Spelling suggestions: "subject:"citrate reduction"" "subject:"bitrate reduction""
11 |
Using flow through reactors to study the non-reductive biomineralization of uranium phosphate mineralsWilliams, Anna Rachel 06 April 2012 (has links)
Uranium contaminations of the subsurface in the vicinity of nuclear materials processing sites pose a health risk as the uranyl ion in its oxidized state, U(VI), is highly mobile in aquifers. Current remediation strategies such as pump and treat or excavation are invasive and expensive to implement on a large scale. In situ bioremediation represents an alternative strategy that uses the ability of local microbial communities to immobilize contaminants and is actively studied for uranium remediation. The immobilization of U(VI) in groundwater is achieved either by bioreduction to solid uraninite (U(IV)), adsorption to the soil matrix, or non-reductive precipitation of uranium phosphate minerals through the activity of bacterial phosphatases. Bioreduction has been widely studied for remediation of the saturated zone, as anaerobic conditions typically prevail in these environments. This process is only efficient at circumneutral pH, however, and the end product uraninite is unstable under aerobic conditions or in the presence of manganese oxides, nitrite, or even freshly formed iron oxides. Although non-reductive biomineralization of uranium catalyzed by bacterial phosphatase activity successfully removes uranium from the vadose zone, further studies are needed to assess the ability of microbial communities to hydrolyze organophosphate compounds in the saturated zone where oxygen is often depleted and uranium bioreduction may be significant. To investigate this process under anaerobic conditions, low pH soil samples from a uranium contaminated site at the Oak Ridge Field Research Center were incubated anaerobically in flow through reactors in the presence of exogenic organophosphate compounds to stimulate the natural microbial communities in the original soil matrix. Aqueous uranium was injected continuously in the reactors to determine the fraction of uranium removed during these incubations. The reactors amended with organophosphate produced inorganic phosphate in the effluent, suggesting that bacterial phosphatase activity can be stimulated even in anaerobic environments at low pH. Removal of U(VI) in a control amended with organophosphate over a short time period was similar compared to reactors amended with organophosphate for long times suggesting that adsorption may also play a role in U(VI) immobilization. A sequential extraction technique was optimized to differentiate the fraction of uranium loosely adsorbed and the fraction of uranium precipitated as phosphate minerals and batch adsorption experiments were performed to obtain thermodynamic parameters that could be used to predict the fraction of U(VI) adsorbed onto the soil matrix. Results indicated that 100% uranium adsorption was favorable from pH 5 to 10 (without the presence of phosphate), and that most of the solid phase uranium was extracted in the step defined for the strongly adsorbed/uranium phosphate mineral in both long and short-term amended reactors. Overall, these results demonstrate that the biomineralization of uranium phosphate minerals is a viable bioremediation strategy in both the vadose and saturated zones of aquifers at both low and high pH, provided an organophosphate source is available.
|
12 |
Reduction of Nitrates in Water Using Iron and Copper/Iron Bimetallic Particles Supported on ZeolitesSidhu, Harpreet Singh January 2021 (has links)
No description available.
|
13 |
Effect of Nitrate Reduction on the Methanogenic Fermentation: Process Interactions and ModelingTugtas, Adile Evren 16 January 2007 (has links)
Combined treatment technologies for the removal of waste carbon, nitrogen, and/or sulfur under anoxic/anaerobic conditions have recently received considerable attention. It has been reported that nitrate and/or reduced N-oxides, such as nitrite (NO2-), nitric oxide (NO), and nitrous oxide (N2O), which are products of denitrification, suppress methanogenesis. Research was conducted to investigate the effect of N-oxides and sulfide on mixed, mesophilic (35oC) methanogenic cultures, along with the effect of the type of electron donor on the kinetics and pathway of nitrate reduction. Among all N-oxides tested, NO exerted the most and nitrate exerted the least inhibitory effect on the fermentative/methanogenic consortia. Long-term exposure of a methanogenic culture to nitrate resulted in an increase of N-oxide reduction and a decrease of methane production rates. Sulfide addition to sulfide-free enriched cultures resulted in inhibition of NO2-, NO, and N2O reduction causing accumulation of these intermediates, which in turn inhibited methanogenesis and fermentation. In nitrate-amended, sulfide-acclimated cultures, nitrate reduction occurred via dissimilatory nitrate reduction to ammonia (DNRA); thus, accumulation of N-oxides was avoided and inhibition of methanogenesis was prevented. The nitrate reduction rates in cultures fed with different electron donors followed the descending order: H2/CO2 > acetate > glucose > dextrin/peptone > propionate. Denitrification was observed in the propionate-, acetate-, and H2/CO2-fed cultures regardless of the COD/N value. Both denitrification and DNRA were observed in the dextrin/peptone- and glucose-fed cultures and the predominance of either of the two pathways was a function of the COD/N value. Nitrate reduction processes were incorporated into the IWA Anaerobic Digestion Model No. 1 (ADM1) in order to account for the effect of nitrate reduction processes on fermentation and methanogenesis. The extended ADM1 described the experimental results very well. Model simulations showed that process interactions during nitrate reduction within an overall methanogenic system cannot be explained based on only stoichiometry and kinetics, especially for batch systems and/or continuous-flow systems with periodic, shock nitrate loads. The results of this research are useful in predicting the fate of carbon-, nitrogen-, and sulfur-bearing waste material, as well as in understanding microbial process interactions, in both natural and engineered anoxic/anaerobic systems.
