• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 57
  • 30
  • 29
  • 16
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 481
  • 148
  • 132
  • 73
  • 72
  • 63
  • 47
  • 46
  • 34
  • 33
  • 32
  • 32
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

On the Classification of the R-separable webs for the Laplace equation in E^3

Chanachowicz, Mark 16 April 2008 (has links)
In the first two Chapters I outline the theory and background of separation of variables as an ansatz for solving fundamental partial differential equations (pdes) in Mathematical Physics. Two fundamental approaches will be highlighted, and more modern approaches discussed. In Chapter 3 I calculate the general trace-free conformal Killing tensor defined in Euclidean space - from the sum of symmetric tensor products of conformal Killing vectors. In Chapter 4 I determine the subcases with rotational symmetry and recover known examples pertaining to classical rotational coordinates. In Chapter 5 I obtain the induced action of the conformal group on the space of trace-free conformal Killing tensors. In Chapter 6 I use the invariants of trace-free conformal Killing tensors under the action of the conformal group to characterize, up to equivalence, the symmetric R-separable webs in E^3 that permit conformal separation of variables of the fundamental pdes in Mathematical Physics. In Chapter 7 the asymmetric R-separable metrics are obtained via a study of the separability conditions for the conformally invariant Laplace equation.
82

On the Classification of the R-separable webs for the Laplace equation in E^3

Chanachowicz, Mark 16 April 2008 (has links)
In the first two Chapters I outline the theory and background of separation of variables as an ansatz for solving fundamental partial differential equations (pdes) in Mathematical Physics. Two fundamental approaches will be highlighted, and more modern approaches discussed. In Chapter 3 I calculate the general trace-free conformal Killing tensor defined in Euclidean space - from the sum of symmetric tensor products of conformal Killing vectors. In Chapter 4 I determine the subcases with rotational symmetry and recover known examples pertaining to classical rotational coordinates. In Chapter 5 I obtain the induced action of the conformal group on the space of trace-free conformal Killing tensors. In Chapter 6 I use the invariants of trace-free conformal Killing tensors under the action of the conformal group to characterize, up to equivalence, the symmetric R-separable webs in E^3 that permit conformal separation of variables of the fundamental pdes in Mathematical Physics. In Chapter 7 the asymmetric R-separable metrics are obtained via a study of the separability conditions for the conformally invariant Laplace equation.
83

Conformal Symmetry In Field Theory

Huyal, Ulas 01 February 2011 (has links) (PDF)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
84

Aspects of trace anomaly in perturbation theory and beyond

Prochazka, Vladimir January 2017 (has links)
In this thesis we study the connection between conformal symmetry breaking and the the renormalization group. In the first chapter we review the main properties of conformal field theories (CFTs), Wilsonian RG and describe how renormalization induces a flow between different CFTs. The prominent role is given to the trace of energy-momentum tensor (TEMT) as a measure for conformal symmetry violation. Scaling properties of supersymmetric gauge theories are also reviewed . In the second chapter the quantum action principle is introduced as a scheme for renormalizing composite operators. The framework is then applied to derive conditions for UV finiteness of two-point correlators of composite operators with special emphasis on TEMT. We then proceed to discuss the application of the Feynman-Hellmann theorem to evaluate gluon condensates. In the third chapter the basic elements the Trace anomaly on curved space are examined. The finiteness results from Chapter 2 are given physical meaning in relation with the RG flow of the geometrical quantity ~ d (coefficient of □R in the anomaly). The last chapter is dedicated to the a-theorem. First we apply some of the results derived in Chapter 3 to extend the known perturbative calculation for the flow of the central charge βa for gauge theories with Banks-Zaks fixed point. In the last part we review the main ideas of the recent proof of the a-theorem by Komargodski and Schwimmer and apply their formalism to re-derive the known non-perturbative formula for ∆ βa of SUSY conformal window theories.
85

Conformal bootstrap in two-dimensional conformal field theories with with non-diagonal spectrums / Bootstrap conforme en théorie conforme bidimensionnelle avec spectre non-diagonal

