• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 35
  • 16
  • 15
  • 15
  • 15
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Developing and implementing a peer tutoring program at the middle school level

Witvliet, Mark Derryl 01 January 2004 (has links)
The purpose of this study was to design a peer tutoring program in the middle school setting that help students who are not reaching their full potential.
72

Problematika obrábění titanových slitin / Problems in machining of titanium alloys

Drábek, Tomáš January 2013 (has links)
The theoretical part of the thesis contains a brief overview of some experimental methods that are used in machining technologies. The experimental part at first elaborates on the analysis of two titanium alloys. The actual experiment, which consists of milling of the two aforementioned materials with the use of several tools and holders, is then described. It was conducted in collaboration with the company Frentech Aerospace s.r.o. When milling, forces were measured with piezoelectric dynamometer. Further, the analysis of acquired data that is followed with discussion about its main findings, is provided. The conclusion of the thesis deals with the found facts corresponding with the information obtained by analysis of materials. The main results arise out of the comparison of used combinations of tools and holders for milling of material Ti-Al6-V4, observation of impact of particular factors on measured force, or out of different values of measured forces when milling two given materials.
73

Modeling The Position-Dependent Inner Drop Velocity For A Millimeter-Size Core-Shell Drop As It Approaches Failure At Low Reynolds Numbers

Brandon J Wells (11108403) 16 June 2022 (has links)
<p>Co-axial dripping is one of the many ways to make drops with a core-shell structure for encapsulated materials. However, in systems where the capsule components are not density matched or surfactants are not used, the shell will eventually thin and break if not solidified in time. If the shell fails before solidifying, the core will leak out and result in a non-functional capsule. This study assumes that all capsules will fail once the core has reached 80% eccentricity, meaning a shell region has thinned to 20% of its original thickness (~70 µm). In reality, rupture of the shell depends more on stochastic defects and disturbances, but locally decreasing the shell thickness will increase the probability of capsule rupture. With this assumption, the survival time of a core-shell drop is inversely proportional to the relative velocity of the inner drop, where the greater this relative velocity, the faster the shell phase will thin. Stoke's law is generally used to approximate the speed of a sphere in a fluid. However, this study demonstrates that Stoke's law is insufficient for predicting the inner drop's motion for a compound drop. This is due to internal flows that develop within all fluid drops because of shear forces on the drop’s external face during freefall. For core-shell drops, prior studies report how the inner drop velocity can change in magnitude and direction as a function of its eccentricity, meaning its position within the outer drop. Since previous studies did not analyze this core-shell drop relationship with a 50 vol% core and a high viscosity shell, a model was built in COMSOL Multiphysics to understand how the claims from literature would apply to a previous encapsulation study (Betancourt, 2021). The model was also put through a series of validation tests that confirmed the model’s ability to accurately represent the speed and direction of inner drop motion. The final model configuration was then used to identify the transition point between buoyancy-driven and internal flow-driven failure modes observed during the production of core-shell drops in a previous encapsulation study for phase change materials (Betancourt, 2021). The model results showed how the estimated inner drop velocity was significantly reduced once accounting for the internal flows within the shell phase of a compound drop. While this study does help characterize the motion of an inner drop and could be used to find a material system with a favorable velocity profile, it is still recommended to use an in-air curing system to produce concentric capsules. Achieving a concentric capsule would still require this co-axial dripping setup to be modified significantly. </p> <p>Betancourt-Jimenez, D., Wells, B., Youngblood, J. P., & Martinez, C. J. (2021). Encapsulation of biobased fatty acid amides for phase change material applications. <em>Journal of Renewable and Sustainable Energy</em>, <em>13</em>(6), 064101. https://doi.org/10.1063/5.0072105</p>
74

<strong>CHARACTERIZATION AND MECHANISTIC PREDICTION OF HEAT PIPE PERFORMANCE UNDER TRANSIENT OPERATION AND DRYOUT CONDITIONS</strong>