|
14 |
NITRATE REDUCTION COUPLED TO IRON(II) AND MANGANESE(II) OXIDATION IN AN AGRICULTURAL SOILPyzola, Stephanie 01 January 2013 (has links)
New evidence shows iron(II) oxidation is strongly coupled to nitrate reduction under anaerobic conditions in freshwater sediments and agricultural soils. However, the contribution of iron(II) oxidation to nitrate reduction is unknown. Furthermore, oxidation of manganese(II) by nitrate has been largely overlooked. This study investigated nitrate-dependent iron(II) and manganese(II) oxidation in an agricultural soil (Sadler silt loam) using stirred-batch kinetic techniques with native soil organic carbon (SOC) as the electron donor and included addition of amendments (hydrogen gas and wheat residue). In the presence of native SOC, nitrate-dependent Fe(II) and Mn(II) oxidation occurred at early stages of the reaction while organic carbon participated at longer times. Contributions of iron(II) and manganese(II) oxidation to nitrate reduction were 19% and 25%, respectively. This is significant in light of excess SOC relative to total Fe and Mn in the Sadler soil. Addition of hydrogen gas lowered the contribution of iron(II) oxidation to nitrate reduction to 10%, while addition of plant residue raised this value to approximately 55%. Manganese(II) oxidation contributed 50% to nitrate reduction under hydrogen amended conditions. These coupled processes involving Fe(II) and Mn(II) oxidation are an underappreciated aspect of the nitrogen cycle and merit consideration in future studies.
|
15 |
INVESTIGATING MICROBIOLOGICALLY INFLUENCED CORROSION USING THE ZERO-RESISTANCE AMMETRY TECHNIQUE IN A SPLIT CELL FORMATMiller, Robert B., II January 2019 (has links)
No description available.
|
16 |
Membrane-less porous walls electrolyzer for electrochemical ammonia synthesisGelain, Francesco January 2023 (has links)
n a world of unsustainable growth and increasingly catastrophic climate events, the quest for sustainability is open. Electrochemical ammonia synthesis (EAS) represents an eco-friendly means for green ammonia production. This technology mainly requires electricity, which can be harvested from renewable sources, as its energy input, and can be employed in a decentralized fashion, cutting down transport emissions and complexity. Green ammonia could help humanity as a hydrogen carrier, energy storage and sustainable fertilizer. However, sustainable alternatives are still far from achieving the production rates of the current adopted technology, namely the Haber-Bosch process. The present experimental-based investigation explores the feasibility of implementing a new membrane-less porous walls approach to electrochemical ammonia synthesis. This research mainly revolves around two experimental phases: the first considering a single compartment (SC) cell electrochemical set-up, and the second a membrane-less porous walls (PW) cell set-up. The former was used to gain knowledge regarding membrane-less cell behaviour, which then was applied to the latter, whose aim was to achieve ammonia synthesis. It was demonstrated that this approach can achieve high current densities (707.4 mA cm-2) and high ammonia production rate (1727.9 μmol cm-2 h-1) at -3.1V (cell voltage), through catalytic nitrate (𝑁𝑂3−) reduction, on nickel phosphide sheet cathode, in an aqueous sodium hydroxide electrolyte solution. On the contrary, it shows low faradaic efficiency, only 43%. Even if the results were partially validated by literature and contamination tests, isotope labelling experiments need to be conducted for more reliable estimates. These findings add another promising perspective to the field of electrochemical ammonia synthesis. / I en värld av ohållbar tillväxt och alltmer katastrofala klimathändelser är strävan efter hållbarhet öppen. Elektrokemisk ammoniaksyntes (EAS) är en miljövänlig metod för grön ammoniakproduktion. Denna teknik kräver främst el, som kan förses från förnybara källor, för energitillförsel och kan användas på ett decentraliserat sätt, vilket minskar transportutsläppen och komplexiteten. Grön ammoniak kan hjälpa mänskligheten som vätgasbärare, energilagring och hållbart gödningsmedel. Hållbara alternativ är dock fortfarande långt ifrån att uppnå produktionsnivån för nuvarande teknik, nämligen Haber-Bosch-processen. Detta experimentella arbete undersöker möjligheten att implementera en ny strategi för elektrokemisk ammoniaksyntes genom membranfri porösväggar. Denna forskning handlar huvudsakligen om två experimentella faser: den första handlar om enkelfack (SC) cellelektrokemisk uppsättning, och den andra en membranfri porösväggar (PW) celluppsättning. Den förstnämnda användes för att få kunskap om membranfritt cellbeteende, som sedan applicerades på det senare, vars mål var att uppnå ammoniaksyntes. Det har visats att den just nämnda tekniken kan uppnå högströmtätheter (707.4 mA cm-2) och hög ammoniakproduktionshastighet (1727.9 μmol cm-2 h-1) vid -3.1V (cellspänning), genom katalytiskt nitrat (𝑁𝑂3−) reduktion, på nickelfosfidarkatod i en vattenhaltig natriumhydroxidelektrolytlösning. Å andra sidan visar resultaten en låg faradaisk effektivitet, bara 43%. Även om resultaten delvis validerades genom litteratur- och kontamineringstester, måste isotopmärkningsexperiment genomföras för mer pålitliga uppskattningar. Dessa fynd lägger till ytterligare ett lovande perspektiv på området elektrokemisk ammoniaksyntes.