Migliaccio Chamorro, Santiago 10 October 2018 (has links)
La symétrie conforme impose de très fortes contraintes sur les théories quantiques des champs. En deux dimensions, l’algèbre des symétries conformes est infinie, et les théories conformes bidimensionnelles peuvent être complètement résolubles, dans le sens où toutes leurs fonctions de corrélation peuvent être calculées. Ces théories ont un grand domaine d'application, de la théorie des cordes jusqu'aux systèmes critiques en physique statistique, et elles ont été largement étudiées pendant les dernières décennies.Dans cette thèse nous étudions les théories conformes bidimensionnelles dont l’algèbre de symétrie est celle de Virasoro, en suivant l'approche connue sous le nom de bootstrap conforme. Sous l'hypothèse de l'existence de champs dégénérés, nous généralisons le bootstrap conforme analytique aux théories avec des spectres non-diagonaux. Nous écrivons les équations qui déterminent les constantes de structure, et nous trouvons des solutions explicites en termes de fonctions spéciales. Nous validons ces résultats en faisant des calculs numériques des fonctions de corrélation à quatre points dans des modèles minimaux diagonaux et non-diagonaux, et en vérifiant que la symétrie de croisement est respectée.En outre, nous construisons une proposition pour une famille de théories conformes non-diagonales et non-rationnelles pour toute charge centrale telle que Re(c) < 13. Cette proposition est motivée par les limites des spectres des modèles minimaux de la série D. Nous réalisons des calculs numériques des fonctions à quatre points dans ces théories, et nous trouvons qu'elles obéissent à la symétrie de croisement. Ces théories peuvent être interprétées comme des extensions non-diagonales de la théorie de Liouville. / Conformal symmetry imposes very strong constraints on quantum field theories. In two dimensions, the conformal symmetry algebra is infinite-dimensional, and two-dimensional conformal field theories can be completely solvable, in the sense that all their correlation functions may be computed. These theories have an ample range of applications, from string theory to critical phenomena in statistical physics, and they have been widely studied during the last decades.In this thesis we study two-dimensional conformal field theories with Virasoro algebra symmetry, following the conformal bootstrap approach. Under the assumption that degenerate fields exist, we provide an extension of the analytic conformal bootstrap method to theories with non-diagonal spectrums. We write the equations that determine structure constants, and find explicit solutions in terms of special functions. We validate this results by numerically computing four-point functions in diagonal and non-diagonal minimal models, and verifying that crossing symmetry is satisfied.In addition, we build a proposal for a family of non-diagonal, non-rational conformal field theories for any central charges such that Re(c) < 13. This proposal is motivated by taking limits of the spectrum of D-series minimal models. We perform numerical computations of four-point functions in these theories, and find that they satisfy crossing symmetry. These theories may be understood as non-diagonal extensions of Liouville theory.
86

Geometric classification of 4d rank-1 N=2 superconformal field theories

Lotito, Matteo 29 October 2018 (has links)
No description available.
87

Geometric constructions and structures associated with twistor spinors on pseudo-Riemannian conformal manifolds

