neurològics traumàtics com la isquèmia cerebral. Aquestes hormones poden realitzar aquestes funcions implicant diferents processos com la supervivència cel·lular, respostes regeneratives, creixement axonal, potenciació de la senyal sinàptica i neurogènesi.Els resultats de les nostres investigacions indiquen que: (1) la ceramida indueix apoptosi en CGCs activant tant la caspasa-9 com la caspasa-2; dues vies a priori paral·leles i que en aquesta mort apoptòtica, (2) la inhibició d'Akt i l'activació de les MAPK estan implicades. (3) L'estradiol (E2) no protegeix front l'apoptosi en les CGCs i l'absència d'activació d'Akt pot ser clau en aquesta falta de neuroprotecció. (4) L'absència de neuroprotecció podria deure's a que el receptor d'estrògens ER-? no interacciona amb el receptor d'IGF-I. (5) ER-? està localitzat en la membrana plasmàtica de les CGCs i media l'activació de ERK1/2 per E2. L'activació de la via clàssica de les MAPKs per E2 implica un mecanisme diferent d'acció per a E2 en el model de les CGCs. (6) L'E2 exerceix un efecte neuroprotector en les CGCs degut a les seves propietats com a molècula antioxidant. (7) L'activació de la via Src/Ras/ERK/CREB estaria relacionada amb fenòmens de plasticitat sinàptica i el manteniment de connexions entre neurones de les CGCs tot i que no seria suficient per protegir les CGCs de la mort apoptòtica.Malgrat que l'E2 no protegeix les CGCs de la mort apoptòtica, podria tenir gran rellevància el fet de conèixer com l'E2 posa en marxa mecanismes que desencadenin fenòmens de manteniment dendrític i disminució potencial de la vulnerabilitat de les neurones front a estímuls adversos, permetent poder incidir en un futur sobre models de malalties neurodegeneratives com l'Alzheimer o processos isquèmics, on el manteniment de les connexions dendrítiques existents i la generació de noves sinapsis, a més de mantenir la seva estructura, poden ser processos clau. / A lo largo del desarrollo de las enfermedades neurodegenerativas las neuronas mueren. Una de las consecuencias más comunes del desarrollo de enfermedades neurodegenerativas es la activación en la mayoría de ellas del programa de muerte celular, conocido como apoptosis. El conocimiento exhaustivo de este programa apoptótico es clave para poder abordar estrategias terapéuticas que puedan frenar el avance de estas enfermedades. La apoptosis es un proceso fisiológico importante durante el desarrollo del SNC manteniendo la homeóstasis celular. El cerebelo es una de las regiones del cerebro en la cual este fenómeno es especialmente dramático. Durante el desarrollo de las neuronas granulares de cerebelo (CGCs) prácticamente la mitad se pierden durante el proceso apoptótico. Este fenómeno puede mimetizarse in vitro, a partir de un cultivo puro de estas neuronas. El cultivo primario de las CGCs es un modelo ampliamente utilizado para el estudio de la apoptosis, induciéndola por deprivación de potasio. En este proceso se puede producir un incremento en las concentraciones intracelulares de ceramida, implicada en este proceso de muerte.La ceramida es una molécula señalizadora implicada en diferentes procesos celulares como la proliferación, senescencia, diferenciación y paro del ciclo celular. Durante los últimos años se ha propuesto que la ceramida podría tener un papel más importante como regulador de la muerte apoptótica. Uno de nuestros objetivos fue, mediante la utilización de este modelo, caracterizar el proceso de muerte apoptótica por ceramida.Durante los últimos años se han acumulado evidencias sugiriendo que la exposición a estrógenos disminuye el riesgo y retrasa el principio y desarrollo de enfermedades neurodegenerativas como el Alzheimer y el Parkinson, así como potencian la recuperación frente a daños neurológicos traumáticos como la isquemia cerebral. Estas hormonas pueden desempeñar estas funciones implicando diferentes procesos como la supervivencia celular, respuestas regenerativas, crecimiento axonal, potenciación de la señal sináptica y neurogénesis. Los resultados de nuestras investigaciones indican que: (1) la ceramida induce apoptosis en CGCs activando tanto la caspasa-9 como la caspasa-2; dos vías de muerte a priori paralelas y que en esta muerte apotótica, (2) la inhibición de Akt y la activación de las MAPKs están implicadas. (3) El estradiol (E2) no protege frente a la apoptosis en las CGCs y la ausencia de activación de Akt puede ser clave en esta falta de neuroprotección. (4) La ausencia de neuroprotección podría deberse a que el receptor de estrógenos ER-? no interacciona con el receptor