|
17 |
Granular Media Supported Microbial Remediation of Nitrate Contaminated Drinking WaterMalini, R January 2014 (has links) (PDF)
Increasing nitrate concentration in ground water from improper disposal of sewage and excessive use of fertilizers is deleterious to human health as ingestion of nitrate contaminated water can cause methaemoglobinemia in infants and possibly cancer in adults. The permissible limit for nitrate in potable water is 45 mg/L. Unacceptable levels of nitrate in groundwater is an important environmental issue as nearly 80 % of Indian rural population depends on groundwater as source of drinking water. Though numerous technologies such as reverse osmosis, ion exchange, electro-dialysis, permeable reactive barriers using zero-valent iron exists, nitrate removal from water using affordable, sustainable technology, continues to be a challenging issue as nitrate ion is not amenable to precipitation or removable by mineral adsorbents. Tapping the denitrification potential of soil denitrifiers which are inherently available in the soil matrix is a possible sustainable approach to remove nitrate from contaminated drinking water.
Insitu denitrification is a useful process to remove NO3–N from water and wastewater. In biological denitrification, nitrate ions function as terminal electron acceptor instead of oxygen; the carbon source serve as electron donor and the energy generated in the redox process is utilized for microbial cell growth and maintenance. In this process, microorganisms first reduce nitrate to nitrite and then produce nitric oxide, nitrous oxide, and nitrogen gas. The pathway for nitrate reduction can be written as:
NO3-→ NO2-→ NO → N2O → N2. (i)
Insitu denitrification process occurring in soil environments that utilizes indigenous soil microbes is the chosen technique for nitrate removal from drinking water in this thesis. As presence of clay in soil promotes bacterial activity, bentonite clay was mixed with natural sand and this mix, referred as bentonite enhanced sand (BES) acted as the habitat for the denitrifying bacteria. Nitrate reduction experiments were carried out in batch studies using laboratory prepared nitrate contaminated water spiked with ethanol; the batch studies examined the mechanisms, kinetics and parameters influencing the heterotrophic denitrification process. Optimum conditions for effective nitrate removal by sand and bentonite enhanced sand (BES) were evaluated. Heterotrophic denitrification reactors were constructed with sand and BES as porous media and the efficiency of these reactors in removing nitrate from contaminated water was studied.
Batch experiments were performed at 40°C with sand and bentonite enhanced sand specimens that were wetted with nutrient solution containing 22.6 mg of nitrate-nitrogen and ethanol to give C/N ratio of 3. The moist sand and BES specimens were incubated for periods ranging from 0 to 48 h. During nitrate reduction, nitrite ions were formed as intermediate by-product and were converted to gaseous nitrogen. There was little formation of ammonium ions in the soil–water extract during reduction of nitrate ions. Hence it was inferred that nitrate reduction occurred by denitrification than through dissimilatory nitrate reduction to ammonium (DNRA).
The reduction in nitrate concentration with time was fitted into rate equations and was observed to follow first order kinetics with a rate constant of 0.118 h-1 at 40°C. Results of batch studies also showed that the first order rate constant for nitrate reduction decreased to 5.3x10-2 h-1 for sand and 4.3 x10-2 h-1 for bentonite-enhanced sand (BES) at 25°C. Changes in pH, redox potential and dissolved oxygen in the soil-solution extract served as indicators of nitrate reduction process. The nitrate reduction process was associated with increasing pH and decreasing redox potential. The oxygen depletion process followed first order kinetics with a rate constant of 0.26 h-1. From the first order rate equation of oxygen depletion process, the nitrate reduction lag time was computed to be 12.8 h for bentonite enhanced sand specimens. Ethanol added as an electron donor formed acetate ions as an intermediate by-product that converted to bicarbonate ions; one mole of nitrate reduction generated 1.93 moles of bicarbonate ions that increased the pH of the soil-solution extract.
The alkaline pH of BES specimen (8.78) rendered it an ideal substrate for soil denitrification process. In addition, the ability of bentonite to stimulate respiration by maintaining adequate levels of pH for sustained bacterial growth and protected bacteria in its microsites against the effect of hypertonic osmotic pressures, promoting the rate of denitrification. Buffering capacity of bentonite was mainly due to high cation exchange capacity of the clay. The presence of small pores in BES specimens increased the water retention capacity that aided in quick onset of anaerobiosis within the soil microsites.
