• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 37
  • 31
  • 17
  • 10
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 311
  • 80
  • 69
  • 49
  • 39
  • 37
  • 37
  • 36
  • 36
  • 33
  • 29
  • 28
  • 28
  • 27
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Experimental loss measurements in an annular sector cascade at supersonic exit velocities

Lilienberg, László January 2016 (has links)
Efficiency improvement is one of the most important aspects of engineering and especially important in the field of energy production. In the past decades, energy was mostly produced by fossil based technologies involving turbomachines, and the efficiency of these machines nearly quadrupled since the introduction of the first economically viable gas turbines. The progress continues, as there are still areas where improvement can be made. Such area is the High Pressure Turbine stage (HPT), which influences the flow characteristics and losses downstream, which this thesis will examine in more detail. In the open literature it can be found that one of the areas with potential for progress is the external cooling of the nozzle guide vanes (NGV) of the HPT stage. However not many studies go towards supersonic exit velocities even though that is the most common trend followed by the industry these days. The external cooling allows the turbine entry temperature (TET) to go beyond the melting point of the blade material thus increase Carnot efficiency but in the meantime influences the flow characteristics and losses. To understand these influences of the cooling, experiments in an annular sector cascade (ASC) were conducted with exit velocities from Mach 0.95 to 1.2 without and with cooling applied. The findings of the experiments are believed to help the more detailed understanding of the flow behaviour at high exit velocities. When comparing the corresponding runs in the two cases it became obvious that with cooling applied the deviation of the exit flow angle is generally smaller than in the uncooled case. This might be a highly important design feature for designers to work with. From the available data it was concluded that the total pressure distribution across the span is not significantly affected with the introduction of cooling.
192

Aerodynamic Loss Co-Relations and Flow- Field Investigations of a Transonic Film- Cooled Nozzle Guide Vane

Leung, Pak Wing January 2015 (has links)
Over the last two decades, most developed countries have reached a consensus that greener energy production is necessary for the world, due to the climate changes and limited fossil fuel resources. More efficient turbine is desirable and can be archived by higher turbine-inlet temperature (TIT). However, it is difficult for nozzle guide vane (NGV), which is the first stage after combustion chamber, to withstand a very high temperature. Thus, cooling methods such as film cooling have to be implemented. Film-cooled NGV of an annular sector cascade (ASC) is studied in this thesis, for getting comprehensive calculation of vorticity, and analyzing applicability of existing loss models, namely Hartsel model and Young & Wilcock model. The flow-field calculation methods from previously published studies are reviewed. Literatures focusing on Hartsel model and Young & Wilcock model are studied. Measurement data from previously published studies are analyzed and compared with the loss models. In order to get experience of how measurements take place, participation of a test run experiment is involved. Calculation of flow vector has been evaluated and modified. Actual flow angle is introduced when calculating velocity components. Thus, more exact results are obtained from the new method. Calculation of vorticity has been evaluated and made more comprehensive. Vorticity components as well as magnitude of total streamwise vorticity are calculated and visualized. Vorticity is higher and more extensive for fully cooled case than uncooled case. Highest vorticity is found at regions near the hub, tip and TE. Axial and circumferential vorticities show similar patterns, while the radial vorticity is relatively simpler. Compressibility is introduced as a new method when calculating circumferential and radial vorticities, resulting more extensive and higher vorticities than results from incompressible solutions. Hartsel model and Young & Wilcock model have been evaluated and compared to the ASC to see the applicability of the models. In general, Hartsel model cannot agree with the ASC to a satisfactory level and thus cannot be applied. Coolant velocity is found to be the dominant factor of Hartsel model. Young & Wilcock model may match SS1 and SS2 cases, or even PS and SH4 cases, but cannot match TE case. The applicability of Young & Wilcock model is much dependent on the location of cooling rows.
193

