• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 37
  • 31
  • 17
  • 10
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 312
  • 80
  • 70
  • 49
  • 39
  • 38
  • 37
  • 36
  • 36
  • 34
  • 29
  • 28
  • 28
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Navier/Stokes/Direct Simulation Monte Carlo Modeling of Small Cold Gas Thruster Nozzle and Plume Flows

Nanson III, Richard A 24 April 2002 (has links)
This study involves the modeling of small cold-gas (N2) thrusters nozzle and plume flows, their interactions with spacecraft surfaces and the induced pressure environment. These small cold-gas thrusters were used for pitch, yaw and roll control and were mounted on the bottom of the conical Environmental Monitor Payload (EMP) suborbital spacecraft. The pitch and yaw thrusters had 0.906 mm throat diameter and 4.826 mm exit diameter, while the roll thrusters had 1.6 mm throat diameter and 5.882 mm exit diameter. During thruster firing, at altitudes between 670 km and 1200 km, pressure measurements exhibited non-periodic pulses (Gatsonis et al., 1999). The pressure sensor was located inside the EMP and was connected to it's sidewall with a 0.1-m long, 0.022-m diameter tube and the pressure pulses appeared instantaneously with the firings for thrusters without a direct line-of-sight with the sensor entrance. Preliminary analysis showed that the plume of these small EMP thrusters undergoes transition from continuous to rarefied. Therefore, nozzle and plume simulations are performed using a combination of Navier-Stokes and Direct Simulation Monte Carlo codes. This study presents first a validation of the Navier-Stokes code Rampant used for the continuous EMP nozzle and plume simulations. The first Rampant validation example involves a two-dimensional axisymetric freejet expansion and is used to demonstrate the use of Bird's breakdown parameter. Results are compared favorably with those of Bird (1980) obtained through the method of characteristics. The second validation example involves three-dimensional plume simulations of a NASA thruster. This nitrogen nozzle has a throat diameter of 3.18 mm, an exit diameter of 31.8 mm, half-angle of 20 degrees, stagnation temperature of 699 K, stagnation pressure of 6,400 Pa. Simulation results are compared favorably with previous Navier-Stokes and Direct Simulation Monte Carlo numerical work. The third validation example involves three-dimensional simulations of Rothe's (1970) nozzle that has a throat diameter of 2.5 mm, an exit diameter of 20.3 mm, half-angle of 20 degrees, operating at stagnation temperature of 300 K and pressure of 1975 Pa. Numerical results also compared favorably to experimental data. The combined Navier-Stokes/DSMC approach and the EMP simulation results are presented and discussed. The continuous part of the EMP nozzle and plume flow is modeled using the three-dimensional Navier-Stokes Rampant code. The Navier-Stokes domain includes the geometry of the nozzle and the EMP base until transition of the continuous flow established by Bird's breakdown parameter. The rarefied part of the plume flow is modeled using the Direct Simulation Monte Carlo code DAC. Flowfield data obtained inside the breakdown surface from the Navier-Stokes simulation are used as inputs to the DSMC simulations. The DSMC domain includes the input surface and the EMP spacecraft geometry. The combined Navier-Stokes/DSMC simulations show the complex structure of the plume flow as it expands over the EMP surfaces. Plume reflection and backflow are demonstrated. The study also summarizes findings presented by Gatsonis et al. (2000), where the DSMC predictions at the entrance of the pressure sensor are used as inputs to a semi-analytical model to predict the pressure inside the sensor. It is shown that the pressure predictions for the pitch/yaw thrusters are close to the measurements. The plume of a pitch or yaw thruster reaches the pressure sensor after expanding on the EMP base. The pressure predicted for the roll thruster is larger that the measured. This is attributed to the uncertainty in the roll thruster location on the EMP base resulting, in the simulation, in a component of direct flow to the sensor.
212

Étude analytique et numérique du bruit de combustion indirect généré par l'injection d'ondes entropiques dans une tuyère / Analytical and Numerical study of indirect combustion noise generated by entropy disturbances in nozzle flows