The biochemical process of nitrate reduction was affected by physical parameters such as bentonite content, water content, and temperature and chemical parameters such as C/N ratio, initial nitrate concentration and presence of indigenous micro-organisms in contaminated water. The rate of nitrate reduction process progressively increased with bentonite content but the presence of bentonite retarded the conversion of nitrite ions to nitrogen gas, hence there was significant accumulation of nitrite ions with increase in bentonite content. The dependence of nitrate reduction process on water content was controlled by the degree of saturation of the soil specimens. The rate of nitrate reduction process increased with water content until the specimens were saturated. The threshold water content for nitrate reduction process for sand and bentonite enhanced sand specimens was observed to be 50 %. The rate of nitrate reduction linearly increased with C/N ratio till steady state was attained. The optimum C/N ratio was 3 for sand and bentonite enhanced sand specimens. The activation energy (Ea) for this biochemical reaction was 35.72 and 47.12 kJmol-1 for sand and BES specimen respectively. The temperature coefficient (Q10) is a measure of the rate of change of a biological or chemical system as a consequence of increasing the temperature by 10°C. The temperature coefficient of sand and BES specimen was 2.0 and 2.05 respectively in the 15–25°C range; the temperature coefficients of sand and BES specimens were 1.62 and 1.77 respectively in the 25–40°C range.
The rate of nitrate reduction linearly decreased with increase in initial nitrate concentration. The biochemical process of nitrate reduction was unaffected by presence of co-ions and nutrients such as phosphorus but was influenced by presence of pathogenic bacteria.
Since nitrate leaching from agricultural lands is the main source of nitrate contamination in ground water, batch experiments were performed to examine the role of vadose (unsaturated soil) zone in the nitrate mitigation by employing sand and BES specimens with varying degree of soil saturation and C/N ratio as controlling parameters. Batch studies with sand and BES specimens showed that the incubation period required to reduce nitrate concentrations below 45 mg/L (t45) strongly depends on degree of saturation when there is inadequate carbon source available to support denitrifying bacteria; once optimum C/N ratio is provided, the rate of denitrification becomes independent of degree of soil saturation. The theoretical lag time (lag time refers to the period that is required for denitrification to commence) for nitrate reduction for sand specimens at Sr= 81 and 90%, C/N ratio = 3 and temperature = 40ºC corresponded to 24.4 h and 23.1 h respectively. The lag time for BES specimens at Sr = 84 and 100%, C/N ratio = 3 and temperature = 40ºC corresponded to 13.9 h and 12.8 h respectively. Though the theoretically computed nitrate reduction lag time for BES specimens was nearly half of sand specimens, it was experimentally observed that nitrate reduction proceeds immediately without any lag phase in sand and BES specimens suggesting the simultaneous occurrence of anaerobic microsites in both.
Denitrification soil columns (height = 5 cm and diameter = 8.2 cm) were constructed using sand and bentonite-enhanced sand as porous reactor media. The columns were permeated with nitrate spiked solutions (100 mg/L) and the outflow was monitored for various chemical parameters. The sand denitrification column (packing density of 1.3 Mg/m3) showed low nitrate removal efficiency because of low hydraulic residence time (1.32 h) and absence of carbon source. A modified sand denitrification column constructed with higher packing density (1.52 Mg/m3) and ethanol addition to the influent nitrate solution improved the reactor performance such that near complete nitrate removal was achieved after passage of 50 pore volumes. In comparison, the BES denitrification column achieved 87.3% nitrate removal after the passage of 28.9 pore volumes, corresponding to 86 h of operation of the BES reactor. This period represents the maturation period of bentonite enhanced sand bed containing 10 % bentonite content. Though nitrate reduction is favored by sand bed containing 10 % bentonite, the low flow rate (20-25 cm3/h) impedes its use for large scale removal of nitrate from drinking water. Hence new reactor was designed using lower bentonite content of 5 % that required maturation period of 9.6 h. The 5 and 10 % bentonite-enhanced sand reactors bed required shorter maturation period than sand reactor as presence of bentonite contributes to increase in hydraulic retention time of nitrate within the reactor. On continued operation of the BES reactors, reduction in flow rate from blocking of pores by microbial growth on soil particles and accumulation of gas molecules was observed that was resolved by backwashing the reactors.