Kalind Baraya (16643466), Justin A. Weibel (1762510), Suresh V. Garimella (1762513) 26 July 2023 (has links)
<p>  </p> <p>Heat pipes and vapor chambers are passive two-phase heat transport devices that are used for thermal management in electronics. The passive operation of a heat pipe is facilitated by capillary wicking of the working fluid through a porous wick, and thus is subject to an operational limit in terms of the maximum pressure head that the wick can provide. This operational limit, often termed as the capillary limit, is the maximum heat input at which the pressure drop in the wick is balanced by the maximum capillary pressure head; operating a heat pipe or a vapor chamber above the capillary limit at steady-state leads to dryout. It thus becomes important to predict the performance of heat pipes and vapor chambers and explore the parametric design space to provide guidelines for minimized thermal resistance while satisfying this capillary limit. An increasingly critical aspect is to predict the transient thermal response of vapor chambers. Moreover, heat pipes and vapor chambers are extensively being used in electronic systems where the power input is dictated by the end-user activity and is expected to even exceed the capillary limit for brief time intervals. Thus, it is imperative to understand the behavior of heat pipes and vapor chambers when operated at steady and transient heat loads above the capillary limit as dryout occurs. However, review of the literature on heat pipe performance characterization reveals that the regime of dryout operation has been virtually unexplored, and thus this thesis aims to fill this critical gap in understanding.</p> <p>The design for minimized thermal resistance of a vapor chamber or a heat pipe is guided by the relative contribution of thermal resistance due to conduction across the evaporator wick and the saturation temperature gradient in the vapor core. In the limit of very thin form factors, the contribution from the vapor core thermal resistance dominates the overall thermal resistance of the vapor chamber; recent work has focused on working fluid selection to minimize overall thermal resistance in this limit. However, the wick thermal resistance becomes increasingly significant as its thickness increases to support higher heat inputs while avoiding the capillary limit. A thermal resistance network model is thus utilized to investigate the importance of simultaneously considering the contributions of the wick and vapor core thermal resistances. A generalized approach is proposed for vapor chamber design which allows <em>simultaneous</em> selection of the working fluid and wick that provides minimum overall thermal resistance for a given geometry and operating condition. While the thermal resistance network model provides a convenient method for exploring the design space, it cannot be used to predict 3-D temperature fields in the vapor chamber. Moreover, such thermal resistance network models cannot predict transient performance and temperature evolution for a vapor chamber. Therefore, an easy-to-use approach is proposed for mapping of vapor chamber transport to the heat diffusion equation using a set of appropriately defined effective anisotropic thermophysical properties, thus allowing simulation of vapor chamber as a sold conduction block. This effective anisotropic properties approach is validated against a time-stepping analytical model and is shown to have good match for both spatial and transient temperature predictions.</p> <p>Moving the focus from steady-state and transient operation of vapor chambers, a comprehensive characterization of heat pipe operation above capillary limit is performed. Different user needs and device workloads can lead to highly transient heat loads which could exceed the notional capillary limit for brief time intervals. Experiments are performed to characterize the transient thermal response of a heat pipe subjected to heat input pulses of varying duration that exceed the capillary limit. Transient dryout events due to a wick pressure drop exceeding the maximum available capillary pressure can be detected from an analysis of the measured temperature signatures. It is discovered that under such transient heating conditions, a heat pipe can sustain heat loads higher than the steady-state capillary limit for brief periods of time without experiencing dryout. If the heating pulse is sufficiently long as to induce transient dryout, the heat pipe may experience an elevated steady-state temperature even after the heat load is reduced back to a level lower than the capillary limit. The steady-state heat load must then be reduced to a level much below the capillary limit to fully recover the original thermal resistance of the heat pipe. The recovery process of heat pipes is further investigated, and a mechanism is proposed for the thermal hysteresis observed in heat pipe performance after dryout. A model for <em>steady-state</em> heat pipe transport is developed based on the proposed mechanism to predict the parametric trends of thermal resistance following recovery from dryout-induced thermal hysteresis, and the model is mechanistically validated against experiments. The experimental characterization of the recovery process demonstrates the existence of a maximum hysteresis curve, which serves as the worst-case scenario for thermal hysteresis in heat pipe after dryout. Based on the learnings from the experimental characterization, a new procedure is introduced to experimentally characterize the steady-state dryout performance of a heat pipe.</p> <p>To recover the heat pipe performance under steady-state, it has been shown that the heat input needs to be lowered down or <em>throttled</em> significantly below the capillary limit. However, due to the highly transient nature of power dissipation from electronic devices, it becomes imperative to characterize heat pipe recovery from dryout under transient operations. Hence, power-throttling assisted recovery of heat pipe from dryout has been characterized under transient conditions. A minimum throttling time interval, defined as time-to-rewet, is identified to eliminate dryout induced thermal hysteresis using power throttling. Dependence of time-to-rewet on throttling power is explored, and guidelines are presented to advise the throttling need and choice of throttling power under transient conditions. </p> <p>The experimental characterization of heat pipe operation at pulse loads above the capillary limit and power throttling following the pulse load helped define the dryout and recovery performance of a heat pipe. Next, a physics-based model is developed to predict the heat pipe <em>transient</em> thermal response under dryout-inducing pulse load and power throttling assisted recovery. This novel model considers wick as a partially saturated media with spatially and temporally varying liquid saturation, and accounts for the effect of wick partial saturation in heat pipe transport. The model prediction are validated against experiments with commercial heat pipe samples, and it is shown that the model can accurately predict dryout and recovery characteristics, namely time-to-dryout, time-to-rewet, and dryout-induced thermal hysteresis, for heat pipes with a range of wick types, heat pipe lengths and pulse loads above the capillary limit. </p> <p>The work discussed in this thesis opens certain questions that are expected to guide further research in this area. First, the thermal hysteresis mechanism proposed could be further validated with direct visualization of the liquid in a vapor chamber. To achieve this, X-ray microscopy is proposed as a viable option for the imaging <em>in situ</em> wetting dynamics in a vapor chamber. Second, the model developed to predict the dryout and recovery characteristics of the heat pipe can be used to design heat pipe with improved performance under pulse loads and power throttling. Third, novel wick designs can be explored that utilize the understanding developed of governing mechanisms for recovery from dryout, and can eliminate thermal hysteresis at powers closer to capillary limit. Fourth, the modeling approach can be extended to predict dryout and recovery trends in vapor chamber since the heat transfer pathways in a vapor chamber are different than those of a heat pipe. Fifth, and lastly it was observed several times during experiments that some of the heat pipe samples would exhibit complete dryout (sudden catastrophic rise in temperature and thermal resistance at the point of dryout) whereas other samples would exhibit partial dryout (noticeable but small increase in thermal resistance at dryout) at operating powers just above the capillary limit. Exploring and explaining the cause of complete dryout, in particular, would be an extremely valuable contribution to the heat pipe research. </p> <p>The work discussed in this thesis has led to the comprehensive development of a functional and mechanistic understanding of heat pipe operation above the notional capillary limit. The experimental procedures developed in this work are utilized to characterize a heat pipe performance under dryout and recovery. The models based on the mechanistic understanding developed from experimental characterization of dryout and recovery operation of a heat pipe have been experimentally validated and are useful for predicting heat pipe performance under dryout-inducing pulse loads and power-throttling.   </p>
75

