• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 407
  • 141
  • 78
  • 39
  • 30
  • 14
  • 13
  • 12
  • 8
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 924
  • 117
  • 108
  • 107
  • 89
  • 83
  • 77
  • 75
  • 71
  • 67
  • 67
  • 60
  • 58
  • 58
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Synthesis of Bioactive Nitrogen Heterocycles and Functionalized Nanomaterials for Biological and Catalytic Applications

Krishnan, Anand 15 January 2015 (has links)
Submitted in fulfillment of the requirements of the Degree of Doctor of Technology: Chemistry,Durban University of Technology, 2014. / Aromatic heterocycles are highly important structural units found in a large number of biologically active natural compounds, pharmaceuticals and catalytic compounds. They have a crucial role in organic syntheses, which results in the generation of high value products. Among heterocycles, those containing nitrogen are the most indispensable structural motifs and are widely used against dreaded diseases such as Malaria, TB, HIV/AIDS and Cancer. The inclusion of highly electronegative atoms such as fluorine in these organic molecules render them very reactive towards proteins. Furthermore these molecules exhibit strong interactions with surfaces of quantum range particles of elemental gold. Various approaches for the synthesis of novel gold nanoparticles linked to potent bioactive molecules are documented and their application as drug delivery systems are of immense value to human health. Also many chemical and physical methods are available for the synthesis of gold, silver and palladium nanoparticles however these methods are usually laborious and produce toxic by-products. The green approach is to use plant extracts to synthesise various size and shape nanoparticles which could be used in biological and catalytic systems. A simple one-pot two component and three component reaction using formyl quinoline, 2-aminothiophenol, thiosemicarbazone and trifluoromethylbenzaldehyde as a reactant to synthesise quinoline, pyridine and pyran based bioactive small molecules; these products are a quinoline type bearing a benzothiazole moiety, quinoline thio semicarbazone ligand, fluorine substituted dihydro pyridine, fluorine substituted dihydropyran and fluorine substituted pyridine derivatives. In total, fifteen compounds were synthesized eleven of which were novel; all compounds were characterized by spectroscopic techniques. In vitro anti-bacterial activities of the synthesized compounds were investigated against a representative panel of pathogenic strains. Compounds 6, 7, 8, 11 and 13 exhibited excellent anti-bacterial activity compared with first line drugs. Potent p53–MDM2 interaction inhibitors 2-thio-1,2-dihydroquinoline-3-carbaldehyde thiosemicarbazone and fluorine substituted new pyridine scaffold were successfully identified by structure-based design. An efficient one-pot four component route to the synthesis of trifluorinated pyrrolophenanthroline and fluoroquinoline pyrrolophenanthrolines was designed. In this reaction 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquid (DMTIL) was used as a reaction medium; no catalyst was required. The structure of the pyrrolophenanthrolines was deduced by IR and NMR analysis. These compounds were studied with Bovine Serum Albumin (BSA) through molecular docking. Hydrophopic, electrostatic and hydrogen bonding interaction played a crucial role in the binding to sub domain of BSA. Interaction studies of DMTIL with BSA by emission, absorption, synchronous fluorescence, circular dichroism (CD) and three dimensional emission (3D) spectroscopic techniques were under taken. The results from emission titration experiments revealed the existence of a strong interaction between BSA and DMTIL ionic liquid. It showed that compounds with lesser number of hydrogen bonds are found to be more active which is attributed to hydrophobic interaction and electrostatic interaction which also played a vital role in DMTIL binding to sub domain IB of BSA. A novel copper-loaded boron nitride nanosheet (Cu/BN) catalyst was prepared and fully characterized. It was used as an efficient and chemoselective catalysts for the synthesis of α-aminophosphonates by the Kabachnik-Fields reaction; twenty one α-aminophosphonates were synthesised. The enhanced catalytic activity and product yield was attributed to the increase of surface acidity. Overall, this methodology offered competitive advantages such as recyclability of the catalyst without further purification or without using additives or cofactors, low catalyst loading, broad substrate applicability and high yields. The application of this new nanocatalyst in organic synthesis will provide a novel pathway for the synthesis of pharmaceutically important compounds. Gold nanoparticle surfaces were modified with self-assembled monolayers of important thiol and disulfide bioactive molecules since considerable interest is due to their potential application as anti-cancer agents. Herein, a carbazole was conjugated to lipoic acid by using an amide coupling catalyst HBTU and DIEA reaction. The structure of the carbazole thio octanic acid (CTN) was identified by IR and NMR. CTN was attached to the gold nanoparticles surface and the capping behaviour was characterized by UV-vis spectroscopy, TEM, DLS and FTIR. The cytotoxicity of CTNAuNPs on A549 cell lines was determined using the MTT assay. The results suggest CTN and CTNAuNPs possess anti-proliferative properties in the cancerous A549 cells. Furthermore a dual thiol ligand was synthesized by using equimolar 4-aminothiophenol (4-ATP) and amino oxadiazole thiol (AXT). This dual ligand was attached to the gold nanoparticles surface (DTAu) and the capping behaviour was characterized by UV-vis spectroscopy, TEM, DLS and FTIR. The cytotoxicity of DTAu on A549 cell lines was determined using the MTT assay. The results suggest dual ligands (4-ATP, AXT) and DTAu possess anti-proliferative properties in the cancerous A549 cells. South African indigenous plants and agroforestry waste were also used in the synthesis of silver, gold and palladium nanoparticles (NPs). Green protocols such as the use of environmentally benign solvents and non-hazardous reagents were an added advantage to physical and chemical means. Furthermore these reactions were rapid and the size and shape of the NPs could be manipulated by choosing the correct medium. The formulation of natural medicinal compounds capped onto NPs was assessed for their anti-cancer activity, in A549 lung cancer line, and catalytic reduction of dyes and nitrobenzene derivatives were studied. These NPs displayed: Significant cytotoxicity to lung cancer cells with minimal effect on normal healthy cells. Outstanding catalytic reduction of pharmaceutical and textile waste effluents such as dyes and nitro aromatic compounds. In addition, palladium nanoparticles containing capped Moringa olifera compounds were used effectively in the Suzuki coupling reaction of iodobenzene and phenylboronic acid. The reaction was rapid and was conducted in an aqueous medium.
152