|
18 |
The influence of invertebrate and microbial cross-community interactions on the nitrate removal function in the hyporheic zone / Influence des interactions entre les communautés d'invertébrés et de micro-organismes dans la fonction de rétention du nitrate dans la zone hyporhéique en milieu riverainYao, Jingmei 20 June 2016 (has links)
L'objectif de cette étude est de mieux comprendre comment la biodiversité influence le service de purification de la qualité de l'eau en tant que service de régulation capable de limiter la charge en polluants de l'eau naturelle. Peu d'études ont regardé comment les invertébrés (macro- et méio-faune) sont capables d'influencer le fonctionnement de la zone hyporhéique considérée, comme un réacteur biogéochimique contribuant largement au recyclage des nutriments. L'élimination du nitrate et la dénitrification sont utilisés comme indicateur de ce service dans les rivières afin de pouvoir suivre son évolution spatiale et temporelle. Dans cette thèse, la relation fonctionnelle entre le taux de réduction des nitrates et les organismes participant à l'expression de ce service est testée à différentes échelles d'étude allant du microcosme jusqu'à l'habitat hyporhéique d'un méandre de large rivière, la Garonne. Cette relation est mise en évidence dans une série de colonnes d'infiltration reproduisant le lit de rivière avec sa communauté benthique (projet Inbioprocess). Dans cette expérience, un gradient de biodiversité a été créé avec des combinaisons de communautés +/- biofilm, +/- méiofaune et +/- macrofaune pour tester leur influence sur l'élimination du nitrate avec et sans pesticides dans le cadre du projet Inbioprocess. Les résultats suggèrent l'influence des interactions entre communautés, sur le taux de réduction des nitrates qui est supérieur quand les invertébrés sont présents (11.8 ± 1.2) par comparaison avec les conditions sans invertébrés (7.7 ± 1.4 mg N l-1d-1 ; moyenne ± erreur standard (m ± ET)). Ces interactions ont également été suggérées comme favorisant le retour de la capacité de réduction des nitrates en présence de pesticides, utilisé comme source de stress, dans l'eau des microcosmes. Ces résultats de laboratoire montrent l'influence des interactions trophiques et non trophiques entre les différents niveaux trophiques de ce réseau, avec probablement l'implication des espèces les plus résistantes pour expliquer la capacité potentielle de résilience du système. L'existence de cette relation fonctionnelle de type "top-down" a ensuite été explorée en conditions in situ. Les taux de rétention mesurés dans 9 cours d'eau européens (projet STREAMES) ont été estimés à l'échelle du tronçon de rivière à 1.64 ± 2.39 (m ± ET) mg NO3--N m-2.min-1. L'influence des communautés d'invertébrés sur le taux de réduction des nitrates se révèle statistiquement comme aussi importante que celle des facteurs physicochimiques dans l'ensemble des tronçons explorés. L'étude des traits biologiques des communautés d'invertébrés a permis de préciser le type de communauté le plus corrélé aux processus d'élimination des nitrates. Ces organismes sont majoritairement interstitiels vivant dans les sédiments grossiers et avec des modes d'alimentation de type brouteurs de biofilm. Dans la zone hyporhéique de la zone humide alluviale de Monbéqui (projet Attenagua), la corrélation positive de la communauté d'invertébrés avec le taux de dénitrification a été seulement visible pendant automne. Cette période est considérée comme un moment propice pour l'observation de la relation diversité-fonction dans ce milieu. / This PhD study aims to understand how the biodiversity influences the water purification processes in the hyporheic zone of running water, as an important regulating service that reduces the quantity of pollutants in freshwater ecosystems. Few studies have focused on how the invertebrate community influences the functioning of hyporheic zones, which are considered as a biogeochemical reactor that largely contributes to nutrient cycling capacity of the rivers. Nitrate retention or denitrification functions in hyporheic zones are used as indicators for the water purification service. The relationship between the nitrate removal function and its associated biodiversity was tested at different scales from indoor microcosms to in-stream reaches and the hyporheic habitat of a large river (Garonne) meander, under natural and stressful conditions. First, the linkage between invertebrates and the nitrate (NO3-) removal function was given in evidence in a series of infiltration columns that mimicked the riverbed conditions with its benthic communities. A gradient of community diversity was created with biofilm, meiofauna and macrofauna communities' combination in different treatments. It enabled to test the influence of the invertebrate community on the NO3- removal rates with and without pesticides during the Inbioprocess project. The results implied the influence of invertebrate and microbial cross-community interactions on NO3- removal rates, which was higher with invertebrate communities in the sediments (11.8 ± 1.2) than without (7.7 ± 1.4 mg N.l-1.d-1). These findings suggested a top-down control of invertebrates on the microbial activities. These interactions were also depicted at the source of the recovery of the NO3- removal capacity when facing stressful conditions due to addition of pesticide in the experimental water. These laboratory findings highlighted the importance of multi-trophic level interactions in the hyporheic habitat, with probable implication of the more resistant species in the resilience capacity of this system. The occurrence of the top-down linkage was then explored in in situ habitats. The NO3- removal rates measured at the reach scale in 9 European streams during the STREAMES project ranged from 0.04 to 10.75 with an average of 1.64 ± 2.39 mg NO3--N m-2.min-1 (Mean ± SE). The results suggested that not only physico-chemical and hydrological factors, but also macro-invertebrate assemblages may influence nitrate removal. Some functional groups positively correlated with nitrate reduction were biofilm grazers and interstitial organisms associated with macro-porous substrate. In the hyporheic water of Monbequi meander of the Garonne river, the positive correlation between invertebrate diversity and the potential denitrification rates was only visible during the autumn season, suggesting a potential "hot moment" for the observation of this correlation between biodiversity and ecosystem function in fields.