DURABLE RADIATIVE COOLING PAINTS FOR REDUCED GLOBAL GREENHOUSE EFFECT

Emily Barber (15332044) 21 April 2023 (has links)
<p>  </p> <p>Recent developments in radiative cooling paints have shown significant promise towards commercialization of the technology. Therefore, questions have been asked as to how the durability of these paints could be evaluated and improved, as well as how these paints could impact energy use and global climate change. In this work, a paint formulation was developed using nanoplatelet hBN pigments with an MP-101 binder from SDC Technologies, Inc. This formulation shows similar reflective properties to that of an hBN acrylic formulation (97.5% and 97.9% reflectance, respectively) while boosting a water droplet contact angle of as much as 120°, proving hydrophobicity and therefore self-cleaning properties. Additionally, a comprehensive study was conducted to understand the potential impact of the radiative cooling paints on the changing global climate. Three potential impacts of the paint were discussed, including capture and utilization of CO2 into the CaCO3 paint, the reduction of HVAC usage on buildings painted with the RC paints, and net cooling of the earth due to the solar reflection and thermal emission of the paint into deep space. It was discovered that all three parts had a positive impact on the global climate, regardless of which US climate zone the representative building was in. Additionally, it was found that the paints could reduce as much as an equivalent 539 lbs CO2eq from the atmosphere for each m2 of the paint applied.</p>
76