Helping students remember : catalytic knowledge and knowledge outlines with visual mnemonics

Sundell, Erik January 2015 (has links)
To recall educational content from a lecture or textbook is an efficient way to learn (Karpicke & Blunt, 2011), which is referred to as retrieval practice (Karpicke & Roediger, 2008). It is currently seldom used among students (Karpicke, Butler, & Roediger, 2009), even though it provides benefits such as reducing test anxiety (Agarwal, D’Antonio, Roediger III, McDermott, & McDaniel, 2014), longer lasting memories (Karpicke & Blunt, 2011), and also benefit future learning (Pastötter & Bäuml, 2014). But, in order for retrieval practice to work efficiently, the students must not fail to recall too much of the educational content (Kornell, Bjork, & Garcia, 2011). So in order to help students use retrieval practice, I suggest they are provided with an outlining of the educational content, as this probably helps them remember and recall more of it. In this thesis, I conclude with an experimental approach that it is possible to help students remember such knowledge outlines, and how it can be done. Furthermore, since knowledge such as knowledge about the human anatomy, can be catalytic in the sense that it can enhance future learning (Hattie, 2009; Van Overschelde & Healy, 2001), I also suggest that catalytic knowledge should be identified and made memorable by educators using similar techniques as in this study.
153

Catalytic methane reformation and aromatization reaction studies via cavity ringdown spectroscopy and time of flight mass spectrometry

Li, Ling, 李凌 January 2007 (has links)
published_or_final_version / abstract / Chemistry / Doctoral / Doctor of Philosophy
154