Zheng, Jun 21 September 2016 (has links)
Avec la réduction du bruit de jet et de soufflante dans les moteurs aéronautiques modernes, la contribution relative du bruit de combustion (BC) a augmenté de manière significative au cours des dernières décennies. Deux mécanismes ont été identifiés comme étant du BC dans les années 70 : le bruit de combustion direct (BCD) et le bruit de combustion indirect (BCI). Le coeurde la thèse est axé sur le BCI avec le développement d’un modèle semi-analytique 2D axisymétrique prenant en compte la distorsion des ondes entropiques afin de prédire le BCI dans des écoulements de tuyère. L’état de l’art réalisé dans le premier chapitre met en évidence la nécessité d’améliorer la prédiction du BCI des modèles 1D en introduisant la distorsion radiale des ondes entropiques dans la tuyère. Le second chapitre du manuscrit détaille les outils disponibles à l’ONERA pour l’étude du BCI. Le modèle 2D est développé dans le troisième chapitre où les équations d’Euler sont réécritesen 2D pour la partie entropique et en 1D pour les perturbations acoustiques. Le quatrième chapitre décrit les simulations numériques réalisées pendant la thèse sur la configuration retenue (la tuyère DISCERN) : un calcul RANS et deux simulations des grandes échelles (SGE) sont effectués respectivementpour l’utilisation et la validation du modèle 2D. Dans le dernier chapitre, l’application du nouveau modèle utilisant le champ moyen RANS est accompli, les résultats sont comparés au modèle 1D et validés par confrontation avec les prédictions SGE. / Due to the reduction of jet mixing noise and fan noise in modern aero engines, the relative contribution of combustion noise (CN) has significantly increased over the last few decades. Two mechanisms have been identified as CN in the 70’s: direct combustion noise (DCN) and indirect combustion noise (ICN). A focus is made on the ICN in this thesis with the development of a twodimensionalaxisymmetric semi-analytical model taking into account the distortion of the entropy waves in order to predict the ICN for nozzle flows. The state of the art performed in the first chapter highlights the necessity to improve the prediction of ICN of 1D models by introducing the radial distortion of the entropy waves inside the nozzle. The second chapter of the manuscript details the ONERA’s tools for studying ICN. The 2D model is developed in the third chapter where the Euler equations are rewritten in 2D formfor the entropic part while acoustic perturbations are considered to be 1D. The fourth chapter describes the numerical computations performed during the thesis onthe retained configuration (the DISCERN nozzle): a RANS and two large eddy simulations (LES) are carried out respectively for the use and the validation of the 2D model. In the last chapter, the application of the new model using the RANS meanfield is performed, the results are compared tothe 1D model and validated by confrontation with the LES predictions.
213

Hyperbolic problems in fluids and relativity

Schrecker, Matthew January 2018 (has links)
In this thesis, we present a collection of newly obtained results concerning the existence of vanishing viscosity solutions to the one-dimensional compressible Euler equations of gas dynamics, with and without geometric structure. We demonstrate the existence of such vanishing viscosity solutions, which we show to be entropy solutions, to the transonic nozzle problem and spherically symmetric Euler equations in Chapter 4, in both cases under the simple and natural assumption of relative finite-energy. In Chapter 5, we show that the viscous solutions of the one-dimensional compressible Navier-Stokes equations converge, as the viscosity tends to zero, to an entropy solution of the Euler equations, again under the assumption of relative finite-energy. In so doing, we develop a compactness framework for the solutions and approximate solutions to the Euler equations under the assumption of a physical pressure law. Finally, in Chapter 6, we consider the Euler equations in special relativity, and show the existence of bounded entropy solutions to these equations. In the process, we also construct fundamental solutions to the entropy equations and develop a compactness framework for the solutions and approximate solutions to the relativistic Euler equations.
214

Estudo comparativo de tubos submersos anti-clogging no processo de lingotamento contínuo / Comparative study of submerged nozzles anti-clogging in the process of continuous casting

