• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 27
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Nucleolus and Nucleolar Proteins of Dictyostelium

Catalano, Andrew Joseph 05 January 2012 (has links)
Dictyostelium is a model eukaryote for the study of a multitude of fundamental cellular processes as well as several human diseases. Despite its extensive study relatively little is known about its nucleolus. Only three nucleolar proteins have been identified. The nucleolus in Dictyostelium is different than that of other eukaryotes since it is neither bipartite nor tripartite, possessing no visible subcompartments at the ultrastructural level. Moreover, it exists as two to four patches adjacent to the inner nuclear envelope instead of within the nucleoplasm. The aim of this study was thus to identify and characterize novel nucleolar proteins in Dictyostelium in order to better understand the structure and function of its nucleolus. Previous work had shown that NumA1, a protein linked to cell cycle in Dictyostelium, localizes to similar intranuclear patches suggesting it may be nucleolar. NumA1-binding partners Ca2+-binding protein (CBP) 4a and puromycin-sensitive aminopeptidase A may therefore also reside in the nucleolus. Based on the function of a potential NumA1 homologue in other organisms, BRG1-associated factor 60a homologue Snf12 and checkpoint kinase 2 (Rad53 in yeast) homologue forkhead-associated kinase (Fhk) A were chosen as potential nucleolar proteins in Dictyostelium that may also be involved in cell cycle events. Using a diversity of approaches, this study found that NumA1, CBP4a, Snf12, and FhkA are nucleolar proteins in Dictyostelium while puromycin-sensitive aminopeptidase A is nucleoplasmic. Several nuclear localization signals (NLSs) were identified in these proteins some of which also act as nucleolar localization signals (NoLSs). These NLS/NoLSs (within NumA1 and Snf12) represent the first NoLSs and first NLS/NoLSs identified in Dictyostelium. Treatment with the rDNA transcription inhibitor AM-D led to the budding of nucleolar CBP4a, Snf12, and FhkA from the nucleus to the cytoplasm, a phenomenon not previously observed in any organism. This study also examined for the first time the redistribution of nucleolar proteins during mitosis, a time when the nucleolus disassembles into its component parts. The nuclear envelope was also shown to become permeable at this time. Finally, multiple nucleolar subcompartments were identified suggesting compartmentalization of different functions in the Dictyostelium nucleolus.
12

The Nucleolus and Nucleolar Proteins of Dictyostelium

Catalano, Andrew Joseph 05 January 2012 (has links)
Dictyostelium is a model eukaryote for the study of a multitude of fundamental cellular processes as well as several human diseases. Despite its extensive study relatively little is known about its nucleolus. Only three nucleolar proteins have been identified. The nucleolus in Dictyostelium is different than that of other eukaryotes since it is neither bipartite nor tripartite, possessing no visible subcompartments at the ultrastructural level. Moreover, it exists as two to four patches adjacent to the inner nuclear envelope instead of within the nucleoplasm. The aim of this study was thus to identify and characterize novel nucleolar proteins in Dictyostelium in order to better understand the structure and function of its nucleolus. Previous work had shown that NumA1, a protein linked to cell cycle in Dictyostelium, localizes to similar intranuclear patches suggesting it may be nucleolar. NumA1-binding partners Ca2+-binding protein (CBP) 4a and puromycin-sensitive aminopeptidase A may therefore also reside in the nucleolus. Based on the function of a potential NumA1 homologue in other organisms, BRG1-associated factor 60a homologue Snf12 and checkpoint kinase 2 (Rad53 in yeast) homologue forkhead-associated kinase (Fhk) A were chosen as potential nucleolar proteins in Dictyostelium that may also be involved in cell cycle events. Using a diversity of approaches, this study found that NumA1, CBP4a, Snf12, and FhkA are nucleolar proteins in Dictyostelium while puromycin-sensitive aminopeptidase A is nucleoplasmic. Several nuclear localization signals (NLSs) were identified in these proteins some of which also act as nucleolar localization signals (NoLSs). These NLS/NoLSs (within NumA1 and Snf12) represent the first NoLSs and first NLS/NoLSs identified in Dictyostelium. Treatment with the rDNA transcription inhibitor AM-D led to the budding of nucleolar CBP4a, Snf12, and FhkA from the nucleus to the cytoplasm, a phenomenon not previously observed in any organism. This study also examined for the first time the redistribution of nucleolar proteins during mitosis, a time when the nucleolus disassembles into its component parts. The nuclear envelope was also shown to become permeable at this time. Finally, multiple nucleolar subcompartments were identified suggesting compartmentalization of different functions in the Dictyostelium nucleolus.
13