Programming Molecular Devices using Nucleic Acid Hairpins

Garg, Sudhanshu January 2016 (has links)
<p>Nucleic Acid hairpins have been a subject of study for the last four decades. They are composed of single strand that is </p><p>hybridized to itself, and the central section forming an unhybridized loop. In nature, they stabilize single stranded RNA, serve as nucleation</p><p>sites for RNA folding, protein recognition signals, mRNA localization and regulation of mRNA degradation. On the other hand, </p><p>DNA hairpins in biological contexts have been studied with respect to forming cruciform structures that can regulate gene expression.</p><p>The use of DNA hairpins as fuel for synthetic molecular devices, including locomotion, was proposed and experimental demonstrated in 2003. They</p><p>were interesting because they bring to the table an on-demand energy/information supply mechanism. </p><p>The energy/information is hidden (from hybridization) in the hairpin’s loop, until required.</p><p>The energy/information is harnessed by opening the stem region, and exposing the single stranded loop section.</p><p>The loop region is now free for possible hybridization and help move the system into a thermodynamically favourable state.</p><p>The hidden energy and information coupled with </p><p>programmability provides another functionality, of selectively choosing what reactions to hide and </p><p>what reactions to allow to proceed, that helps develop a topological sequence of events. </p><p>Hairpins have been utilized as a source of fuel for many different DNA devices. In this thesis, we program four different </p><p>molecular devices using DNA hairpins, and experimentally validate them in the</p><p>laboratory. 1) The first device: A </p><p>novel enzyme-free autocatalytic self-replicating system composed entirely of DNA that operates isothermally. 2) The second</p><p>device: Time-Responsive Circuits using DNA have two properties: a) asynchronous: the final output is always correct </p><p>regardless of differences in the arrival time of different inputs.</p><p>b) renewable circuits which can be used multiple times without major degradation of the gate motifs </p><p>(so if the inputs change over time, the DNA-based circuit can re-compute the output correctly based on the new inputs).</p><p>3) The third device: Activatable tiles are a theoretical extension to the Tile assembly model that enhances </p><p>its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. </p><p>4) The fourth device: Controlled Amplification of DNA catalytic system: a device such that the amplification</p><p>of the system does not run uncontrollably until the system runs out of fuel, but instead achieves a finite</p><p>amount of gain.</p><p>Nucleic acid circuits with the ability </p><p>to perform complex logic operations have many potential practical applications, for example the ability to achieve point of care diagnostics.</p><p>We discuss the designs of our DNA Hairpin molecular devices, the results we have obtained, and the challenges we have overcome</p><p>to make these truly functional.</p> / Dissertation
155

Experimental Investigations of High Pressure Catalytic Combustion for Gas Turbine Applications

Jayasuriya, Jeevan January 2013 (has links)
This work is devoted to generate knowledge and high quality experimental data of catalytic combustion at operational gas turbine conditions. The initial task of the thesis work was to design and construct a high pressure combustion test facility, where the catalytic combustion experiments can be performed at real gas turbine conditions. With this in mind, a highly advanced combustion test facility has been designed, constructed and tested. This test facility is capable of simulating combustion conditions relevant to a wide range of operating gas turbine conditions and different kinds of fuel gases. The shape of the combustor (test section) is similar to a “can” type gas turbine combustor, but with significant differences in its type of operation. The test combustor is expected to operate at near adiabatic combustion conditions and there will be no additions of cooling, dilution or secondary supply of air into the combustion process. The geometry of the combustor consists of three main zones such as air/fuel mixing zone, catalytic reaction zone and downstream gas phase reaction zone with no difference of the mass flow at inlet and exit. The maximum capacity of the test facility is 100 kW (fuel power) and the maximum air flow rate is 100g/s. The significant features of the test facility are counted as its operational pressure range (1 – 35 atm), air inlet temperatures (100 – 650 °C), fuel flexibility (LHV 4 - 40 MJ/m3) and air humidity (0 – 30% kg/kg of air). Given these features, combustion could be performed at any desired pressure up to 35 bars while controlling other parameters independently. Fuel flexibility of the applications was also taken into consideration in the design phase and proper measures have been taken in order to utilize two types of targeted fuels, methane and gasified biomass. Experimental results presented in this thesis are the operational performances of highly active precious metal catalysts (also called as ignition catalysts) and combinations of precious metal, perovskites and hexaaluminate catalysts (also called as fully catalytic configuration). Experiments were performed on different catalytic combustor configurations of various types of catalysts with methane and simulated gasified biomass over the full range of pressure. The types of catalysts considered on the combustor configurations are palladium on alumina (Pd/AL2O3), palladium lanthanum hexaaluminate (PdLaAl11O19), platinum on alumina (Pt/AL2O3),and palladium:platinum bi-metal on alumina (Pd:Pt/AL2O3). The influence of pressure, inlet temperature, flow velocity and air fuel ratio on the ignition, combustion stability and emission generation on the catalytic system were investigated and presented. Combustion catalysts were developed and provided mainly by the project partner, the Division of Chemical Technology, KTH. Division of Chemical Reaction Technology, KTH and Istituto di Ricerche sulla Combustione (CNR) Italy were also collaborated with some of the experimental investigations by providing specific types of catalysts developed by them for the specific conditions of gas turbine requirements. / <p>QC 20131125</p>
156