Gomes, Noraldo Hipolito Guimarães 19 September 2008 (has links)
O processo de lingotamento contínuo de produtos planos de aço tem sido alvo de incessantes estudos devido a sua importância na produção de bobinas laminadas a partir de placas, para um grupo muito diversificado de clientes, dentre os quais, destacam-se as indústrias automobilística e de eletrodomésticos (\"linha branca\"), que têm se mostrado muito exigentes. No entanto, por tratar-se de aços desoxidados ao alumínio, é comum a ocorrência de formação de um depósito de óxido de alumínio (alumina), no interior do tubo submerso do processo de lingotamento contínuo, o que diminui seu diâmetro interno, levando à restrição de passagem do aço líquido pelo seu interior, provocando a perda de produtividade devido à necessidade de se reduzir a velocidade de lingotamento e até mesmo a contaminação do aço com inclusões de alumina, principalmente naqueles seqüenciais com um elevado tempo de lingotamento, próximo de dez horas. Para tanto, desenvolveu-se um tubo com um material interno anti-clogging que na literatura é chamado de C-less, para minimizar e/ou evitar a deposição de alumina e com uma linha de escória reforçada com uma camada de zircônia (ZrO2) mais espessa e mais nobre, para resistir ao ataque da escória. O objetivo desta dissertação foi comparar tubos de diferentes fornecedores, avaliando as principais variáveis que têm influência direta na sua performance: perfil de aquecimento, taxa de erosão na linha de escória, índice de obstrução e parâmetros físico-químicos através da correlação dos materiais antes e após uso (post-mortem). Os resultados encontrados mostraram uma melhor performance dos tubos do fornecedor \"M\", que apresentaram menores taxas de desgaste e, conseqüentemente, maior potencial de vida (maior tempo de lingotamento) após análise da linha de escória, que pode ser atribuída a uma melhor distribuição dos grãos de zircônia na matriz (maior homogeneidade), além de apresentarem grãos mais finos e desta forma, reduzindo os espaços \"vazios\" na matriz, propícios ao ataque da escória por meio de um desequilíbrio químico entre esta escória líquida e o refratário. Além disto, seu material anti-clogging e projeto de distribuição do mesmo na peça, propiciaram um melhor resultado em relação à obstrução pela deposição de alumina ao longo do corpo do tubo submerso. / The continuous casting process of steel plane products has been objective of incessant studies due to its importance in the production of laminated coils starting from slabs, for a very diversified group of customers, among all the automobile industries and of appliances (\"home appliances\"), that have been showing very demanding. However, for being low carbon aluminum killed steels, is common the occurrence of aluminum oxide (alumina) deposit formation, inside of submerged nozzle in continuous casting process, what decreases its internal diameter, taking to the restriction of passage of the liquid steel for its interior, provoking the productivity loss due to the need of being reduced the casting speed and even the contamination of the steel with alumina inclusions, mainly in those sequential with a high casting time, close of ten hours. For so much, a submerged nozzle was developed with a internal anti-clogging material that it is called C-less in the literature, to minimize and/or to avoid the alumina building up and with a slag reinforced line with a zirconium layer (ZrO2) thicker and more noble, slag attack resist to. The dissertation objective was compare submerged nozzles from different suppliers, evaluating the main variables that have direct influence in its performance: heating profile, slag line erosion rate, clogging index and physical-chemical parameters through the materials correlation before and after use (post-mortem). The results showed submerged nozzle\'s better performance from supplier \"M\", that presented smaller waste rates and, consequently, last longer live (larger time of casting) after analysis of the slag line, that can be attributed to a better distribution of the zirconium grains in the head office (larger homogeneity), besides they present finer grains and this way, reducing the empty \" spaces \" in the head office, favorable to slag attack by means of a chemical unbalance between this liquid slag and the refractory. Besides, its anti-clogging material and project distribution in the same piece, they propitiated a better result in relation to the clogging for the alumina building up along the body of the submerged nozzle.
215