Mechanism and regulation of ERK2 subcellular localization

Whitehurst, Angelique Wright. January 2004 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2004. / Vita. Bibliography: 118-130.
14

GCN5-B is a Novel Nuclear Histone Acetyltransferase that is Crucial for Viability in the Protozoan Parasite Toxoplasma gondii

Dixon, Stacey E. 16 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Infection with the single-celled parasite Toxoplasma gondii (phylum Apicomplexa) is usually benign in normal healthy individuals, but can cause congenital birth defects, ocular disease, and also life-threatening infection in immunocompromised patients. Acute infection caused by tachyzoites is controlled by a healthy immune response, but the parasite differentiates into a latent cyst form (bradyzoite) leading to permanent infection and chronic disease. Current therapies are effective only against tachyzoites, are highly toxic to the patient, and do not eradicate the encysted bradyzoites, thus highlighting the need for novel therapeutics. Inhibitors of histone deacetylases have been shown to reduce parasite viability in vitro demonstrating that chromatin remodeling enzymes, key mediators in epigenetic regulation, might serve as potential drug targets. Furthermore, epigenetic regulation has been shown to contribute to gene expression and differentiation in Toxoplasma. This dissertation focused on investigating the physiological role of a Toxoplasma GCN5-family histone acetyltransferase (HAT), termed TgGCN5-B. It was hypothesized that TgGCN5-B is an essential HAT that resides within a unique, multi-subunit complex in the parasite nucleus. Studies of TgGCN5-B have revealed that this HAT possesses a unique nuclear localization signal (311RPAENKKRGR320) that is both necessary and sufficient to translocate the protein to the parasite nucleus. Although no other protein motifs have been identified in the N-terminal extension of TgGCN5-B, it is likely that this extension plays a role in protein-protein interactions. All GCN5 homologues function within large multi-subunit complexes, many being conserved among species, but bioinformatic analysis of the Toxoplasma genome revealed a lack of many of these conserved components. Biochemical studies identified several potential TgGCN5-B associating proteins, including several novel apicomplexan transcription factors. Preliminary evidence suggested that TgGCN5-B was essential for tachyzoites; therefore, a dominant-negative approach was utilized to examine the role of TgGCN5-B in the physiology of Toxoplasma. When catalytically inactive TgGCN5-B protein was over-expressed in the parasites, there was a significant decrease in tachyzoite growth and viability, with initial observations suggesting defects in nuclear division and daughter cell budding. These results demonstrate that TgGCN5-B is important for tachyzoite development and indicate that therapeutic targeting of this HAT could be a novel approach to treat toxoplasmosis.
15

STRAIN-SPECIFIC PROTEIN INTERACTION AND LOCALIZATION OF TWO STRAINS OF POTATO YELLOW DWARF VIRUS AND FUNCTIONAL DOMAINS OF THEIR MATRIX PROTEIN