|
19 |
Nitrate as a Prebiotic and Nitrate-Reducing Bacteria as Probiotics for Oral HealthRosier, Bob Thaddeus 21 March 2022 (has links)
Tesis por compendio / [ES] Se ha estimado que obtenemos más de las tres cuartas partes del nitrato que ingerimos de la fruta y la verdura. Los vegetales ricos en nitratos incluyen verduras de hoja verde y ciertos tubérculos (p. ej., remolachas y rábanos). Las glándulas salivales concentran activamente el nitrato plasmático, lo que da lugar a concentraciones elevadas de nitrato en la saliva (5 a 8 mM) después de una comida rica en nitratos. El nitrato es un factor ecológico que puede inducir cambios rápidos en la estructura y función de las comunidades polimicrobianas. Sin embargo, los efectos sobre la microbiota oral no se han estudiado en detalle, mientras que un número limitado de estudios previos a esta tesis indican que es probable que el nitrato sea beneficioso para la salud bucal. El objetivo de esta tesis es, por tanto, estudiar los cambios microbiológicos inducidos por nitratos e identificar posibles mecanismos de homeostasis generados por este compuesto, con el fin de determinar si el nitrato puede considerarse un prebiótico para la salud bucal. Un segundo objetivo fue aislar cepas reductoras de nitrato y probar su potencial probiótico in vitro. En el capítulo 1, se realizó un estudio in vitro para testar el efecto del nitrato 6,5 mM en comunidades orales cultivadas a partir de la saliva de 12 individuos sanos. En el capítulo 2, se obtuvieron 53 aislados de bacterias reductoras de nitrato y se probó el efecto de seis candidatos a probióticos en comunidades orales sanas cultivadas a partir de saliva de diferentes donantes con o sin nitrato 6,5 mM. En el capítulo 3, se estudió el efecto de un extracto de remolacha rico en nitrato sobre la acidificación oral después de un enjuague con azúcar en 24 individuos sin caries activas. Se tomaron sobrenadantes (capítulos 1 y 2) o muestras de saliva (capítulo 3) para mediciones de nitrato, nitrito, amonio, lactato y pH. Además, la composición bacteriana de la biopelícula in vitro y del pellet salivar se determinó usando secuenciación Illumina del rRNA 16S y/o qPCR del género nitratorreductor Rothia. Los datos demuestran que el nitrato estimula el crecimiento de los géneros beneficiosos Rothia y Neisseria en nuestro modelo in vitro, mientras que potencialmente disminuye las bacterias asociadas a la caries, la halitosis y la enfermedad periodontal. Además, los datos in vitro e in vivo presentados en esta tesis indican que el nitrato puede limitar o prevenir caídas de pH cuando los azúcares son fermentados por la microbiota oral, un mecanismo de resiliencia que podría ser estimulado por el consumo de extractos vegetales ricos en nitratos. Los principales mecanismos de amortiguación del pH por parte del nitrato son el uso de acido láctico durante la desnitrificación (observado tanto in vivo como in vitro) y durante la reducción de nitrito a amonio, así como la producción potencial de amoníaco (observado in vitro). En esta tesis, los efectos del nitrato se observaron después de períodos cortos, es decir, después de 5-9 h de incubación in vitro y 1-4 horas después de la ingesta del suplemento de nitrato in vivo. Los estudios futuros deberían centrarse en los efectos longitudinales de la ingesta diaria de nitratos. En el capítulo 2, se aislaron bacterias reductoras de nitrato pertenecientes a los géneros Rothia y Actinomyces. Una selección de aislados de Rothia aumentó el uso de lactato y la capacidad de reducción de nitratos de las comunidades bucales, lo que potencialmente beneficiaría la salud dental y la salud sistémica, respectivamente. Los datos in vitro e in vivo presentados en esta tesis sugieren que el nitrato puede modular la microbiota oral en aspectos que son beneficiosas para el huésped y, por lo tanto, podría considerarse una sustancia prebiótica para la microbiota oral. Además, los aislados reductores de nitratos pueden estimular los efectos beneficiosos del metabolismo del nitrato, sobre todo en personas con bajos niveles de estas bacterias. / [CA] S'ha estimat que obtenim més de les tres quartes parts del nitrat que ingerim de la fruita i la verdura. Els vegetals rics en nitrats inclouen verdures de fulla verda i uns certs tubercles (p. ex., remolatxes i raves). Les glàndules salivals concentren activament el nitrat plasmàtic, la qual cosa dona lloc a concentracions elevades de nitrat a la saliva (5 a 8 mm) després d'un menjar ric en nitrats. El nitrat és un factor ecològic que pot induir canvis ràpids en l'estructura i funció de les comunitats polimicrobianes. No obstant això, els efectes sobre la microbiota oral no s'han estudiat detalladament, mentre que un nombre limitat d'estudis previs a aquesta tesi indiquen que és probable que el nitrat siga beneficiós per a la salut bucal. L'objectiu d'aquesta tesi és, per tant, estudiar els canvis microbiològics induïts per nitrats i identificar possibles mecanismes d'homeòstasi generats per aquest compost, amb la finalitat de determinar si el nitrat pot considerar-se un prebiòtic per a la salut bucal. Un segon objectiu va ser aïllar soques reductores de nitrat i provar el seu potencial probiòtic in vitro. En el capítol 1, es va realitzar un estudi in vitro per a testar l'efecte del nitrat 6,5 mm en comunitats orals cultivades a partir de la saliva de 12 individus sans. En el capítol 2, es van obtindre 53 aïllats de bacteris reductors de nitrat i es va provar l'efecte de sis candidats