Lischewski, Andree 16 February 2015 (has links)
Die Arbeit untersucht lokale Geometrien, die Twistorspinoren zulassen auf pseudo-Riemannschen Mannigfaltigkeiten beliebiger Signatur. Hierzu entwickeln wir die benötigten Methoden, nämlich das konforme Traktorkalkül, welches eine konform-invariante Beschreibung von Twistorspinoren als parallele Objekte ermöglicht, weiter. In diesem Zusammenhang ist unser erstes zentrales Resultat ein Klassifikationssatz für konforme Strukturen, deren Holonomiegruppen einen total ausgearteten Unterraum beliebiger Dimension invariant lassen. Hierauf aufbauend können wir einen partiellen Klassifikationssatz für konforme Strukturen mit Twistorspinoren beweisen. Weiterhin studieren wir die Nullstellenmenge eines Twistorspinors unter Nutzung der Theorie der Orbitzerlegungen für parabolische Geometrien. Wir können die lokale geometrische Struktur der Nullstellenmenge vollständig beschreiben und zeigen, dass lokal jeder Twistorspinor mit Nullstelle konform äquivalent zu einem parallelem Spinor ist. Eine Anwendung dieser Resultate auf niedrig-dimensionale Split-Signaturen führt zu einer vollständigen geometrischen Beschreibung von Mannigfaltigkeiten mit nicht-generischen Twistorspinoren in den Signaturen (3,2) und (3,3) durch parallele Spinoren, was die schon bekannte Analyse des generischen Falls komplementiert. Darüberhinaus wenden wir das Traktorkalkül an, um einer konformen Spin- Mannigfaltigkeit auf natürliche Weise eine konforme Superalgebra zuzuordnen. Dieser Zugang führt zu verschiedenen Resultaten, die algebraische Eigenschaften dieser Superalgebra mit speziellen Geometrien auf der zugrundeliegenden Mannigfaltigkeit in Verbindung bringen. Weiterhin erhält man so neue Konstruktionsprinzipien für Twistorspinoren und konforme Killingformen. Zuletzt führen wir den Begriff der konformen Spin-c-Geometrie ein. Unter anderem liefern spezielle Spin-c-Twistorspinoren eine neue Charakterisierung von Fefferman-Räumen. / The present thesis studies local geometries admitting twistor spinors on pseudo- Riemannian manifolds of arbitrary signature. To this end, we refine and extend the necessary machinery of first prolongation of conformal structures and conformal tractor calculus which allows a conformally-invariant description of twistor spinors as parallel objects. In this context, our first main theorem is a classification result for conformal geometries whose conformal holonomy group admits a totally degenerate invariant subspace of arbitrary dimension. Based on this we are able to prove a partial classification result for conformal structures admitting twistor spinors. Moreover, we study the zero set of a twistor spinor using the theory of curved orbit decompositions for parabolic geometries. We can completely describe the local geometric structure of the zero set and show that locally every twistor spinor with zero is equivalent to a parallel spinor off the zero set. An application of these results in low-dimensional split-signatures leads to a complete geometric description of manifolds admitting non-generic twistor spinors in signatures (3,2) and (3,3) in terms of parallel spinors which complements the well-known analysis of the generic case. Moreover, we apply tractor calculus for the construction of a conformal superalgebra naturally associated to a conformal spin structure. This approach leads to various results linking algebraic properties of the superalgebra to special geometric structures on the underlying manifold. It also exhibits new construction principles for twistor spinors and conformal Killing forms. Finally, we introduce and elaborate on the notion of conformal Spin-c-geometry. Among other aspects, this gives rise to a new characterization of Fefferman spaces in terms of distinguished Spin-c-twistor spinors.
88