CFD modeling of combustion and soot production in Diesel sprays

Pachano Prieto, Leonardo Manuel 04 May 2020 (has links)
[ES] En los últimos años, las emisiones de hollín provenientes de los motores de combustión interna han recibido más atención debido al impacto negativo que éstas tienen no solo en el ambiente, sino también en la salud del ser humano. Como respuesta, leyes cada vez más estrictas han sido aplicadas impulsando así a la comunidad científica al desarrollo de motores más eficientes en el uso del combustible y por supuesto más limpios en términos de emisiones contaminantes. En este contexto, el modelado computacional ha sido la herramienta utilizada en numerosos esfuerzos que buscan contribuir a mejorar el entendimiento que se tiene sobre los altamente complejos fenómenos que componen el proceso de producción de hollín. El principal objetivo de esta tesis es simular la producción de hollín en chorros Diesel en condiciones de operación típicas de un motor de combustión interna utilizando CFD. La consecución del objetivo de la tesis comprende una evaluación preliminar de la configuración de los distintos modelos para el caso de chorros inertes. En segundo lugar, el estudio detallado de la hipótesis utilizada para caracterizar la estructura de la llama a nivel sub-grid (tomando como base los conceptos well-mixed o flamelet) y del enfoque para tener en cuenta la interacción entre turbulencia y química. Por último, se presentan resultados del modelado de la combustión y producción de hollín para diferentes condiciones de contorno de reactividad y mezcla del chorro utilizando un modelo de hollín de dos ecuaciones. En resumen, el lector encontrará a lo largo de este documento un estudio exhaustivo sobre la combustión y producción de hollín en chorros inyectados con toberas mono-orificio en ambientes quiescentes. De este tipo de chorros, el Spray A y Spray D de la Engine Combustion Network son utilizados como casos de referencia. / [CA] En els últims anys, les emissions de sutge provinents dels motors de combustió interna han rebut més atenció a causa de l'impacte negatiu que aquestes tenen no sols en l'ambient, sinó també en la salut de l'ésser humà. Com a resposta, lleis cada vegada més estrictes han sigut aplicades impulsant així a la comunitat científica al desenvolupament de motors més eficients en l'ús del combustible i per descomptat més nets en termes d'emissions contaminants. En aquest context, el modelatge computacional ha sigut l'eina utilitzada en nombrosos esforços que busquen contribuir a millorar l'enteniment que es té sobre els altament complexos fenòmens que componen el procés de producció de sutge. El principal objectiu d'aquesta tesi és simular la producció de sutge en rolls dièsel en condicions d'operació típiques d'un motor de combustió interna utilitzant CFD. La consecució de l'objectiu de la tesi comprèn una avaluació preliminar de la configuració dels diferents models per al cas de rolls inerts. En segon lloc, l'estudi detallat de la hipòtesi utilitzada per a caracteritzar l'estructura de la flama a nivell sub-grid (prenent com a base els conceptes well-mixed o flamelet) i de l'enfocament per a tindre en compte la interacció entre turbulència i química. Finalment, es presenten resultats del modelatge de la combustió i producció de sutge per a diferents condicions de contorn de reactivitat i mescla del doll utilitzant un model de sutge de dues equacions. En resum, el lector trobarà al llarg d'aquest document un estudi exhaustiu sobre la combustió i producció de sutge en dolls injectats amb toveres mono-orifici en ambients immòbils. D'aquesta mena de dolls, l'Spray A i Spray D de la Engine Combustion Network són utilitzats com a casos de referència. / [EN] Over the past few years, soot emissions from internal combustion engines have gained attention due to its impact on the environment and human health. In response, ever-stricter legislation has been enforced driving the research community toward more fuel-efficient and cleaner engines. Within this context, soot modeling has been the subject of many efforts seeking to contribute to the understanding of the highly complex phenomena that composes the soot production process. This thesis main objective aims at simulating soot production in Diesel sprays under engine-like conditions using computational fluid dynamics (CFD). The fulfillment of the thesis main objective entails a preliminary assessment of the inert spray computational setup for validation purposes. Then, a detailed study on the sub-grid flame structure and handling of turbulence-chemistry interaction is reported focusing on well-mixed and flamelet assumptions. Lastly, the study of reactivity and mixing boundary condition variations on combustion and soot production are assessed with a two-equation soot model. In summary, throughout this document the reader will find a comprehensive study of combustion and soot modeling in single-hole nozzle sprays in quiescent environments from which the Spray A and Spray D target conditions from the Engine Combustion Network are the main reference cases. / The respondent wishes to acknowledge the financial support received through Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) and Ayudas para movilidad dentro del Programa para la Formación de Personal investigador 2017 of Universitat Politècnica de València and the Government of Spain through the CHEST Project (TRA2017-89139-C2-1-R). The respondent also wants to express his gratitude to Convergent Science for their kind support in the use of CONVERGE software for performing the CFD simulations. Parts of the work presented in this thesis have been supported in a collaborative framework with research partners at Argonne National Laboratory and their support is greatly acknowledged. / Pachano Prieto, LM. (2020). CFD modeling of combustion and soot production in Diesel sprays [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/142189 / TESIS
194