a probiòtics en comunitats orals sanes cultivades a partir de saliva de diferents donants amb o sense nitrat 6,5 mm. En el capítol 3, es va estudiar l'efecte d'un extracte de remolatxa ric en nitrat sobre l'acidificació oral després d'un glopeig amb sucre en 24 individus sense càries actives. Es van prendre sobrenadants (capítols 1 i 2) o mostres de saliva (capítol 3) per a mesuraments de nitrat, nitrit, amoni, lactat i pH. A més, la composició bacteriana de la biopel·lícula in vitro i del pèl·let salivar es va determinar usant seqüenciació Illumina del RNAr 16S i/o qPCR del gènere nitratorreductor Rothia. Les dades demostren que el nitrat estimula el creixement dels gèneres beneficiosos Rothia i Neisseria en el nostre model in vitro, mentre que potencialment disminueix els bacteris associats a la càries, l'halitosi i la malaltia periodontal. A més a més, les dades in vitro i in vivo presentades en aquesta tesi indiquen que el nitrat pot limitar o previndre caigudes de pH quan els sucres són fermentats per la microbiota oral, un mecanisme de resiliència que podria ser estimulat pel consum d'extractes vegetals rics en nitrats. Els principals mecanismes d'amortiment del pH per part del nitrat són l'ús de àcid làctic durant la desnitrificació (observat tant in vivo com in vitro) i durant la reducció de nitrit a amoni, així com la producció potencial d'amoníac (observat in vitro). En aquesta tesi, els efectes del nitrat es van observar després de períodes curts, és a dir, després de 5-9 h d'incubació in vitro i 1-4 hores després de la ingesta del suplement de nitrat in vivo. Els estudis futurs haurien de centrar-se en els efectes longitudinals de la ingesta diària de nitrats. En aquesta tesi es van aïllar bacteris reductors de nitrat pertanyents als gèneres Rothia i Actinomyces. Una selecció d'aïllats de Rothia va augmentar l'ús de lactat i la capacitat de reducció de nitrats de les comunitats bucals, la qual cosa potencialment beneficiaria la salut dental i la salut sistèmica, respectivament. Les dades in vitro i in vivo presentats en aquesta tesi suggereixen que el nitrat pot modular la microbiota oral en aspectes que són beneficiosos per a l'hoste i, per tant, podria considerar-se una substància prebiòtica per a la microbiota oral. A més, els aïllats reductors de nitrats poden estimular els efectes beneficiosos del metabolisme del nitrat, sobretot en persones amb baixos nivells d'aquests bacteris. El nitrat i els bacteris reductors de nitrat són, per tant, components prometedors per a futurs productes de salut oral. / [EN] It has been estimated that we obtain over three quarters of dietary nitrate from vegetables and fruits. Nitrate-rich vegetable types include leafy greens and certain root vegetables (e.g., beetroots and radishes). The salivary glands actively concentrate plasma nitrate, leading to high salivary nitrate concentrations (5-8 mM) after a nitrate-rich meal. Nitrate is an ecological factor that can induce rapid changes in structure and function of polymicrobial communities. However, the effects on the oral microbiota have not been clarified, whilst a limited number of previous studies did indicate that nitrate is likely to be beneficial for oral health. The aim of this thesis was therefore to study nitrate-induced microbiome changes and identify potential mechanisms for nitrate-induced homeostasis, in order to determine if nitrate can be considered a prebiotic compound for oral health. A second aim was to isolate nitrate-reducing isolates and test their probiotic potential in vitro. In chapter 1, an in vitro study was set up testing the effect of 6.5 mM nitrate on oral communities grown from saliva of 12 healthy individuals. In chapter 2, fifty-three nitrate-reducing isolates were obtained and the effect of six probiotic candidates was tested on healthy oral communities grown from saliva of different donors with or without 6.5 mM nitrate. In chapter 3, the effects of nitrate-rich beetroot extracts on oral acidification after sugar rinsing was tested in 24 individuals without active caries. Supernatants (chapters 1 and 2) or saliva samples (chapter 3) were taken for nitrate, nitrite, ammonium, lactate and pH measurements. Additionally, the bacterial composition of in vitro biofilms and salivary pellets were determined using 16S rRNA gene Illumina sequencing and/or qPCR of the nitrate-reducing genus Rothia. We showed that nitrate stimulates the growth of the beneficial genera Rothia and Neisseria in our in vitro model, while potentially decreasing caries-, halitosis- and periodontal disease-associated bacteria. Additionally, the in vitro and in vivo data presented in this thesis indicate that nitrate can limit or prevent pH drops when sugars are fermented by the oral microbiota - a mechanism of resilience that could be stimulated by the consumption of nitrate-rich vegetable extracts. The main pH buffering mechanisms of nitrate were lactic acid usage during denitrification (observed both in vivo and in vitro) and during the reduction of nitrite to ammonium, as well as the potential production of ammonia (observed in vitro). In this thesis, the effects of nitrate were observed after short periods, i.e., after 5-9 h incubation in vitro and/or after 1-4 hours after nitrate supplement intake in vivo. Future studies should focus on the longitudinal effects of daily nitrate intake. In chapter 2, nitrate-reducing species belonging to the genera Rothia and Actinomyces were isolated. A selection of Rothia isolates