de IGF-I. (5) ER-? está localizado en la membrana plasmática de las CGCs y media la activación de ERK1/2 por E2. La activación de la vía clásica de las MAPKs por E2 implica un mecanismo diferente de acción para E2 en el modelo de las CGCs. (6) El E2 ejerce un efecto neuroprotector en las CGCs debido a sus propiedades como molécula antioxidante. (7) La activación de la vía Src/Ras/ERK/CREB estaría relacionada con fenómenos de plasticidad sináptica y el matenimiento de conexiones entre neuronas de las CGCs aunque no sería suficiente para proteger las CGCs de la muerte apoptótica.A pesar de que el E2 no protege a las CGCs de la muerte apoptótica, podría tener gran relevancia el hecho de conocer cómo el E2 pone en marcha mecanismos que desencadenan fenómenos de mantenimiento dendrítico y disminución potencial de la vulnerabilidad de las neuronas frente a estímulos adversos, permitiendo poder incidir en un futuro sobre modelos de enfermedades neurodegenerativas como el Alzheimer o procesos isquémicos, donde el mantenimiento de las conexiones dendríticas existentes y la generación de nuevas sinapsis, además de mantener su estructura, pueden ser procesos clave. / Along neurodegenerative disease development, neurons die. One of the most common consequences of the development of neurodegenerative diseases is the activation, in the majority of them, of the cellular death program, known as apoptosis. The exhaustive knowledge of apoptotic programme is a key to approach new therapeutical strategies to slow down the advance of these diseases.Apoptosis is an important physiological process during development of CNS maintaining cellular homeostasis. Cerebellum is one of the cerebral regions in which this phenomenon is especially dramatic. During development of cerebellar granule neurons (CGNs) practically a half are removed during apoptotic process. This phenomenon is able to mimic in vitro from pure culture of these neurons. Primary cultures of CGNs are an extensively used model to study apoptosis, inducing it by potassium deprivation. In this process is able to produce an increase of intracellular concentrations of ceramide, implied in the process of cell death.Ceramide is a signalling molecule implied in different cellular processes like proliferation, senescence, differentiation and control of cellular cycle. During the last years authors suggest ceramide with an important role like a regulator of apoptotic death. One of our objectives was, by means of using this model; characterize apoptotic death process by ceramide.During the last years diverse accumulating evidences have suggested that estrogens exposition reduce risk and delay the onset and development of neurodegenerative diseases like Alzheimer and Parkinson, the same way as promote recovery from neurological shocks like cerebral ischemia. These hormones are able to carry out these functions implying different processes as cellular survival, regenerative responses, axonal growth, synaptic signal potentiation and neurogenesis.Results of ours investigation shows that: (1) ceramide induce apoptosis in CGNs activating as caspase-9 as caspase-2; two death pathways beforehand parallels and that in this apoptotic death, (2) inhibition of Akt and activation of MAPKs are implicated. (3) Estradiol (E2) does not protect from apoptosis in CGNs and the absence of Akt activation can be key in this absence of neuroprotection. (4) The absence of neuroprotection could be due to estrogen receptor ER-? does not interact with IGF-IR. (5) ER-? is located in plasmatic membrane of the CGNs and mediates the ERK1/2 activation by E2. Activation of classic pathway MAPKs by E2 implies a different action mechanism to E2 in CGNs model. (6) E2 exerts a neuroprotective effect in CGNs due to proprieties as an antioxidant molecule. (7) Activation of Src/Ras/ERK/CREB pathway would be related with phenomena of synaptic plasticity and the maintenance of connexions between neurons of CGNs although it would not be enough to protect CGNs of apoptotic death.In spite of E2 does not protect CGNs from apoptotic death, it could have great relevance the fact of known how E2 switch on mechanisms that triggers phenomena of dendrite maintenance and potential decrease of vulnerability of neurons in front of adverse stimuli, making possible to influence in the future on neurodegenerative disease models as Alzheimer or ischemic processes, where the maintenance of dendrite connexions existing and generating news, moreover of maintenance of structure can be key processes.

Page generated in 0.4123 seconds