Catalytic enantioselective synthesis of tertiary propargylic alcohols : Al-catalyzed asymmetric alkylation of pyridyl-ynones with dialkylzinc reagents

Friel, Donna Kay January 2008 (has links)
Thesis advisor: Amir H. Hoveyda / General and efficient methods for catalytic enantioselective synthesis of tertiary alcohols prepared by the addition of C-Metal nucleophiles to ketones. / Thesis (MS) — Boston College, 2008. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
157

Supported Pd and Pd/Alloy Membranes for Water-Gas Shift Catalytic Membrane Reactors

Augustine, Alexander Sullivan 08 April 2013 (has links)
This work describes the application of porous metal supported Pd-membranes to the water-gas shift catalytic membrane reactor in the context of its potential application to the Integrated Gasification Combined Cycle (IGCC) process. The objective of this work was to develop a better understanding of Pd-membrane fabrication techniques, water-gas shift catalytic membrane reactor operation, and long-term behavior of the Pd-membranes under water-gas shift conditions. Thin (1.5 - 16 um) Pd-membranes were prepared by electroless deposition techniques on porous metal supports by previously developed methods. Pd-membranes were installed into stainless steel modules and utilized for mixed gas separation (H2/inert, H2/H2O, dry syngas, and wet syngas) at 350 - 450C and 14.5 atma to investigate boundary layer mass transfer resistance and surface inhibition. Pd-membranes were also installed into stainless steel modules with iron-chrome oxide catalyst and tested under water-gas shift conditions to investigate membrane reactor operation in the high pressure (5.0 - 14.6 atma) and high temperature (300 - 500C) regime. After the establishment of appropriate operating conditions, long-term testing was conducted to determine the membrane stability through He leak growth analysis and characterization by SEM and XRD. Pd and Pd/Au-alloy membranes were also investigated for their tolerance to 1 - 20 ppmv of H2S in syngas over extended periods at 400C and 14.0 atma. Water-gas shift catalytic membrane reactor operating parameters were investigated with a focus on high pressure conditions such that high H2 recovery was possible without a sweep gas. With regard to the feed composition, it was desirable to operate at a low H2O/CO ratio for higher H2 recovery, but restrained by the potential for coke formation on the membrane surface, which occurred at a H2O/CO ratio lower than 2.6 at 400C. The application of the Pd-membranes resulted in high CO conversion and H2 recovery for the high temperature (400 - 500C) water-gas shift reaction which then enabled high throughput. Operating at high temperature also resulted in higher membrane permeance and less Pd-surface inhibition by CO and H2O. The water-gas shift catalytic membrane reactor was capable of stable CO conversion and H2 recovery (96% and 88% respectively) at 400C over 900 hours of reaction testing, and 2,500 hours of overall testing of the Pd-membrane. When 2 ppmv H2S was introduced into the membrane reactor, a stable CO conversion of 96% and H2 recovery of 78% were observed over 230 hours. Furthermore, a Pd90Au10-membrane was effective for mixed gas separation with up to 20 ppmv H2S present, achieving a stable H2 flux of 7.8 m3/m2-h with a moderate H2 recovery of 44%. The long-term stability under high pressure reaction conditions represents a breakthrough in Pd-membrane utilization.
158

Diferentes rotas para promoção de mesoporosidade em zeólita Y para aplicação em catálise