Jang, Chanyong 01 January 2019 (has links)
Potato yellow dwarf virus (PYDV) is the type species of the genus nucleorhabdovirus which is typified by its nucleotropic characters of the members. The virus accomplishes its replication and morphogenesis in the nuclei of infected cells. Two strains, Constricta strain (CYDV) and Sanguinolenta strain (SYDV) have been described at the level of vector-specificity. CYDV is vectored by Agallia constricta and SYDV is transmitted by Aceratagllia sanguinolenta. The full-length genome of CYDV was sequenced. The 12,792 nt antisense genome encodes seven open reading frames in the order of, nucleocapsid protein (N), unknown protein (X), phosphoprotein (P), movement protein (Y), matrix protein (M), glycoprotein (G), and large polymerase protein (L). The features of each protein including a nuclear localization signal, isoelectric point, and transmembrane domain, were determined by predictive algorithms. The gene coding region was flanked by leader and trailer, and each ORF was separated by a conserved intergenic junction. In the intergenic junctions, the highly conserved cis-regulatory elements, polyadenylation signal, gene spacer, and transcription start site, were identified. The similarities of amino acid sequences between each cognate protein of SYDV and CYDV were higher than 80% except for X and P proteins. The protein localization and interaction assays of each CYDV protein identified strain-specific associations in comparison with those of SYDV and generated unique protein interaction and localization map compared to SYDV. Phylogenetic analysis using L protein identified that CYDV forms a clade with other leafhopper-transmitted rhabdoviruses. Protein sequence comparisons revealed that CYDV X has greater similarity to the cognate protein of Eggplant mottle disease virus than to SYDV X. The localization patterns of CYDV-N and -Y were different compared the cognate proteins of SYDV. The functional nuclear export domain of SYDV M was identified using c-terminal fragments of the Mwt(aa 211-243), MLL223AA(aa 211-243), and MKR225AA(aa 211-243). Based on the data, the functional domains M mediating membrane association, nuclear import and export were mapped for both strains and suggested a model whereby M mediates intra- and intercellular movement of PYDV nucleocapsid.
16

Charakterisierung der viralen Genprodukte p10 und P des Borna Disease Virus / Characterization of the viral gene products p10 and P of the Borna disease virus