An Investigation of Cavitation Phenomena in Axial Piston Machines Through Experimental Study and Simulated Scaling Effects

Hannah Mcclendon Boland (16615293) 19 July 2023 (has links)
<p>  </p> <p>Cavitation is one of the most common causes of failures in axial piston machines. Due to the detrimental effects that cavitation has on unit performance, it is of important consideration both in the design of new units and in defining the operational limits of existing market products. The work in this thesis aimed to contribute to the current knowledge in both areas, with a focus on design considerations with respect to cavitation scalability, and on operating conditions by measuring cavitation severity under separate and combined inciting parameters. Though the application of unit scaling is common in industry for the design of pump families, there have been no comprehensive attempts to quantify whether cavitation in fluid power units may be adequately accounted for in published scaling laws. In this thesis, the scalability of cavitation phenomena was examined through a CFD scaling study performed using a modified version of the Full Cavitation Model.  Results indicate that linear scaling is consistent in maintaining volumetric efficiency performance within 1% across scaled units up to eight times larger or smaller than the baseline. However, the gas and vapor volume distributions vary significantly between scaled units, due largely to the linear non-scalability of fluid inertia and turbulent factors. Physical exchange between phases within a working fluid was shown to be time-dependent, such that the scaled-down unit exhibits bubble collapse rates up to 30% and 150% greater than the baseline and scaled-up units, respectfully. Considering these effects, the presented work demonstrates a potential for increased cavitation damage area when downscaling a unit and reduced risk in upscaling, despite the scaling law being a reliable indicator for volumetric efficiency. </p> <p>To define a more complete study of cavitation under a variety of operating conditions and inciting parameters, this a new experimental procedure and testing circuit was proposed with focus on repeatability by controlled pressure drops and preliminary quantification of inlet fluid quality. By measuring cavitation conditions under pressure starvation, incomplete filling, and combinations thereof, the direct effect of different inception methods on unit performance was shown to be readily identifiable. Through visualization of the inlet flow, reduction in inlet pressure levels was correlated to fluid cloudiness levels and bubble size, with transparency loss at 0.0 bar<sub>g</sub> and transition from bubbly to plug flow at -0.4 bar<sub>g</sub>. Incomplete filling-induced cavitation was also shown to be detectable by inlet flow conditions, with a distinct change in bubble coalescence rate when operating under shaft speeds greater than or equal to fill speed for a given inlet pressure. </p>
77

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF THERMAL MANAGEMENT IN FLOW BOILING