Melo, James Henrique dos Santos de January 2017 (has links)
As zeólitas são amplamente utilizadas pela indústria em diferentes processos. Nos processos relacionados à conversão térmica do carvão, as zeólitas encontram aplicação, por exemplo, como suporte de catalisadores para a Síntese de Fischer-Tropsch, ou mesmo como adsorventes de efluentes líquidos ou de gases poluentes. No entanto, a microporosidade da zeólita limita a difusão dos produtos e dos reagentes ocasionando um transporte de massa lento e um longo tempo de residência, aumentando a possibilidade de reações secundárias, formação de coque e desativação do catalisador. Uma das maneiras de superar essas limitações é a introdução de um sistema secundário de poros, através da reestruturação da rede cristalina com modeladores de estruturas ou ataques químicos básicos e ácidos nas zeólitas de modo a formar materiais hierárquicos ou mesoporosos. Neste trabalho, foram investigadas três rotas para promover a mesoporosidade em zeólitas do tipo Y. Primeiramente foi realizada a síntese da zeólita hierárquica através da modificação com líquidos iônicos. O segundo método empregado foi o processo de dessilicação, utilizando hidróxido de sódio como base e, por último, a desaluminação com ácido oxálico. As zeólitas mesoporosas foram caracterizadas através de análises de área específica (BET), distribuição de tamanho de poros (BJH), difração de raios X (DRX) e redução à temperatura programada (TPR-H2). Dentre os métodos adotados, os resultados para DRX e BET mostraram que o tratamento de dessilicação destruiu a cristalinidade da zeólita, acarretando no abandono dessa rota de investigação. A síntese com líquido iônico se mostrou eficiente para a formação de mesoporos e, conforme a distribuição de tamanho de poros, seu sistema apresentou-se ordenado de maneira hierarquizada. A desaluminação não danificou a estrutura da zeólita, porém foi obtido um aumento pouco expressivo em seu número de mesoporos. A reação de esterificação foi utilizada, como modelo, para avaliar o efeito dos mesoporos sobre a atividade catalítica da reação. A reação de esterificação ocorreu a 70°C por 1 h, utilizando ácido acético e álcoois com diferentes tamanhos de moléculas. Em comparação à zeólita de partida (CBV720 - Zeolyst), a criação da mesoporosidade na zeólita através dos líquidos iônicos resultou em um aumentou na conversão de ácido acético para os álcoois etílico (em 17,65%), isopropílico (em 8,42%) e isobutílico (em 2%). Para a zeólita mesoporosa sintetizada por desaluminação, houve um acréscimo de 10,93% e 2,11% na conversão para os álcoois etílico e isopropílico, respectivamente. Os resultados mostraram que a presença de mesoporosidade influenciou positivamente o desempenho das zeólitas Y na reação modelo de esterificação, mostrando-se um excelente mecanismo a ser aplicado para facilitar o transporte de massa nos poros da zeólita, especialmente para a síntese feita com o emprego de líquidos iônicos. / Zeolites are widely used by industry in different processes. In processes related to the thermal conversion of coal, the zeolites find application, for example, as catalyst support for the Fischer-Tropsch Synthesis, or even as adsorbents of liquid effluents or pollutant gases. However, the small pore diameter of the zeolite limits the diffusion of the products and the reactants causing slow mass transport and a long residence time that increase the possibility of secondary reactions, coke formation and catalyst deactivation. One of the ways to overcome these limitations is the introduction of a secondary pore system by restructuring the crystal lattice with structural modellers or basic chemical and acidic attacks on zeolites to form hierarchical or mesoporous materials. In this work, three routes were investigated to promote mesoporosity in Y type zeolites. First, the hierarchical zeolite was synthesized through the modification with ionic liquids. The second method used was the desilication process, using sodium hydroxide as the base and, finally, the desalumination method with oxalic acid. The mesoporous zeolites were characterized by specific surface area analysis (BET), pore size distribution (BJH), X-ray diffraction (XRD) and temperature programmed reduction (TPR-H2). Among the methods adopted, the results for XRD and BET showed that the desilication treatment destroyed the crystallinity of the zeolite, leading to the abandonment of this research route. The synthesis with ionic liquid was efficient for the formation of mesopores and, according to the pore size distribution, its system was hierarchically ordered. The desalumination did not damage the zeolite structure, but a small increase in its number of mesopores was noted. The esterification reaction was used to evaluate the effect of mesopores on the catalytic activityof the reaction. The esterification reaction occurred at 70°C for 1 h using acetic acid and alcohols with different sizes of molecules. Compared to the starting zeolite (CBV720 - Zeolyst), the creation of mesoporosity in the zeolite through the ionic liquids resulted in an increase in the conversion of acetic acid for the reaction conducted with ethyl (17.65%), isopropyl (8.42%) and isobutyl alcohols (2%). For the mesoporous zeolite synthesized by desalumination, there was an increase of 10.93% and 2.11% in the conversion to the ethyl and isopropyl alcohols, respectively. The results showed that the presence of mesoporosity positively influenced the performance of the zeolites Y in the esterification model reaction, showing an excellent mechanism to be applied to facilitate the mass transport in the zeolite pores, especially for the synthesis made with the use of ionic liquids.
159