Unterstab, Gunhild January 2005 (has links)
Das Borna Disease Virus (BDV, Bornavirus) besitzt ein einzelsträngiges RNA-Genom negativer Polarität und ist innerhalb der Ordnung Mononegavirales der Prototyp einer eigenen Virusfamilie, die der Bornaviridae. Eine außergewöhnliche Eigenschaft des Virus ist seine nukleäre Transkription und Replikation, eine weitere besteht in seiner Fähigkeit, als neurotropes Virus sowohl in vivo als auch in vitro persistente Infektionen zu etablieren. Die zugrunde liegenden Mechanismen sowohl der Replikation als auch der Persistenz sind derzeit noch unzureichend verstanden, auch deshalb, weil das Virus noch relativ „jung“ ist: Erste komplette Sequenzen des RNA-Genoms wurden 1994 publiziert und erst vor einigen Monaten gelang die Generierung rekombinanter Viren auf der Basis klonierter cDNA. Im Mittelpunkt dieser Arbeit standen das p10 Protein und das Phosphoprotein (P), die von der gemeinsamen Transkriptionseinheit II in überlappenden Leserahmen kodiert werden. <br><br> Als im Kern der Wirtszelle replizierendes Virus ist das Bornavirus auf zelluläre Importmechanismen angewiesen, um den Kernimport aller an der Replikation beteiligten viralen Proteine zu gewährleisten. Das p10 Protein ist ein negativer Regulator der viralen RNA-abhängigen RNA-Polymerase (L). In vitro Importexperimente zeigten, dass p10 über den klassischen Importin alpha/beta abhängigen Kernimportweg in den Nukleus transportiert wird. Dies war unerwartet, da p10 kein vorhersagbares klassisches Kernlokalisierungssignal (NLS) besitzt und weist darauf hin, dass der zelluläre Importapparat offensichtlich flexibler ist als allgemein angenommen. Die ersten 20 N-terminalen AS vermitteln sowohl Kernimport als auch die Bindung an den Importrezeptor Importin alpha. Durch Di-Alanin-Austauschmutagenese wurden die für diesen Transportprozess essentiellen AS identifiziert und die Bedeutung hydrophober und polarer AS-Reste demonstriert. <br><br> Die Fähigkeit des Bornavirus, persistente Infektionen zu etablieren, wirft die Frage auf, wie das Virus die zellulären antiviralen Abwehrmechanismen, insbesondere das Typ I Interferon (IFN)-System, unterwandert. Das virale P Protein wurde in dieser Arbeit als potenter Antagonist der IFN-Induktion charakterisiert. Es verhindert die Phosphorylierung des zentralen Transkriptionsfaktors IRF3 durch die zelluläre Kinase TBK1 und somit dessen Aktivierung. Der Befund, dass P mit TBK1 Komplexe bildet und zudem auch als Substrat für die zelluläre Kinase fungiert, erlaubt es, erstmalig einen Mechanismus zu postulieren, in dem ein virales Protein (BDV-P) als putatives TBK1-Pseudosubstrat die IRF3-Aktivierung kompetitiv hemmt. / The Borna Disease Virus (BDV) harbors a single stranded RNA genome of negative polarity. Within the order of Mononegavirales it is the prototype of a new virus family named Bornaviridae. Unique features of this neurotrope virus are its nuclear transcription and replication as well as its ability to establish persistent infections both in vivo and in vitro. The underlying mechanisms of BDV replication and persistence are currently not well understood amongst others due to the fact that BDV is quite a young virus: First complete sequences of the RNA genome have been published in 1994. Only a few months ago the generation of a recombinant Bornavirus from cloned cDNA has been accomplished. <br><br> The work presented here focused on the viral p10 protein and the phosphoprotein P that are both encoded by two overlapping reading frames of the transcription unit II. <br><br> Nuclear replication of the Bornavirus relies on cellular import mechanisms to allow for nuclear import of viral proteins involved in viral replication. The p10 protein has been described as a negative regulator of the viral RNA dependent RNA polymerase (L). In vitro import experiments revealed that p10 translocates into the nucleus via the classical importin alpha/beta; dependent pathway. This was unexpected since p10 does not contain a predictable classical nuclear localization signal (NLS) suggesting that the cellular import machinery is more flexible than generally believed. The first 20 amino acids mediate nuclear import and binding to the import receptor importin alpha. Analysis of di-alanine-exchange mutants identified essential amino acids and furthermore revealed the impact of hydrophobic and polar side chains in receptor binding and nuclear import. <br><br> The ability of the Bornavirus to establish persistent infections rises the question of how the virus circumvents cellular antiviral defense mechanisms, in particular the type I interferon system. This work characterizes the viral P protein as a potent antagonist of IFN beta induction. It prevents the activation of the central transcription factor IRF3 by interfering with the cellular kinase TBK1. The finding that P forms complexes with TBK1 and moreover serves as a kinase substrate allows to postulate a mechanism for the first time, in which a viral protein (BDV-P) acts as a putative TBK1 pseudo-substrate and thereby competitively inhibits IRF3 activation.
17

Desenvolvimento de vacina genica veiculada em adjuvantes lipidicos para tratamento da tuberculose / Lipid adjuvants as carriers for tuberculosis DNA vaccine