Vibrational and Chemical Relaxation Rates of Diatomic Gases

Kewley, Douglas John, kewley@internode.on.net January 1975 (has links)
ABSTRACT A theoretical and experimental study of the vibrational and chemical relaxation rates of diatomic gases, in flows behind shock waves and along nozzles,is made here. ¶ The validity of the conventional relaxation rate models, which are generally used to analyse experiments, is tested by developing a detailed microscopic description of the diatomic relaxation processes. Assuming the diatomic molecules to be represented by the anharmonic Morse Oscillator, the vibrational Master equation, which describes the time variation of each vibrational energy level population, is constructed by allowing one-quantum vibration to translation (V-T) energy exchanges and vibration to vibration (V-V) energy exchanges between the molecules. Dissociation and recombination are allowed to occur from, and to, the uppermost vibrational level. Solving the Master equation, it is found that a number of effects are explained by the inclusion of V-V transitions. In particular it is found that V-V energy exchanges cause the induction time for H2 dissociation to be increased; suggest that the linear rate law, for H2 and Ar mixtures, fails for a H2 mole fraction above 20%; give an acceleration of vibrational excitation as equilibrium is approached for H2 and N2; cause the vibrational temperature to be lower than the value found without V-V transitions for vibrational de-excitation in nozzle flows of H2 and N2, and conversely for recombination of H2 in nozzle flows. The most important result is the demonstration that conventional nozzle flow calculations, with shock-tube-determined dis-sociation and vibrational excitation rates, appear to be valid for the recombining and vibrationally de-excitating flows considered. ¶ The dissociation rates of undiluted nitrogen are measured in the free-piston shock tube DDT, using time-resolved optical interferometry, over a temperature range of 6000-14000K and confirm the strong temperature dependence of the pre-exponential factor observed by Hanson and Baganoff (1972). ¶ The vibrational de-excitation and excitation rates are determined in the small free-piston shock tunnel T2 over temperature ranges of 2000-4000K and 7000-10300K, respectively, by measuring the shock angles and curvatures, from optical interferograms, of flow over an inclined flat plate in the nonequilibrium nozzle flow. The de-excitation rate is found to be within a factor of ten of the excitation rate, while the excitation rate of N2 by collision with N is found to be less than about 50 times the excitation rate of N2 by N2. The dissociation rates of nitrogen, in the flow behind a shock attached to a wedge, are investigated in the large free-piston shock tunnel, using the shock curvature technique. The discrepancy, reported by Kewley and Hornung (1974b), between theory and experiment at the highest enthalpy is found to be resolved by including the measured helium contamination (Crane 1975) in the free-stream. Reasonable agreement is obtained between experimental shock curvatures and calculations using accepted dissociation rates.
216

A study of the cutting performance in multipass abrasive waterjet machining of alumina ceramics with controlled nozzle oscillation

Zhong, Yu, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
An experimental investigation has been undertaken to study the depth of cut in multipass abrasive waterjet (AWJ) cutting of an 87% alumina ceramic with controlled nozzle oscillation. The experimental data have been statistically analysed to study the trends of the depth of cut with respect to the process parameters. It has been found that multipass cutting with controlled nozzle oscillation can significantly increase the depth of cut. Within the same cutting time and using the same cutting parameters other than the jet traverse speed, it has been found that multipass cutting with nozzle oscillation can increase the depth of cut by an average of 74.6% as compared to single pass cutting without nozzle oscillation. Furthermore, a multipass cutting with higher nozzle traverse speeds can achieve a larger depth of cut than a single pass cutting at a low traverse speed within the same cutting time. A recommendation has been made for the selection of appropriate process parameters for multipass cutting with nozzle oscillation. In order to estimate the depth of cut on a mathematical basis, predictive models for the depth of cut in multipass cutting with and without nozzle oscillation have been developed using a dimensional analysis technique. The model development starts with the models for single pass cutting which are then extended to multipass cutting where considerations are given to the change of the actual standoff distance after each pass and the variation of kerf width. These predictive models has been numerically studied for their plausibility by assessing their predicted trends with respect to the various process variables, and verified qualitatively and quantitatively based on the experimental data. The model assessment reveals that the developed models correlate very well with the experimental results and can give adequate predictions of this cutting performance measure in process planning.
217

A high-intensity cold atom source

Borysow, Michael 27 September 2012 (has links)
Presented in this thesis is the design and characterization of a new, high-flux source of cold atoms based on continuous, post-nozzle injection of lithium atoms into a cryogenic, supersonic helium jet. To date, experiments have been performed with lithium injection fractions up to [approximately equal to]10⁻⁶, where fluorescence spectroscopy reveals successful capture and thermalization of lithium atoms within the helium jet. The observed lithium beam copropagates with the helium jet and has a temperature of less than 10 mK, a brightness of 1.1x10¹⁹ m⁻² s⁻¹ sr⁻¹, and a brilliance of 3.1x10²⁰ m⁻² s⁻¹ sr⁻¹. Lithium atoms contained within a solid angle of [approximately equal to]0.018 sr are good candidates for future magnetic extraction. This results in a potentially capturable lithium flux of 1.1x10¹² s⁻¹, comparable to the existing record for a cold atomic beam. Also presented is preliminary data showing lithium fluorescence nearly 1 m downstream, demonstrating that the cold lithium beam can be successfully extracted from the seeding region. Numerical simulations reproduce capture efficiency to within 50%, suggesting that the process is well understood. We believe that successful seeding may be possible at a fraction up to 10⁻⁴. Seeding at this rate could produce an atomic beam with a flux as high as 1.3x10¹⁴ s⁻¹ at a phase-space density up to 1.6x10⁻⁷, corresponding to brightness and brilliance of order 10²² m⁻² s⁻¹ sr⁻¹ and 10²⁴ m⁻² s⁻¹ sr⁻¹ , respectively. If this novel cooling method performs as well at higher incident lithium flux, it could serve as a pump source and pave the way to the realization of the first truly continuous atom laser. / text
218