Conformal Bootstrap : Old and New

Kaviraj, Apratim January 2017 (has links) (PDF)
Conformal Field Theories (CFT) are Quantum Field Theories characterized by enhanced (conformal) symmetries. They are interesting to Theoretical Physicists because they occur at critical points in phase transitions of various systems and also in the world sheet formulation of String Theory. CFTs allow Operator Product Expansion (OPE) in their correlators. The idea of Conformal Bootstrap is to solely use the conformal symmetries and crossing symmetry in the OPE to solve a conformal led theory and not explicitly use a lagrangian. Solving a CFT is equivalent to obtaining the anomalous dimensions and OPE coe client’s of the operators. The work presented in this thesis shows how ideas of bootstrap can be used to get analytic results for dimensions and OPE coe client’s of various operators in CFTs. In the conventional bootstrap program, the OPE in the direct (s-) channel is compared with the OPE of a crossed (t-) channel. This requirement of crossing symmetry is called the bootstrap equation. The flow of logic is somewhat reversed in the \new" idea that is formulated in this thesis. The trick is to expand a CFT correlator in terms of Witten diagrams, in all channels. This is a manifestly crossing symmetric description, and is in contrast to the usual expansion in terms of conformal blocks, which is in only one channel. For convenience we work with the Mellin transforms of Witten diagrams. For consistency of the Witten diagrams expansion with the conformal block expansion in a certain channel, we require the satisfaction of some equations, which we call the bootstrap equations in Mellin space. This scheme was rest chalked out by Polyakov in 1973, where he proposed the use of \unitary amplitudes" to expand a correlator. The unitary amplitudes had similar symmetry and analytic properties as the Witten diagrams. Even though he did not take his idea forward, replacing unitary amplitudes with Witten diagrams seems to work very well for obtaining analytic results. The working of bootstrap equations in Mellin space is demonstrated for the 4 Wilson-Fisher fixed point in d = 4 , O(N) theory at Wilson-Fisher point (in d = 4 ), as well as with large N (in general d), and large spin operators in strongly coupled and weakly coupled theories. For the case of global symmetry we have also analysed the somewhat unexplored case of cubic anisotropy. The results are obtained as perturbative series in , 1=N, or 1=` as applicable, and they are consistent with known results in literature. We also obtain various new results, for instance the OPE coe client’s of general higher spin operators. These results are otherwise very di cult to end from Feynman diagrams, but in this approach they come out very simply, essentially by solving some algebraic equations. We also show the use of the conventional bootstrap strategy, for analytically obtaining anomalous dimensions of large spin operators having higher twists, in a O(N) theory, by working in the light cone limit. One can question the validity of the proposal of using Witten diagrams to expand a correlator. One such issue is convergence of the sum over Witten diagrams. Convergence can be shown to hold for the operator spectrum we have worked with. Also there are operators that might upset convergence under some conditions. Resolutions of such cases, and ways to improve convergence have also been discussed. The conventional bootstrap method has been very successful in giving numerical results in nonpertur-bative CFTs, like the 3 dimensional Ising model. Numerical analysis can also be made possible with the new bootstrap in Mellin space approach. Having a convergent basis of expansion improves the prospect of numeric. The goal is to formulate a bootstrap scheme that, under a single framework, can make most of all the CFT properties. It should be systematic, so that one can obtain anomalous dimensions and OPE coe client’s of all operators up to any desired order, and works for all strongly/weakly coupled and perturbative/nonpertur-bative CFTS, both analytically and numerically. Finally, the use of Witten diagrams also indicates the possibility of Ising CFT or weakly coupled CFTs having connections with AdS/CFT, and hence String Theory. It does seem we have a right direction towards achieving our goal.
89

ANALYSIS AND DESIGN OF CONFORMAL PRINTED ANTENNAS

Hall, Richard C., Wu, Doris I. 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / Conformal printed antennas of arbitrary shape are used for telemetry applications on high velocity vehicles due to their small size and light weight. The design of these antennas is difficult, however, since there are few accurate analytical models that take the effects of curvature into account. This paper discusses a computer aided design (CAD) tool for arbitrarily shaped printed antennas on cylindrical structures based on a rigorous analytical model. The tool is combined with a graphical user interface and can help antenna designers achieve close to optimal performance. An overview of the mathematical model is given here and the CAD tool is used to highlight the effects of curvature on printed antenna performance. Methods of obtaining circular polarization are reviewed.
90

Interdigitated capacitor sensor for complex dielectric constant sensing

Zhang, Sheng, 1986- 26 October 2010 (has links)
The objective of this thesis is to develop a complex dielectric properties sensor using interdigitated capacitor (IDC) structure. IDCs are easy to fabricate and because of its planar structure, it can be easily integrated with other sensing components and signal processing electronics. The design, fabrication, modeling, and testing of IDC sensors are presented in this thesis. Design parameters and their influence on sensor's output signals are discussed. Previous IDC models are reviewed and the limitations are studied. A new equivalent circuit model based on the fringing electric field distribution and a novel iterative data extraction algorithm combining Finite-Element Method (FEM) and the equivalent circuit model is studied. Results suggest that the algorithm can accurately extract relatively low dielectric constant and conductivity of material under test (MUT) from measured impedance data. / text

Page generated in 0.0527 seconds