DEVELOPMENT OF A COMPUTATIONAL MODEL FOR A SIMULTANEOUS SIMULATION OF INTERNAL FLOW AND SPRAY BREAK-UP OF THE DIESEL INJECTION PROCESS

Martí Gómez-Aldaraví, Pedro 30 October 2014 (has links)
El proceso de atomización desde una vena o lámina líquida hasta multitud de gotas dispersas en un medio gaseoso ha sido un fenómeno de interés desde hace varias décadas, especialmente en el campo de los motores de combustión interna alternativos. Multitud de estudios experimentales han sido publicados al respecto, pues una buena mezcla de aire-combustible asegura una evaporación y combustión mucho más eficientes, aumentando la potencia del motor y reduciendo la cantidad de contaminantes emitidos. Con el auge de las técnicas computacionales, muchos modelos han sido desarrollados para estudiar este proceso de atomización y mezcla. Uno de los últimos modelos que han aparecido es el llamado ELSA (Eulerian-Lagrangian Spray Atomization), que utiliza un modelo Euleriano para la parte densa del chorro y cambia a un modelo Lagrangiano cuando la concentración de líquido es suficientemente pequeña, aprovechando de esta manera las ventajas de ambos. En el presente trabajo se ha desarrollado un modelo puramente Euleriano para estudiar la influencia de la geometría interna de la tobera de inyección en el proceso de atomización y mezcla. Se ha estudiado únicamente el proceso de inyección diésel. Este modelo permite resolver en un único dominio el flujo interno y el externo, evitando así las comunes simplificaciones y limitaciones de la interpolación entre ambos dominios resueltos por separado. Los resultados actuales son prometedores, el modelo predice con un error aceptable la penetración del chorro, el flujo másico y de cantidad de movimiento, los perfiles de velocidad y concentración, así como otros parámetros característicos del chorro. / Martí Gómez-Aldaraví, P. (2014). DEVELOPMENT OF A COMPUTATIONAL MODEL FOR A SIMULTANEOUS SIMULATION OF INTERNAL FLOW AND SPRAY BREAK-UP OF THE DIESEL INJECTION PROCESS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/43719 / TESIS / Premios Extraordinarios de tesis doctorales
195

Experimental Determination of Inlet Conditions for Dynamically Modelling Liquid Fuel Sprays during Injection Transients

Hillstrom, David Roger 12 September 2022 (has links)
No description available.
196

Mass Spectrometry with Electrospray Ionization from an Adjustable Gap

Ek, Patrik January 2008 (has links)
In this thesis the fabrication and analytical evaluation of two new electrospray emitters utilized for mass spectrometry analysis is presented. The emitters are based on a new concept, where the spray orifice can be varied in size. The thesis is based on two papers. All present-day nanoelectrospray emitters have fixed dimensions. The range of the applicable flow rate for such an emitter is therefore rather limited and exchange of emitters may be necessary from one experiment to another. Optimization of the signal of the analyte ions is also limited to adjustments of the applied voltage or the distance between the emitter and the mass spectrometer inlet. Furthermore, clogging can occur in emitters with fixed dimensions of narrow orifice sizes. In this thesis, electrospray emitters with a variable size of the spray orifice are proposed. An open gap between two thin substrates is filled with sample solution via a liquid bridge from a capillary. Electrospray is generated at the end point of the gap, which can be varied in width. In Paper I, electrospray emitters fabricated in polyethylene terephthalate have been evaluated. Triangular tips are manually cut from the polymer film. The tips are mounted to form a gap between the edges of the tips. The gap wall surfaces are subjected to a hydrophilic surface treatment to increase the wetting of the gap walls. In Paper II, silicon electrospray chips with high precision are fabricated and evaluated. A thin beam, elevated from the bulk silicon chip is fabricated by means of deep reactive ion etching. The top surfaces of the beams of two chips act as a sample conduit when mounted in the electrospray setup. An anisotropic etching step with KOH of the intersecting <100> crystal planes results in a very sharp spray point. The emitters were given a hydrophobic surface treatment except for the hydrophilic gap walls. For both emitter designs, the gap width has been adjusted during the experiments without any interruption of the electrospray. For a continuously applied peptide mixture, a shift towards higher charge states and increased signal to noise ratios could be observed when decreasing the gap width. The limit of detection has been investigated and the silicon chips have been interfaced with capillary electrophoresis. / QC 20101108
197