Sauerstoffisotope zur Klärung der Herkunft nichtmetallischer Ausscheidungen (Clogging) beim Stranggießen von Stahl / Oxygen isotopes for tracing the origin of nonmetallic precipitates (clogging) in continuous casting of steel

Toulouse, Christoph 20 December 2007 (has links)
No description available.
219

On recessed cavity flame-holders in supersonic cross-flows

Retaureau, Ghislain J. 03 April 2012 (has links)
Flame-holding in a recessed cavity is investigated experimentally in a Mach 2.5 preheated cross-flow for both stable and unstable combustion, with a relatively low preheating. Self-sustained combustion is investigated for stagnation pressures and temperatures reaching 1.4 MPa and 750 K. In particular, cavity blowout is characterized with respect to cavity aspect ratio (L/D =2.84 - 3.84), injection strategy (floor - ramp), aft ramp angle (90 deg - 22.5 deg) and multi-fuel mixture (CH₄-H₂ or CH₄-C₂H₄ blends). The results show that small hydrogen addition to methane leads to significant increase in flame stability, whereas ethylene addition has a more gradual effect. Since the multi-fuels used here are composed of a slow and a fast chemistry fuel, the resulting blowout region has a slow (methane dominant) and a fast (hydrogen or ethylene dominant) branch. Regardless of the fuel composition, the pressure at blowout is close to the non-reacting pressure imposed by the cross-flow, suggesting that combustion becomes potentially unsustainable in the cavity at the sub-atmospheric pressures encountered in these supersonic studies. The effect of preheating is also investigated and results show that the stability domain broadens with increasing stagnation temperature. However, smaller cavities appear less sensitive to the cross-flow preheating, and stable combustion is achieved over a smaller range of fuel flow rate, which may be the result of limited residence and mixing time. The blowout data point obtained at lower fuel flow rate fairly matches the empirical model developed by Rasmussen et al. for floor injection phi = 0.0028 Da^-.8, where phi is the equivalence ratio and Da the Damkohler number. An alternate model is proposed here that takes into account the ignition to scale the blowout data. Since the mass of air entrained into the cavity cannot be accurately estimated and the cavity temperature is only approximated from the wall temperature, the proposed scaling has some uncertainty. Nevertheless the new phi-Da scaling is shown to preserve the subtleties of the blowout trends as seen in the current experimental data.
220

A study of the cutting performance in multipass abrasive waterjet machining of alumina ceramics with controlled nozzle oscillation

Zhong, Yu, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
An experimental investigation has been undertaken to study the depth of cut in multipass abrasive waterjet (AWJ) cutting of an 87% alumina ceramic with controlled nozzle oscillation. The experimental data have been statistically analysed to study the trends of the depth of cut with respect to the process parameters. It has been found that multipass cutting with controlled nozzle oscillation can significantly increase the depth of cut. Within the same cutting time and using the same cutting parameters other than the jet traverse speed, it has been found that multipass cutting with nozzle oscillation can increase the depth of cut by an average of 74.6% as compared to single pass cutting without nozzle oscillation. Furthermore, a multipass cutting with higher nozzle traverse speeds can achieve a larger depth of cut than a single pass cutting at a low traverse speed within the same cutting time. A recommendation has been made for the selection of appropriate process parameters for multipass cutting with nozzle oscillation. In order to estimate the depth of cut on a mathematical basis, predictive models for the depth of cut in multipass cutting with and without nozzle oscillation have been developed using a dimensional analysis technique. The model development starts with the models for single pass cutting which are then extended to multipass cutting where considerations are given to the change of the actual standoff distance after each pass and the variation of kerf width. These predictive models has been numerically studied for their plausibility by assessing their predicted trends with respect to the various process variables, and verified qualitatively and quantitatively based on the experimental data. The model assessment reveals that the developed models correlate very well with the experimental results and can give adequate predictions of this cutting performance measure in process planning.

Page generated in 0.0733 seconds