Torre, Lucimara Gaziola de la, 1971- 12 December 2006 (has links)
Orientador: Maria Helena Andrade Santana / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-08T14:24:33Z (GMT). No. of bitstreams: 1 Torre_LucimaraGazioladela_D.pdf: 28769884 bytes, checksum: 485f026c87d2f5b4fb99e642474200d0 (MD5) Previous issue date: 2006 / Resumo: Este trabalho visa o desenvolvimento tecnológico de uma vacina gênica, destinada ao combate à tuberculose, na qual o DNA encontra-se veiculado em lipossomas. Foram enfocados três aspectos principais: 1.A preparação e caracterização de estruturas lipídicas funcionais veiculando o DNA, projetadas para atenderem aos requisitos de imunização contra a tuberculose; 2. Complexação do DNA com peptídio sintético promotor de transporte nuclear e veiculação na estrutura lipossomal que se mostrou mais promissora nos ensaios in vitro e in vivo realizados no CPT-RP. 3. Análise do escalonamento da produção da estrutura lipossomal mais promissora para subsequente veiculação do DNA. Duas estruturas lipossomais foram compostas por lipídios com as seguintes funcionalidades: estrutural, de incorporação do DNA e atração eletrostática com a superfície das células, de intensificação da liberação do DNA no citoplasma celular. Foram preparadas pelo método da desidratação-rehidratação, gerando DRVs (¿dehydrated-hydrated vesicles¿). O DNA foi associado à essas estruturas, localizando-se no interior, [DRV(DNA)] ou prefencialmente na sua superfície [DRV-DNA]. A terceira estrutura, um agregado lipídico não lipossomal designado por lipoplexo, foi preparado na ausência do lipídio estrutural, contendo o DNA associado em toda a sua superfície. As estruturas foram caracterizadas através do seu diâmetro hidrodinâmico e distribuição de tamanhos, razão de cargas para completa incorporação do DNA, carga superficial, transição de fases, acessibilidade de sonda de fluorescência ao DNA e morfologia. O peptídio sintético com seqüência não convencional foi associado à estrutura DRV-DNA. O escalonamento da produção de lipossomas foi analisado através de dados experimentais e simulação matemática da cinética de produção de lipossomas em sistema multitubular. Dos resultados conclui-se que a estrutura DRV-DNA é promissora para a produção de vacina contra a tuberculose tanto pela sua efetividade biológica quanto do ponto de vista tecnológico / Abstract: This work contributes to the technological development of a gene vaccine against tuberculosis, where DNA is transported within liposomes. The three main aspects focused on were: 1. Functional lipid structures for DNA delivery were prepared and characterized in the attempt to obtain immunization standards against tuberculosis; 2. The best lipid structure was chosen from in vitro and in vivo assays performed in the ¿Centro de Pesquisas em Tuberculose de Ribeirão Preto¿ ¿ CPT-RP. A synthetic peptide that promotes nuclear transport was complexed to DNA and included into the best lipid structure. 3. Scale up analysis for the production of the best lipid structure that was used for DNA delivery. Two types of liposomes were composed by lipids with the following properties: (i) structure, (ii) DNA incorporation and electrostatic attraction with cell surface, and (iii) helper, that facilitates the DNA release to the citosol. These structures were prepared by the dehydrated-hydrated method, generating DRVs (dehydrated-hydrated vesicles). The DNA was associated in the inner compartment, [DRV(DNA)], or mostly at the surface [DRV-DNA] of these structures. The third structure, a lipid aggregate that does not form liposomes and was named lipoplex, was prepared in the absence of the structural lipid, used in previous preparations, which contained DNA associated with all of the aggregate¿s surface. The physico-chemical characterization of the structures were based on the hydrodynamic diameter and size distribution of the lipid particles, charge ratio for DNA incorporation into the lipid structure, surface charge, phase transition temperatures, the fluorescent probe accessibility to DNA and morphology of the particles. A synthetic peptide, with non-conventional sequence was associated to the DRV-DNA structure. The scale up for the liposome production was analyzed through the acquisition of experimental data and mathematical simulation of the liposomes production in a multitubular system. The results demonstrate that the incorporation of DNA into a lipid structure is very promising as a tuberculosis vaccine, especially in regards to the complexation of DNA with empty DRVs. The technological aspects of scaling up also confirm the viability of preformed liposomes production / Doutorado / Desenvolvimento de Processos Biotecnologicos / Doutor em Engenharia Química
18

Determining features sufficient for protein trafficking to the plant inner nuclear membrane and identification of putative nuclear envelope-associated proteins in <i>Arabidopsis thaliana</i>.

Groves, Norman R. 25 October 2019 (has links)
No description available.
19

Nuclear transport of the DNA fragmentation factor via the classical importin α/β-pathway / Kerntransport des DNA-Fragmentierungsfaktors über den klassischen Importin α/β-Transportweg

Neimanis, Sonja 04 May 2007 (has links)
No description available.
20

Mechanisms underlying the nuclear transport of histones and histone-related proteins / Der Transport von Histonen und Histon-verwandten Proteinen in den Zellkern

Kahle, Jörg 27 April 2005 (has links)
No description available.

Page generated in 0.1189 seconds