Jeongmin Lee (13133907) 21 July 2022 (has links)
<p>The present study investigates the capability of computational fluid dynamics (CFD) extensively to predict hydrodynamics and heat transfer characteristics of FC-72 flow boiling in a 2.5-mm ´ 5.0-mm rectangular channel and experimentally explores system instabilities: <em>density wave oscillation</em> (DWO), <em>pressure drop oscillation</em> (PDO) and <em>parallel channel instability</em> (PCI) in a micro-channel heat sink containing 38 parallel channels having a hydraulic diameter of 316-μm. </p> <p>The computational method performs transient analysis to model the entire flow field and bubble behavior for subcooled flow boiling in a rectangular channel heated on two opposite walls at high heat flux conditions of about 40% – 80% of <em>critical heat flux</em> (CHF).  The 3D CFD solver is constructed in ANSYS Fluent in which the <em>volume of fluid</em> (VOF) model is combined with a <em>shear stress transport</em> (SST) <em>k</em>-<em>ω</em> turbulent model, a surface tension model, and interfacial phase change model, along with a model for effects of shear-lift and bubble collision dispersion to overcome a fundamental weakness in modeling multiphase flows.  Detailed information about bubble distribution in the vicinity of the heated surface, thermal conduction inside the heating wall, local heat fluxes passing through the solid-fluid interface, and velocity and temperature profiles, which are not easily observed or measured by experiments, is carefully evaluated.  The simulation results are compared to experimental data to validate the solver’s ability to predict the flow configuration with single/double-side heating.  The added momentum by shear-lift is shown to govern primarily the dynamic behavior of tiny bubbles stuck on the heated bottom wall and therefore has a more significant impact on both heat transfer and heated wall temperature.  By including bubble collision dispersion force, coalescence of densely packed bubbles in the bulk region is significantly inhibited, with more giant bubbles even incurring additional breakup into smaller bubbles and culminating in far less vapor accumulation along the top wall.  Including these momentums is shown to yield better agreement with local interfacial behavior along the channel, overall flow pattern, and heat transfer parameters (wall temperature and heat transfer coefficient) observed and measured in experiments.  The computational approach is also shown to be highly effective at predicting local phenomena (velocity and temperature profiles) not easily determined through experiments.  Different flow regimes predicted along the heated length exhibit a number of dominant mechanisms, including bubble nucleation, bubble growth, coalescence, vapor blankets, interfacial waviness, and residual liquid sub-layer, all of which agree well with the experiment.  Vapor velocity is shown to increase appreciably along the heated length because of increased void fraction, while liquid velocity experiences large fluctuations.  Non-equilibrium effects are accentuated with increasing mass velocity, contributing minor deviations of fluid temperature from simulations compared to those predicted by the analytical method.  Predicted wall temperature is reasonably uniform in the middle of the heated length but increases in the entrance region due to sensible heat transfer in the subcooled liquid and decreases toward the exit, primarily because of flow acceleration resulting from increased void fraction.  When it comes to analyzing heat transfer mechanisms at extremely high heat flux via CFD, predicted flow pattern, bubble behavior, and heat transfer parameters (such as wall temperature excursion and thermal energy concentration) clearly represent phenomena of premature CHF, which take place slightly earlier than actual operating conditions.  But, despite these slight differences, the present computational work does demonstrate the ability to effectively predict the severe degradation in heat transfer performance commonly encountered at heat fluxes nearing CHF.  </p> <p>Much of the published literature addressing flow instabilities in thermal management systems employing micro-channel modules are focused on instability characteristics of the module alone, and far fewer studies have aimed at understanding the relationship between these characteristics and compressive volume in the flow loop external to the module.  From a practical point of view, developers of micro-channel thermal management systems for many modern applications are in pursuit of practical remedies that would significantly mitigate instabilities and their impact on cooling performance.  Experiments are executed using FC-72 as a working fluid with a wide range of mass velocities and a reasonably constant inlet subcooling of ~15°C.  The flow instabilities are reflected in pressure fluctuations detected mainly in the heat sink’s upstream plenum.  Both inlet pressure and pressure drop signals are analyzed in pursuit of amplitude and frequency characteristics for different mass velocities and over a range of heat fluxes.  The current experimental study also examines the effects of compressible volume location in a closed pump-driven flow loop designed to deliver FC-72 to a micro-channel test module having 38 channels with 315-μm hydraulic diameter.  Three accumulator locations are investigated: upstream of the test module, downstream of the test module, and between the condenser and pump.  Both high-frequency temporal parameter data and high-speed video records are analyzed for ranges of mass velocity and heat flux, with inlet subcooling held constant at ~15°C.  PDO is shown to dominate when the accumulator is situated upstream, whereas PCI is dominant for the other two locations.  Appreciable confinement of bubbles in individual channels is shown to promote rapid axial bubble growth.  The study shows significant variations in the amount of vapor generated and dominant flow patterns among channels, a clear manifestation of PCI, especially for low mass velocities and high heat fluxes.  It is also shown effects of the heat sink’s instabilities are felt in other components of the flow loop.  The parametric trends for PCI are investigated with the aid of three different types of stability maps which show different abilities at demarcating stable and unstable operations.  PDO shows severe pressure oscillations across the micro-channel heat sink, with rapid bubble growth and confinement, elongated bubble expansion in both directions, flow stagnation, and flow reversal (including vapor backflow to the inlet plenum) constituting the principal sequence of events characterizing the instability.  Spectral analysis of pressure signals is performed using Fast Fourier Transform, which shows PDO extending the inlet pressure fluctuations with the same dominant frequency to other upstream flow loop components, with higher amplitudes closer to the pump exit.  From a practical system operation point of view, throttling the flow upstream of the heat sink eliminates PDO but renders PCI dominant, and placing the accumulator in the liquid flow segment of the loop between the condenser and pump ensures the most stable operation.</p>
78