increased lactate usage and nitrate reduction capacities of oral communities, potentially benefitting dental health and systemic health, respectively. The in vitro and in vivo data presented in the current thesis suggest that nitrate can modulate the oral microbiota in ways that are beneficial for the host and could thus be considered a prebiotic substance for the oral microbiota. Additionally, nitrate-reducing isolates can stimulate certain beneficial effects of nitrate metabolism. Nitrate and nitrate-reducing bacteria are thus promising components for future oral care products to prevent or treat oral diseases and this should be further investigated. / Rosier, BT. (2022). Nitrate as a Prebiotic and Nitrate-Reducing Bacteria as Probiotics for Oral Health [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181578 / Compendio
|
20 |
Denitrification in a Low Temperature Bioreactor System : Laboratory column studiesNordström, Albin January 2014 (has links)
Denitrification is a microbially-catalyzed reaction which reduces nitrate to N2 through a series of intermediate nitrogen compounds. Nitrate is a nutrient and its release into the environment may lead to eutrophication, depending on the amount that is released and the state of the recipient. The release of nitrate from the mining industry in Kiruna (Sweden) has been identified as an eutrophication risk, and a denitrifying bioreactor is to be constructed at the site to reduce the nitrate release.Since the denitrification rate decreases with temperature and the temperature in Kiruna during large parts of the year drops below 0˚C, the denitrifying bioreactor therefore has to be designed for the site-specific environment in terms of flow rate and hydraulic residence time. Laboratory column studies are used to study and determine the nitrate removal rate in a low temperature environment (5˚C) with pine wood chips as reactive matrix/ electron donor; the input solution had an average concentration of 35 mg NO3-N/L and a high sulfate concentration. Nitrate removal was studied as a function of hydraulic residence time and temperature. Parameters that were monitored include pH, alkalinity and concentrations of ammonium, nitrite and sulfate in the effluent from the columns. On three occasions, samples were gathered along the flow path in the columns (concentration profiles) such that changes in nitrate, nitrite, and occasionally ammonium concentration could be studied in relation to each other. The study concluded that a denitrifying bioreactor utilizing pine wood chips as the reactive matrix is a suitable option for nitrate treatment in a low temperature (5˚C) environment. Under the conditions of the study, effluent nitrate, nitrite, and ammonium concentrations are below limits established in legislation. Nitrate removal rates are given for zero-order nitrate reduction and overall first-order nitrate reduction, as the concentration profiles revealed a decrease in nitrate removal rate as nitrate concentration dropped below 3 mg NO3-N/L. / Nitrat är ett näringsämne som kan orsaka övergödning vid utsläpp, beroende på halterna och recipienten. Växterna som tar upp kväve kommer så småningom att dö och sjunka mot botten där de förmultnar. Förmultningen kräver syre, och vid ökad växtlighet så ökar även konsumtionen av syre då det finns mer organiskt material att bryta ned. Detta leder i slutändan till syrefria områden, där djurliv och växtlighet är mer begränsade. Nitratutsläpp från gruvindustrin i Kiruna har blivit identifierad som en potentiell övergödningsrisk och en denitrifierande bioreaktor ska därmed installeras för att minska utsläppen. Denitrifikation är en mikrobiell reaktion som reducerar nitrat till kvävgas genom en serie av intermediära kväveföreningar. En denitrifierande bioreaktor använder sig utav denitrifikation för att minska nitratkoncentrationer i vatten som passerar genom bioreaktorn som består av huvudsakligen; (1) bakterierna som sköter denitrifikationen, och (2) en kolkälla som fungerar som ”mat” till de denitrifierande bakterierna, Hastigheten varvid nitrat omvandlas till kvävgas genom denitrifikation, minskar med temperatur och den denitrifierande bioreaktorn måste därmed anpassas till omgivningen där den ska placeras med avseende på uppehållstid i reaktorn. Uppehållstiden måste vara tillräcklig för att minska nitratkoncentrationen till önskad nivå, men samtidigt så får uppehållstiden inte vara för lång då andra ämnen kan reagera och bilda ofördelaktiga produkter vid låga nitratkoncentrationer. Kolonnstudier i en låg-tempererad miljö (5˚C) är ett första steg för att studera hastigheten av nitratförbrukning i en sådan omgivning, och används i detta arbete med träflis av tall som kolkälla. Parametrar som påverkar, och varierar som ett resultat av, denitrifikation (exempelvis pH och sekundära föroreningar) övervakas. Hastigheten av nitratförbrukning som fås från kolonnstudierna kan sedan används som riktlinjer för konstruktionen av en denitrifierande bioreaktor i fältskala i Kiruna. Studiens slutsats är att en denitrifierande bioreaktor med träflis av tall som reaktivt medium är ett fungerande alternativ för nitrat reducering i en lågtempererad miljö (5˚C) då nitrat effektivt reduceras till under gränsvärden fastslagna i lag. Även andra potentiella biprodukter (exempelvis nitrit och ammonium) som kan resultera från den miljö som den denitrifierande bioreaktorn ger upphov till är under de gränsvärden som finns fastslagna i lag.
|
Page generated in 0.1147 seconds