Vapor-Phase Catalytic Upgrading of Biomass Pyrolysis Products through Aldol Condensation and Hydrodeoxygenation for the Formation of Fuel-Range Hydrocarbons

Richard S. Caulkins (5930567) 16 January 2019 (has links)
<div>Biomass-derived fuels have long been considered as a possible replacement for traditional liquid fuels derived from petroleum. However, biomass as a feedstock requires significant refinement prior to application as a liquid fuel. The H2Bioil process has previously been proposed in which biomass is pyrolyzed and the resulting vapors are passed over a catalyst bed for upgrading to hydrocarbon products in a hydrogen environment [1]. A PtMo catalyst has been developed for the complete hydrodeoxygenation (HDO) of biomass pyrolysis vapors to hydrocarbons [2]. However, the product hydrocarbons contain a large fraction of molecules smaller than C4 which would not be suitable as liquid fuels. In fast hydropyrolysis of poplar followed by hydrodeoxygenation over a PtMo/MWCNT catalyst at 25 bar H2 and 300oC, only 32.1% of carbon is captured in C4 – C8 products; 21.7% of carbon is captured in C1 – C3 hydrocarbons [2]. Here, approaches are examined to increase selectivity of H2Bioil to desired products. Aldol condensation catalysts could be used prior to the HDO catalyst in order to increase the carbon number of products. These products would then be hydrodeoxygenated to hydrocarbons of greater average carbon number than with an HDO catalyst alone. Application of a 2% Cu/TiO2 catalyst to a classic aldehyde model compound, butanal, shows high selectivity towards aldol condensation products at low H2 pressures. In more complex systems which more closely resemble biomass pyrolysis vapors, this catalyst also shows significant yields to aldol condensation products, but substantial carbon losses presumed to be due to coke formation are observed. Both glycolaldehyde, a significant product of biomass pyrolysis, and cellulose, a component polymer of biomass, have been pyrolyzed and passed through aldol condensation followed by hydrodeoxygenation in a pulsed fixed-bed microreactor. Glycolaldehyde aldol condensation resulted in the formation of products in the C2-C¬9 range, while the major aldol condensation products observed from cellulose were C7 and C8 products. Carbon losses in glycolaldehyde aldol condensation were reduced under operation at increased hydrogen partial pressures, supporting the hypothesis that increasing selectivity to hydrogenation products can reduce coke formation from primary aldol condensation products. </div><div>The use of feeds which have undergone genetic modification and/or pretreatment by other catalytic processes may also lead to improvements in overall product selectivity. The influence of genetic modifications to poplar lignin on the pyrolysis plus HDO process are investigated, and it is found that these materials have no effect on the final product distribution. The product distribution from a poplar sample which has had lignin catalytically removed is also examined, with the conclusion that the product distribution strongly resembles that of cellulose, however the lignin-removed sample shows high selectivity towards char which is not seen from cellulose. </div><div><br></div>
160

Complexos de rutênio com polipiridinas e fosfinas como ligantes: catalisadores em oxidações e reduções de compostos orgânicos / Phosphine polypyridyl ruthenium complexes: catalysts in oxidations and reductions of organic compounds