<b>Experimental and Numerical Evaluation of Stationary Diffusion System Aerodynamics in Aeroengine Centrifugal Compressors</b>

Jack Thomas Clement (18429954) 25 April 2024 (has links)
<p dir="ltr">As aircraft engine manufacturers continue to embark on their pursuit of higher-efficiency, lower-emissions gas turbines, a prevailing theme in the industry has been the increase of the engine bypass ratio. As the optimization space for engine bypass ratios trends towards smaller and smaller engine core sizes, the feasibility of centrifugal compressors as the final stage in an axial-centrifugal compressor becomes apparent due to their performance advantages at smaller scales.</p><p dir="ltr">This study performed an investigation into the aerodynamics of a stationary diffusion system intended for use with a final stage aeroengine centrifugal compressor using experimental and numerical techniques. Experimental work was performed at the Purdue Compressor Research Lab at Purdue University’s Maurice J. Zucrow Laboratories. Data were collected from several iterations of rapidly prototyped, additively manufactured diffuser and deswirl parts with internal instrumentation features. Furthermore, computational work on the stage was conducted using the Ansys Turbosystem.</p><p dir="ltr">The goal of this research is to identify trends in stationary diffusion system designs and the geometric features that cause them. Furthermore, the ability of steady computational fluid dynamics methods to predict these changes was evaluated using two turbulence models to produce a simulation of the compressor flow field. When used in conjunction with one another, the efficient use of computational methods to identify an optimal design and rapid prototyping to validate it leads to the determination of the best diffusion system design at a lower cost and time requirement than what is otherwise currently possible.</p><p dir="ltr">The different geometries which were tested identified the negative effects of spanwise vane contouring on the diffuser performance and the ability of endwall divergence to augment the pressure recovery performance of a design at the expense of increased losses. A full understanding of the effect of each design parameter is enabled by iterative inclusion or exclusion of certain design parameters. Furthermore, the use of computational fluid dynamics showed that the BSLEARSM turbulence model performs reasonably well in predicting the build-to-build performance trends. However, neither the BSLEARSM nor the SST turbulence model were able to accurately identify performance trends for the deswirl. For this reason, additional work is warranted to identify an optimal set of parameters to characterize the high axial and meridional turning present in this component.</p>
79

Mobility as an Element of Learning Styles: The Effect its Inclusion or Exculsion has on Student Performance in the Standardized Testing Environment

Miller, Linda 01 January 1985 (has links)
The purpose of this study was to investigate the relationship between mobility and the standardized testing environment. The project focused on nine students who had a pronounced need for movement while learning and/or being tested. The study was conducted to determine whether the achievement scores of these nine students would be influenced by the denial or availability of movement while they were administered a standardized reading test. Twenty-one second grade students were the subjects. Two forms of Level B of the Gates-MacGinitie Reading Test were used. All subjects were tested in a traditional environment with no movement allowed. The same subjects were then tested at a later time in a mobile environment with movement and change of location permitted. The Wilcoxon Matched-Pairs Signed-Rank Test was used as the statistical base. Results showed a .05 significance. Of the nine mobile students, six scored equally as well or better when placed in a mobile testing environment.
80

Theoretical and experimental study of non-spherical microparticle dynamics in viscoelastic fluid flows