Effect of swirling blade on flow pattern in nozzle for up-hill teeming

Hallgren, Line January 2006 (has links)
The fluid flow in the mold during up-hill teeming is of great importance for the quality of the cast ingot and therefore the quality of the final steel products. At the early stage of the filling of an up-hill teeming mold, liquid steel enters, with high velocity, from the runner into the mold and the turbulence on the meniscus could lead to entrainment of mold flux. The entrained mold flux might subsequently end up as defects in the final product. It is therefore very important to get a mild and stable inlet flow in the entrance region of the mold. It has been acknowledged recently that swirling motion induced using a helix shaped swirl blade, in the submerged entry nozzle is remarkably effective to control the fluid flow pattern in both the slab and billet type continuous casting molds. This result in increased productivity and quality of the produced steel. Due to the result with continuous casting there is reason to investigate the swirling effect for up-hill teeming, a casting method with similar problem with turbulence. With this thesis we will study the effect of swirling flow generated through a swirl blade inserted into the entry nozzle, as a new method of reducing the deformation of the rising surface and the unevenness of the flow during filling of the up-hill teeming mold. The swirling blade has two features: (1) to generate a swirling flow in the entrance nozzle and (2) to suppress the uneven flow, generated/developed after flowing through the elbow. The effect of the use of a helix shaped swirl blade was studied using both numerical calculations and physical modelling. Water modelling was used to assert the effect of the swirling blade on rectifying of tangential and axial velocities in the filling tube for the up-hill teeming and also to verify the results from the numerical calculations. The effect of swirl in combination with diverged nozzle was also investigated in a similar way, i. e. with water model trials and numerical calculations. / QC 20101115
198

The effect of nozzle geometry on bubble formation : Physical modeling by air in a water tank

Bernieh, Mhd Osman January 2023 (has links)
The bubble flow is used for different application in steel production and refining processes. It plays in indispensable role in the ladle refining process such as for homogenization and inclusion removal. Hence, it is important to understand the effect of the nozzle outlet geometry on the bubble formation. Three different nozzles with different outlet geometries were examined using a physical model. These geometries were: a) Circle, b) Square with round edges and c) Elliptical. All three nozzles had the same nozzle design and similar outlet cross-section areas. Therefore, the only tested parameter was the outlet geometry. The physical model is a water/air model, that consist of water tank ,the nozzles, gas gauge and a high speed camera. Each nozzle was tested under five different gas flow rates: starting from 10 L/min of air gas flow rate, until a 30 L/min of gas flow rate by incriminating with 5 L/min per experimental trial. Therefore, each nozzle was studied using a 5 experimental sets, so in total 15 experiments were made. For each set, 3000 photos were captured by the high speed camera. The photos were then analyzed using mainly the ImageJ software and the naked eye. After analyzing the photos for the experimental sets the following were found: a) The frequency of bubble formation was for the most part constant with an average of 11 bubbles per second. b) The elliptical nozzle produced for the most part the largest bubbles, while the circular produced the smallest ones. The square nozzle had similar bubble sizes comparable to the elliptical nozzle. c) The circular nozzle resulted in the bubbles with most stable surface, while the elliptical nozzle had the most unstable bubble boundary. The study had a drawback, which is the presence of a jetting flow which reduced the accuracy of the results. Thus, it is recommend that future work can solve this issue by finding at which gas flow rate pure bubbling flow stops for each nozzle geometry. / Bubbelinjektion används för olika tillämpningar inom stålproduktion och raffineringsprocesser. Det spelar en oumbärlig roll i raffineringsprocesser som homogenisering och borttagning av inneslutningar. Därför är det viktigt att förstå effekten av utloppsgeometrin hos munstycket på bubbelbildningen. Tre olika munstycken med olika utloppsgeometrier undersöktes med hjälp av en fysisk modell. Dessa geometrier är: a) Cirkel, b) Fyrkantig med rundade kanter och c) Elliptisk. Alla tre munstyckena har samma munstycksdesign och liknande utloppstvärsnittsarea. Därför är den enda parametern som testas utloppsgeometrin. Den fysiska modellen bestod av en vattentank, munstyckena där var och en undersöks separat, en gasmätare, en höghastighetskamera och modellen använde vatten/luft. Varje munstycke testades under fem olika gasflöden: startande från 10 L/min luftgasflöde, tills 30 L/min gasflöde stegvis 5 L/min per experimentuppsättning. Därför har varje munstycke 5 experimentuppsättningar, så totalt 15 experiment togs. För varje uppsättning togs 3000 bilder med höghastighetskameran. Bilderna analyserades sedan med främst ImageJ-programvara och blotta ögat. Efter att ha analyserat bilderna från experimenten så visade resultaten följande: a) Frekvensen av bubbelbildning var mestadels konstant med ett genomsnitt på 11 bubblor per sekund. b) Det elliptiska munstycket producerade mestadels de största bubblorna, medan det cirkulära producerade de minsta bubblorna. Det fyrkantiga munstycket resulterade i en liknande bubbelstorlek som det elliptiska munstycket. c) Det cirkulära munstycket resulterade i bubblorna med den mest stabila ytan, medan det elliptiska munstycket hade den mest instabila bubbelgränsen. Studien hade en nackdel, vilket är närvaron av ett jetflöde som minskade noggrannheten i resultatet. Det rekommenderas att framtida arbete kan lösa detta problem genom att hitta vid vilken gasflödeshastighet rent bubblande flöde stoppar för varje munstycke
199