Sussuchi, Eliana Midori 14 October 2005 (has links)
O trabalho apresentado nesta tese é direcionado à preparação e caracterização de compostos aqua e diaquacomplexos polipiridínicos de rutênio(II). A partir da síntese do ligante tripiridina substituida (totpy) e dois ligantes bipiridínicos substituídos (Meo-bipy e NO2-bipy), obtiveram dois grupos de complexos, diferenciando-se em relação ao ligante bidentado fosfina: nonoaqua complexo [Ru(L)(totpy)(OH2)](PF6)2 e Ru(L)2(totpy)(OH2)](PF6)2 [totpy = 4\'-(4-toluil)-2,2\':6\',2\"-tripiridina, L = ligantes fosfínicos] (1) e diaqua complexo [Ru(L)(x-bipy)(OH2)2](PF6)2 (x-bipy = 4,4-dimetoxi-2,2-bipiridina e 4,4-dinitro-2,2-bipiridina, L = ligante bidentado) (2). As caracterizações dos compostos foram realizadas por microanálise, técnicas eletroquímicas (voltametria cíclica e pulso diferencial), EPR, RMN 31P e espectroscopia do u.v. visível. Em eletrocatálise homogênea foi estudado o comportamento eletroquímico dos complexos realizados em diferentes pHs, e suas habilidades como possíveis catalisadores foram testadas em experimentos de eletrooxidações de substratos orgânicos com diferentes funções (álcoois, aromáticos e alifáticos, alquilaromáticos, olefinas e éteres). Nos estudos de eletrocatálise heterogênea foi realizada a imobilização dos complexos em superfícies de eletrodos para a obtenção de eletrodos modificados através de eletrodos de pasta de carbono e eletrodos de carbono vítreo modificados com o monômero [4-(1H-pirrol-1-il)ácido benzóico]; e os testes de reatividade dos eletrodos foram realizados com alguns substratos utilizados em eletrocatálise homogênea. Nossos resultados mostraram que o sistema eletrocatalítico baseado na geração eletroquímica do [Ru(P-P)(totpy)(O)]2+ e [Ru(P-P)(bpy)(O2)]2+ são potencialmente capaz de procedimentos gerais e seletivos para a oxidação de uma série de moléculas orgânicas. A habilidade dos complexos de rutênio para atuar como catalisadores, apresentam dois fatores chave: (a) reatividade característica, através da acessibilidade múltipla de transferência de prótons e elétrons; (b) estabilidade coordenativa nos vários estados de oxidação. As reações de transferência de hidrogênio (reações de reduções) utilizando os aqua/diaqua complexos e seus precursores foram investigadas sob condições similares às descritas em literatura; usando como doador de hidrogênio o isopropanol. Altos valores de conversão de acetofena em 1-feniletanol e carvona em carveol, foram obtidos por alguns sistemas, entretanto, observa-se que existem diferenças acentuadas nos tempos de reações. Os rendimentos elevados (exceção aos compostos com ligantes NO2-bipy) comprovam que o uso de ligantes mistos fósforo-nitrogênio leva também a um aumento da atividade catalítica, e que possivelmente os outros ligantes coordenados ao complexo não interferem na atividade catalítica de modo significante. / In this work polypyridyl aquacomplexes of ruthenium(II) were synthesized and applied in electrooxidations or electrocatalytic oxidations of organic compounds and reduction reactions of ketones. Monoaquacomplexes of ruthenium [Ru(P-P)(totpy)(OH2)](PF6)2, [Ru(PP) 2(totpy)(OH2)](PF6)2 [totpy = 4\'-(4-tolyl)-2,2\':6\',2\"-terpyridine, P-P = phosphine ligand] and diaquacomplexes of ruthenium [Ru(P-P)(x-bipy)(OH2)2](PF6)2 (x-bipy = 4,4-dimethoxy-2,2- bipyridine; 4,4-dinitro-2,2-bipyridine; P-P = phosphine ligand) were synthesized. The complexes were characterized by voltammetric and spectroscopic methods and microanalysis. The complexes were used in electrooxidations of organic compounds with different functional groups. Benzyl alcohol was oxidized to benzaldehyde, cyclohexene to 2- cyclohexen-1-one, 1-pentanol to 1-pentanal, cyclohexanol to cyclohexanone, 1,2-butanediol to 1-hidroxi-2-butanone and 1,4-butanediol to -butyrolactone. Selectivity and good yields were obtained in the electrooxidations. Modified electrodes were obtained by incorporating the complexes to carbon paste electrode, and to poly-[4-(1H-pyrrol-1-yl)benzoic acid] which were deposited by anodic electropolimerization on glassy carbon electrode. Some complexes were used as catalysts in hydrogenation reactions of ketones, very good results were obtained in the conversion of acetophenone to 1-phenylethanol, and of carvone to carveol.

Page generated in 0.0542 seconds