Cheng-Wei Tai (12198344) 06 June 2022 (has links)
<p>Particle suspensions in viscoelastic fluids (e.g., polymeric fluids, liquid crystalline solutions, gels) are ubiquitous in industrial processes and in biology. In such fluids, particles often acquire lift forces that push them to preferential streamlines in the flow domain. This lift force depends greatly on the fluid’s rheology, and plays a vital role in many applications such as particle separations in microfluidic devices, particle rinsing on silicon wafers, and particle resuspension in enhanced oil recovery. Previous studies have provided understanding on how fluid rheology affects the motion of spherical particles in simple viscoelastic fluid flows such as shear flows. However, the combined effect of more complex flow profiles and particle shape is still under-explored. The main contribution of this thesis is to: (a) provide understanding on the migration and rotation dynamics of an arbitrary-shaped particle in complex flows of a viscoelastic fluid, and (b) develop guidelines for designing such suspensions for general applications.</p> <p><br></p> <p>In the first part of the thesis, we develop theories based on the second-order fluid (SOF) constitutive model to provide solutions for the polymeric force and torque on an arbitrary-shaped solid particle under a general quadratic flow field. When the first and second normal stress coefficients satisfy  <strong>Ψ</strong><sub>1</sub>  = −2 <strong>Ψ</strong> <sub>2</sub> (corotational limit), the fluid viscoelasticity modifies only the fluid pressure and we provide exact solutions to the polymer force and torque on the particle. For a general SOF with  <strong>Ψ</strong> <sub>1</sub> ≠  −2 <strong>Ψ</strong> <sub>2</sub>, fluid viscoelasticity modifies the shear stresses, and we provide a procedure for numerical solutions. General scaling laws are also identified to quantify the polymeric lift based on different particle shapes and orientation. We find that the particle migration speed is directly proportional to the length the particle spans in the shear gradient direction (L<sub>sg</sub>), and that polymeric torques lead to unique orientation behavior under flow.</p> <p><br></p> <p>Secondly, we investigate the migration and rotational behavior of prolate and oblate spheroids in various viscoelastic, pressure-driven flows. In a 2-D slit flow, fluid viscoelasticity causes prolate particles to transition to a log-rolling motion where the particles orient perpendicular to the flow-flow gradient plane. This behavior leads to a slower overall migration speed (i.e., lift) of prolate particles towards the flow centerline compared to spherical particles of the same volume. In a circular tube flow, prolate particles align their long axis along the flow direction due to the extra polymer torque generated by the velocity curvature in all radial directions. Again, this effect causes prolate particles to migrate slower to the flow centerline than spheres of the same volume. For oblate particles, we quantify their long-time orientation and find that they migrate slower than spheres of the same volume, but exhibit larger migration speeds than prolate particles. Lastly, we examine the effect of normal stress ratio ? <strong>α</strong>  = <strong>Ψ</strong> <sub>2</sub> /<strong>Ψ</strong><sub>1 </sub>on the particle motion and find that this parameter only quantitatively impacts the particle migration velocity but has negligible effect on the rotational dynamics. We therefore can utilize the exact solution derived under the corotational limit (?<strong>α</strong> = −1/2) for a quick and reasonable prediction on the particle dynamics.</p> <p><br></p> <p>We next experimentally investigate the migration behavior of spheroidal particles in microfluidic systems and draw comparisons to our theoretical predictions. A dilute suspension of prolate/oblate microparticles in a density-matched 8% aqueous polyvinylpyrrolidone (PVP) solution is used as the model suspension system. Using brightfield microscopy, we qualitatively confirm our theoretical predictions for flow Deborah numbers 0 < De < 0.1 – i.e., that spherical particles show faster migration speed than prolate and oblate particles of the same volume in tube flows.</p> <p><br></p> <p>We finally design a holographic imaging method to capture the 3-D position and orientation of dynamic microparticles in microfluidic flow. We adopt in-line holography setup and propose a straightforward hologram reconstruction method to extract the 3-D position and orientation of a non-spherical particle. The method utilizes image moment to locate the particle and localize the detection region. We detect the particle position in the depth direction by quantifying the image sharpness at different depth position, and uses principal component analysis (PCA) to detect the orientation of the particle. For a semi-transparent particle that produces complex diffraction patterns, a mask based on the image moment information can be utilized during the image sharpness process to better resolve the particle position.</p> <p><br></p> <p>In the last part of this thesis, we conclude our work and discuss the future research perspectives. We also comment on the possible application of current work to various fields of research and industrial processes.</p> <p><br></p>

Page generated in 0.1133 seconds