Cavitation of a Water Jet in Water

Wright, Michael Marshall 18 April 2012 (has links) (PDF)
Cavitation is a phenomenon that occurs in liquids when the pressure drops below the vapor pressure of the liquid. Previous research has verified that cavitation bubble collapse is a dynamic and destructive process. An understanding of the behavior of cavitation is necessary to implement this destructive mechanism from an axisymmetric jet for underwater material removal. This work investigates the influence of jet pressure and nozzle diameter on the behavior of a cloud of cavitation bubbles generated by a submerged high-pressure water jet. First, this investigation is put into context with a condensed historical background of cavitation research. Second, a description of the cavitation-generating apparatus is given. Next, the experimental methods used to explore the behavior of the cavitation clouds are explained. Finally, the results of the investigation, including propagation distance, cloud width and area, pulsation frequency, and cloud front velocity are presented. Among the results is a discussion of the significant experimental factors affecting the behavior of the cavitation clouds. It is shown that the Reynolds number, specifically the diameter of the nozzle, has a significant effect on the measurements. In some cases the jet pressure, and subsequent jet velocity, had a less significant effect than was expected. Overall, this research describes the cavitation cloud formed when a submerged high-speed water jet discharges.
200

Experimental study on the effect of rocket nozzle wall materials on the stability of methane / Experimentell studie av effekten av raketmunstycksväggmaterial på stabiliteten av metan

L. Holmboe, Thomas January 2023 (has links)
There has recently been an increased interest in methane as a rocket propellant due to its physical properties as well as the possibility of in-situ resource utilization in places like Mars. As part of ESA’s Future Launcher Preparatory Program, KTH in cooperation with GKN Aerospace has started the MERiT program, which seeks to study the characteristics of methane under conditions found in rocket nozzle cooling channels. In particular, the current work examines the influence of different wall temperatures, fluid flow rates, and fluid residence times on methane pyrolysis due to the catalytic properties of nickel based metals. Pyrolysis is the thermo-catalytic decomposition of methane, which results in the creation of hydrogen and solid carbon in the cooling channels. This can affect the performance of the rocket engine, the cooling channels, as well as the lifespan of the engine, which makes the process important to quantify when designing highly reusable engines. A chemical kinetics computer model has been developed, which has been used to quantify the most important parameters for methane pyrolysis. Based on these results, a small-scale pyrolysis experimental setup has been developed and used to characterise methane pyrolysis for different material temperatures and gas flow rates. The experimental setup has been proven to work and consistently provide pyrolysis at temperatures between 600 ◦C to 700 ◦C, although more work on the data collection side, in particular with regards to a gas chromatograph and a scanning electron microscope, is required to quantify and compare different experiments.

Page generated in 0.0338 seconds